On the Cremona dimension of a *p*-group

Angelo Vistoli

Scuola Normale Superiore, Pisa

Joint work with Giulio Bresciani (Scuola Normale Superiore) and Zinovy Reichstein (University of British Columbia)

London, March 21, 2025

Let X be a smooth complex projective variety. We denote by Bir X the group of birational transformations $X \rightarrow X$.

A very classical object of study is the *plane Cremona group* Bir \mathbb{P}^2 , about which many results are known, by a long series of authors starting with Max Noether and Guido Castelnuovo. Igor Dolgachev and Vasily Iskovskikh, in 2009, completed the classification of conjugacy classes of finite subgroups of Bir \mathbb{P}^2 . In their paper they say "Very little is known about the Cremona groups in higher-dimensional spaces".

Around the same time Jean Pierre Serre asked the question "Does there exist a finite group which is not embeddable in Bir \mathbb{P}^3 ?", adding "This looks very likely".

Since then the progress has been considerable.

One can ask in general: what can we say about finite subgroups of $\operatorname{Bir} \mathbb{P}^n$?

First of all, by equivariant resolution of singularities, if X is a smooth projective variety, the finite subgroups of Bir X are the finite subgroups of Aut X', where X' is a smooth projective variety that is birational to X. Thus, one way to phrase the question is: given a positive integer n, what can we say about the finite subgroups of Aut X, where X is an n-dimensional smooth rational variety? But it has become clear that a better behaved replacement for the class of rational varieties is that of *rationally connected varieties* (those with lots of rational curves, which include unirational varieties).

The *Cremona dimension* CrD *G* of a finite group *G* is the least *n* such that *G* appears as a subgroup of a group Bir *X*, or, equivalently, Aut *X*, where *X* is an *n*-dimensional smooth projective rationally connected variety. Thus, a stronger version of Serre's question is: are there finite groups *G* with CrD G > 3?

Again in 2009, Yuri Prokhorov gave a complete classification of the simple finite groups G with CrD $G \leq 3$, showing that there is a finite number of them, and positively answering Serre's question. But of course we want results in arbitrarily high dimension.

A benchmark I want to use is the following: what can we say about the Cremona dimension of the symmetric group S_n for higher values of n? For $n \ge 4$ we have an upper bound $\operatorname{CrD} S_n \le n-3$, and it also known that $\lim_{n\to\infty} (n - \operatorname{CrD} S_n) = \infty$; but what about lower bounds?

If j is a positive integer, we say that a group G has the Jordan property of index j if every finite subgroup $H \subseteq G$ has a normal abelian subgroup $A \subseteq H$ of index at most j. Camille Jordan proved that for each n there exists a positive integer j(n) such that $GL_n(\mathbb{C})$ has the Jordan property of index j(n). Serre also asked the following question: does the analogous property holds for the groups Bir \mathbb{P}^n ?

In 2012 Yuri Prokhorov and Constantin Shramov proved the following result. The Borisov–Alexeev–Borisov (BAB) conjecture was an important conjecture on boundedness of singular Fano varieties.

Theorem. For each integer $n \ge 0$, assume that the BAB conjecture holds in dimension n. Then there exists an integer j(n) such that if X is an n-dimensional smooth projective rationally connected variety, then Bir X has the Jordan property of index j(n).

The BAB conjecture was proved by Caucher Birkar in 2016. This answers Serre's question positively. It also shows that

 $\lim_{n\to\infty}\operatorname{CrD}\operatorname{S}_n=\infty$

and that the number of finite simple groups of bounded Cremona dimension is finite.

This was a breakthrough.

Unfortunately no explicit bounds are known for j(n), except for n = 2 and n = 3: Prokhorov and Shramov showed that $j(3) \le 107,495,424$.

So the problem of giving explicit examples of finite groups of Cremona dimension at least 5, and explicit lower bounds for CrD $\rm S_{\it n}$, remained open.

A second breakthrough happened in 2018, when Olivier Haution proved the following remarkable fixed point theorem.

Theorem. Let p be a prime, G a finite p-group acting on a smooth projective variety X of dimension less than p - 1. Assume that p does not divide $\chi(X, \mathcal{O}_X)$. Then $X^G \neq \emptyset$.

If X is rationally connected then $H^i(X, \mathscr{O}_X) = 0$ for all i > 0, hence $\chi(X, \mathscr{O}_X) = 1$, and the second hypothesis is always satisfied.

Corollary (Jinsong Xu). Let p be a prime, X a smooth projective variety such that p does not divide $\chi(X, \mathcal{O}_X)$, G a finite p-subgroup of Bir X. If dim X , then <math>G is abelian of rank at most dim X.

We can make a birational modification of X and assume $G \subseteq \operatorname{Aut} X$ (recall that $\chi(X, \mathscr{O}_X)$ is a birational invariant). Then by Haution's theorem G must have a fixed point on X; the representation on the tangent space is faithful, and a *p*-group with a faithful representation V with dim $V \leq p - 1$ is abelian of rank at most dim V.

This implies the following:

- (1) A non-abelian p-group has Cremona dimension at least p 1.
- (2) An abelian *p*-group of rank *r* has Cremona dimension at least $\min(r, p 1)$.

Previously Prokhorov and Shramov had shown that a non-abelian p-group has Cremona dimension at least 4 if $p \ge 17$.

The symmetric group S_n contains a non-abelian *p*-group if and only if $n \ge p^2$; hence if *p* is a prime with $p \le \sqrt{n}$ we have $\operatorname{CrD} S_n \ge p - 1$. Since by Bertrand's postulate we have a prime *p* such that $\lfloor \sqrt{n}/2 \rfloor we get the estimate$

 $\lfloor \sqrt{n}/2 \rfloor \leq \operatorname{CrD} \mathrm{S}_n \leq n-3$.

A limitation of Haution's theorem is in the hypothesis that dim X ; for example, it says nothing about 2-subgroups ofBir X. Our approach, which is based on a new result of relativeBrauer groups, does not have this problem, but requires a strongerhypothesis on X, and does not apply to abelian subgroups.

If G is a finite p-group, we are going to define a natural number γ(G), the non-abelian size of G, which has the following properties.
(1) γ(G) is always a multiple of p - 1.
(2) γ(G) = 0 if an only if G is abelian.
(3) If G₁, ..., G_r are finite p-groups, then γ(G₁ × ··· × G_r) = γ(G₁) + ··· + γ(G_r).
(4) If G is a non-abelian group with center Z/p, then

Thus, for example, if G is a non-abelian p-group of order p^3 we have $\gamma(G) = p - 1$, and $\gamma(G^r) = r(p - 1)$ for any $r \ge 0$.

 $\gamma(G) = p - 1.$

Our main result is the following.

Theorem (Bresciani–Reichstein–V.). Let p be a prime, X be a smooth projective variety such that $H^i(X, \mathscr{O}_X) = 0$ when i is odd, and $\chi(X, \mathscr{O}_X) < p$. Let $G \subseteq \text{Bir } X$ be a p-subgroup. Then $\dim X \ge \gamma(G)$.

Corollary. The Cremona dimension of a finite *p*-group *G* is greater than or equal to $\gamma(G)$.

Since $\gamma(G) \ge p-1$ as soon as G is not abelian, and can be much larger, this strengthens considerably the first part of the corollary to Haution's theorem.

What does this say about S_n ? If $m \stackrel{\text{def}}{=} \lfloor n/4 \rfloor$, and D_4 is the dihedral group of order 8, then $D_4^m \subseteq S_n$; since $\gamma(D_4^m) = m$, we get the bounds

 $\lfloor n/4 \rfloor \leq \operatorname{CrD} \operatorname{S}_n \leq n-3$.

On the hand, this says nothing about abelian groups. Consider the group $(\mathbb{Z}/p)^r$. Since $(\mathbb{Z}/p)^r \subseteq GL_r$, we have

 $\operatorname{CrD}(\mathbb{Z}/p)^r \leq r$,

while from Haution's theorem we get

$$\operatorname{CrD}(\mathbb{Z}/p)^r \geq \min(r, p-1).$$

One can show that in fact that $\lim_{r\to\infty} (r - \operatorname{CrD}(\mathbb{Z}/p)^r) = \infty$.

This leaves open the (extremely unlikely) possibility that $\operatorname{CrD}(\mathbb{Z}/p)^r$, with p fixed, is bounded.

There are two non-abelian groups of order 8, the dihedral group D_4 and the quaternion group Q_8 . We have $\gamma(D_4) = \gamma(Q_8) = 1$; on the other hand CrD $D_4 = 1$, while CrD $Q_8 = 2$.

If p is an odd prime, there are two non-abelian p-groups of order p^3 , the Heisenberg group $H_p = (\mathbb{Z}/p)^2 \rtimes (\mathbb{Z}/p)$, with exponent p, and the semidirect product $(\mathbb{Z}/p^2) \rtimes (\mathbb{Z}/p)$ with exponent p^2 . One can show that $\operatorname{CrD} H_p = p - 1$, while $(\mathbb{Z}/p^2) \rtimes (\mathbb{Z}/p)$ has Cremona dimension either p or p - 1.

Let *p* be an odd prime, *r* a positive integer, *G_r* the extra-special group of order p^{1+2r} and exponent *p*. Then $Z(G_r) = \mathbb{Z}/p$, while $G_r/Z(G_r) = (\mathbb{Z}/p)^{2r}$. Hence $\gamma(G_r) = p - 1$. All we can show is that $p - 1 \leq \operatorname{CrD} G_r \leq r(p - 1)$;

on the other hand G_r contains a copy of $(\mathbb{Z}/p)^r$, so CrD G_r is presumably unbounded.

The proof of our theorem is based on a new connection between Cremona dimension and relative Brauer group, and does not use the results of Prokhorov, Shramov and Haution. Let us define the non-abelian size $\gamma(G)$ of a *p*-group.

Definition. If A is an abelian p-group, then $A \simeq \prod_{i=1}^{r} \mathbb{Z}/p^{n_i}$ for certain natural numbers n_1, \ldots, n_r . We define the *Brauer* dimension of A as

$$\beta(A)=\sum_{i=1}^{r}(p^{n_i}-1).$$

Clearly $\beta(A)$ is always a multiple of p - 1, and $\beta(A) = 0$ if and only if A = 0.

So, for example, that Brauer dimension of $(\mathbb{Z}/p)^2$ is 2(p-1), and that of \mathbb{Z}/p^2 is $p^2 - 1$.

If G is a p-group with center Z(G), we define its non-abelian center K(G) as the kernel of the composite $Z(G) \subseteq G \twoheadrightarrow G^{ab}$. It is easy to see that K(G) is trivial if and only if G is abelian.

We define the non-abelian size $\gamma(G)$ as the Brauer dimension $\beta(K(G))$. The following properties, already mentioned, are easy to check.

 $\gamma(G) = p - 1.$

Let me describe the ingredients of the proof.

Theorem (Bresciani–Reichstein–V.). Let p be a prime, X be a smooth projective variety such that $H^i(X, \mathscr{O}_X) = 0$ when i is odd, and $\chi(X, \mathscr{O}_X) < p$. Let $G \subseteq \text{Bir } X$ be a p-subgroup. Then $\dim X \ge \gamma(G)$.

As usual, we assume that $G \subseteq \operatorname{Aut} X$. Call Z the center of G, and set $\overline{G} \stackrel{\text{def}}{=} G/Z$; then \overline{G} acts on X/Z. Let Y be a smooth projective \overline{G} -equivariant model of X/Z; the meaning of the condition on X is that it ensures that $\chi(Y, \mathscr{O}_Y)$ is not divisible by p.

Our proof uses a result of Nikita Karpenko and Alexander Merkurjev to reduce it to a theorem on relative Brauer groups.

Recall that if K is a field, its Brauer group Br $K = H^2(K, \mathbb{G}_m)$ is the second étale cohomology group with coefficients in the sheaf \mathbb{G}_m of invertible elements. If A is a finite abelian group, call $A^{\vee} \stackrel{\text{def}}{=} \operatorname{Hom}(A, \mathbb{C}^*)$ its dual, which is non-canonically isomorphic to A. Set $\Gamma \stackrel{\text{def}}{=} \operatorname{K}(G)^{\vee}$; since $\operatorname{K}(G)$ is by definition the kernel of the composite $Z \subseteq G \twoheadrightarrow G^{ab}$, we see that Γ is the cokernel of the corresponding homomorphism $(G^{ab})^{\vee} \to Z^{\vee}$. Since $\Gamma \simeq \operatorname{K}(G)$ we have $\gamma(G) \stackrel{\text{def}}{=} \beta(\operatorname{K}(G)) = \beta(\Gamma)$.

Let E/K be a Galois extension with Galois group \overline{G} , where K is an extension of \mathbb{C} ; we associate with this a homomorphism $\Gamma \to Br(K)$, via a construction due Mathieu Florence.

The extension E/K gives a class [E/K] in the non-abelian cohomology set $H^1(K, \overline{G})$. The exact sequence

$$1 \longrightarrow Z \longrightarrow G \longrightarrow \overline{G} \longrightarrow 1$$

induces a non-abelian coboundary map $\partial \colon H^1(K, \overline{G}) \to H^2(K, Z)$, hence a class $\alpha \stackrel{\text{def}}{=} \partial [E/K] \in H^2(K, Z)$.

We obtain a homomorphism $Z^{\vee} \to Br(K)$ by sending a character $\lambda \colon Z \to \mathbb{G}_{\mathrm{m}}$ into $\lambda_* \alpha \in H^2(K, \mathbb{G}_{\mathrm{m}})$. The characters coming from G^{ab} go to 0, hence we get a homomorphism $\Gamma \to Br K$.

It follows from a result of Karpenko and Merkurjev that if E/K is *versal* (or universal, or generic), this homomorphism is injective.

The action of \overline{G} on Y, which is a smooth birational model of X/Z, gives a twisted version $\widetilde{Y} \stackrel{\text{def}}{=} (Y \times_{\text{Spec }\mathbb{C}} \text{Spec } E)/\overline{G}$ of Y over K. If $K(\widetilde{Y})$ is the function field of \widetilde{Y} , we prove that $\Gamma \subseteq \text{Br}(K)$ is in the kernel of the pullback $\text{Br}(K) \to \text{Br}(K(\widetilde{Y}))$. The theorem follows from the following result, of independent interest.

Theorem (Bresciani–Reichstein–V.). Let K be a field, $M \rightarrow \text{Spec } K$ a smooth projective variety, p a prime that does not divide $\chi(M, \mathcal{O}_M)$. If Γ is a p-subgroup of the relative Brauer group $\ker(\text{Br}(K) \rightarrow \text{Br}(K(M)))$, then $\dim M \ge \beta(\Gamma)$.

Let us sketch the proof of this in the simplest case, when $\Gamma = \mathbb{Z}/p$. Thus, we have a a smooth projective variety $M \to \operatorname{Spec} K$ such that $p \nmid \chi(M, \mathcal{O}_M)$ and $\ker(\operatorname{Br}(K) \to \operatorname{Br}(K(M)))$ contains an element of order p; we want to show that dim $M \ge p - 1$. Recall that classes in the Brauer group Br(K) are equivalence classes of Brauer–Severi varieties over K, that is, varieties $Q \rightarrow \text{Spec } K$ such that $Q_{\overline{K}} \simeq \mathbb{P}^n_{\overline{K}}$ for some n. If L is an extension of K, then [Q] is in the relative Brauer group ker $(Br(K) \rightarrow Br(L))$ if and only if $Q(L) \neq \emptyset$. So, if $M \rightarrow \text{Spec } K$ is a variety, $[Q] \in \text{ker}(Br(K) \rightarrow Br(K(M)))$ if and only if there is a rational map $M \dashrightarrow Q$.

So, we need the following: if $M \to \operatorname{Spec} K$ is a a smooth projective variety, $Q \to \operatorname{Spec} K$ a Brauer–Severi variety such that $[Q] \in \operatorname{Br}(K)$ has order p, and $f \colon M \dashrightarrow Q$ a rational map, then dim $M \ge p - 1$. We will assume dim M , and derive a contradiction.

The proof is based on the following lemma. Consider the base change $f_{\overline{K}} \colon M_{\overline{K}} \dashrightarrow Q_{\overline{K}} \simeq \mathbb{P}^n_{\overline{K}}$, and consider the pullback $L \stackrel{\text{def}}{=} f^* \mathcal{O}(1)$ (this is well defined because M is smooth).

Lemma. Let $t \in \mathbb{Z}$, $i \in \mathbb{N}$, and set $d_i \stackrel{\text{def}}{=} \dim_{\overline{K}} H^i(M_{\overline{K}}, L^{\otimes t})$. Then for any $t \geq 0$ we have $d_i t[Q] = 0 \in Br(K)$.

Since the order of [Q] is p, we get $p \mid d_i$ for all i whenever $p \nmid t$. Now set $\Phi(t) \stackrel{\text{def}}{=} \chi(M_{\overline{K}}, L^{\otimes t})$; then Φ is an integer valued polynomial of degree at most dim M , which vanishes for $<math>t = 1, \ldots, p - 1$. This implies that Φ must be 0 modulo p, so that $p \mid \Phi(0) = \chi(M_{\overline{K}}, \mathcal{O}_{M_{\overline{K}}}) = \chi(M, \mathcal{O}_M)$.