
The entropy of α-continued fractions: numerical results

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 Nonlinearity 23 2429

(http://iopscience.iop.org/0951-7715/23/10/005)

Download details:

IP Address: 131.114.72.215

The article was downloaded on 30/11/2011 at 11:50

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0951-7715/23/10
http://iopscience.iop.org/0951-7715
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING NONLINEARITY

Nonlinearity 23 (2010) 2429–2456 doi:10.1088/0951-7715/23/10/005

The entropy of α-continued fractions: numerical
results

Carlo Carminati1, Stefano Marmi2, Alessandro Profeti2 and
Giulio Tiozzo3
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Abstract
We consider the one-parameter family of interval maps arising from generalized
continued fraction expansions known as α-continued fractions. For such maps,
we perform a numerical study of the behaviour of metric entropy as a function
of the parameter. The behaviour of entropy is known to be quite regular for
parameters for which a matching condition on the orbits of the endpoints holds.
We give a detailed description of the set M where this condition is met: it
consists of a countable union of open intervals, corresponding to different
combinatorial data, which appear to be arranged in a hierarchical structure.
Our experimental data suggest that the complement of M is a proper subset of
the set of bounded-type numbers, hence it has measure zero. Furthermore, we
give evidence that the entropy on matching intervals is smooth; on the other
hand, we can construct points outside of M on which it is not even locally
monotone.

Mathematics Subject Classification: 11K50, 37A10, 37A35, 37E05

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Let α ∈ [0, 1]. We will study the one-parameter family of one-dimensional maps of the interval

Tα : [α − 1, α] → [α − 1, α],

Tα(x) =




1

|x| −
⌊

1

|x| + 1 − α

⌋
if x �= 0,

0 if x = 0.
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Figure 1. Graph of Tα for α = 0.7.

A graph of Tα is shown in figure 1. If we let

xn,α = T n
α (x), an,α =

⌊
1

|xn−1,α| + 1 − α

⌋
, εn,α = Sign (xn−1,α),

then for every x ∈ [α − 1, α] we get the expansion

x = ε1,α

a1,α +
ε2,α

a2,α+...

with ai,α ∈ N, εi,α ∈ {±1} which we call the α-continued fraction of x. These
systems were introduced by Nakada [9] and are also known in the literature as
Japanese continued fractions [13].

The algorithm, analogous to the Gauss map in the classical case (the case α = 1), provides
rational approximations of real numbers. The convergents pn,α

qn,α
are given by{

p−1,α = 1 p0,α = 0 pn+1,α = εn+1,αpn−1,α + an+1,αpn,α,

q−1,α = 0 q0,α = 1 qn+1,α = εn+1,αqn−1,α + an+1,αqn,α.

It is known (see [7]) that for each α ∈ (0, 1] there exists a unique invariant measure
µα(dx) = ρα(x)dx absolutely continuous w.r.t. Lebesgue measure, even though no explicit
form of the density is known for α <

√
2 − 1.

In this paper we will focus on the metric entropy of the Tαs, which by Rohlin’s formula [11]
is given by

h(Tα) = −2
∫ α

α−1
log |x|ρα(x) dx.

Equivalently, entropy can be thought of as the average exponential growth rate of the
denominators of convergents: for µα-a.e. x ∈ [α − 1, α],

h(Tα) = 2 lim
n→∞

1

n
log qn,α(x).
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Figure 2. Numerical data versus matching intervals.

The exact value of h(Tα) has been computed for α � 1
2 by Nakada [9] and for√

2 − 1 � α � 1
2 by Cassa et al [8]:

h(Tα) =




π2

6 log(1 + α)
for

√
5 − 1

2
< α � 1,

π2

6 log

√
5 + 1

2

for
√

2 − 1 � α �
√

5 − 1

2
.

In [7], Luzzi and Marmi computed numerically the entropy for α �
√

2 − 1 by
approximating the integral in Rohlin’s formula with Birkhoff averages

h(α, N, x) = − 2

N

N−1∑
j=0

log |T j
α (x)|

for a large number M of starting points x ∈ (α − 1, α) and then averaging over the samples:

h(α, N, M) = 1

M

M∑
k=1

h(α, N, xk).

Their computations reveal a rich structure for the behaviour of the entropy as a function of
α; it seems that the function α �→ h(Tα) is piecewise regular and changes monotonicity on
different intervals of regularity.

These features have been confirmed by some results by Nakada and Natsui [10, theorem 2]
yielding a matching condition on the orbits of α and α − 1;

T k1
α (α) = T k2

α (α − 1) for some k1, k2 ∈ N

which allows one to find countable families of intervals where the entropy is increasing,
decreasing or constant (see section 3). It is not difficult to check that the numerical data
computed via the Birkhoff theorem fit extremely well with the matching intervals of [10] (see
figure 2).
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In this paper we will study the matching condition in great detail. First of all, we
analyse the mechanism which produces it from a group-theoretical point of view and find
an algorithm to relate the α-continued fraction expansion of α and α − 1 when a matching
occurs. This allows us to understand the combinatorics behind the matchings in a uniform
way, without having to resort to specific matrix identities. As an example, we will explicitly
construct a family of matching intervals which accumulate on a point different from 0. In fact
we also have numerical evidence that there exist positive values, such as [0; 3, 1̄], which
are cluster points for intervals of all the three matching types: with k1 < k2, k1 = k2

and k1 > k2.
We then describe an algorithm to produce a huge quantity of matching intervals, whose

exact endpoints can be found computationally, and we analyse the data thus obtained. These
data show that matching intervals are organized in a hierarchical structure, and we will describe
a bisection algorithm which produces such a structure.

Let now M be the union of all matching intervals. Nakada and Natsui conjectured [10,
section 4, p 1213] that M is an open, dense set of full Lebesgue measure. In fact, the correctness
of our bisection scheme implies the following stronger

Claim 1.1. For any n, all elements of ( 1
n+1 , 1

n
] \M have regular continued fraction expansion

with partial quotients bounded by n.

Since the set of numbers with bounded partial quotients has Lebesgue measure zero, this clearly
implies the conjecture of Nakada and Natsui4

We will then discuss some consequences of these matchings on the shape of the entropy
function, coming from a formula in [10]. This formula allows us to recover the behaviour
of entropy in a neighbourhood of points where a matching condition is present. First of
all, we will use it to prove that entropy has one-sided derivatives at every point belonging
to some matching interval, and also to recover the exact value of h(Tα) for α � 2/5. In
general, though, to reconstruct the entropy one also has to know the invariant density at one
point.

As an example, we shall examine the entropy on an interval J on which (by previous
experiments, see [7, section 3] it was thought to be linearly increasing: we numerically compute
the invariant density for a single value of α ∈ J and use it to predict the analytical form of the
entropy on J , which in fact happens to be not linear. The data produced with this extrapolation
method agree with high precision, and much better than any linear fit, with the values of h(Tα)

computed via Birkhoff averages.
The paper is structured as follows: in section 2 we will discuss numerical simulations

of the entropy and provide some theoretical framework to justify the results; in section 3 we
shall analyse the mechanisms which produce the matching intervals and in section 4 we will
numerically produce them and study their hierarchical structure; in section 5 we will see how
these matching conditions affect the entropy function.

2. Numerical computation of the entropy

Let us examine more closely the algorithm used in [7] to compute the entropy. A numerical
problem in evaluating Birkhoff averages arises from the fact that the orbit of a point can fall
very close to the origin: the computer will not distinguish a very small value from zero. In
this case we neglect this point, and complete the (pseudo)orbit restarting from a new random

4 Claim 1.1 has now been proved by two of the authors (see [2]).
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seed5. As a matter of fact this algorithm produces an approximate value of

hε(α) :=
∫

Iα

fε(x) dµα(x) with fε(x) :=
{

0 |x| � ε,

−2 log |x| |x| > ε,

where ε = 10−16; of course hε(α) is an excellent approximation of the entropy h(α), since the
difference is of order ε log ε−1. To calculate hε(α) we use the Birkhoff sums

hε(α, N, x) := 1

N

N−1∑
j=0

fε(T
j
α (x)) (1)

and in [14] the fourth author proves that for large N the random variable hε(α, N, ·) is
distributed around its mean hε(α) approximately with normal law and standard deviation
σε(α)/

√
N where

σ 2
ε (α) := lim

n→+∞

∫
Iα




Snfε − n

∫
fε dµα

√
n




2

dµα

as numerically observed by Luzzi and Marmi (see [7, figure 3]).
One of our goals is to study the function α �→ σ 2

ε (α), in particular we ask whether it
displays some regularity like continuity or semicontinuity. To this aim we pushed the same
scheme as in [7] to get higher precision:

1. We take a sample of values α chosen in a particular subinterval J ⊂ [0, 1].
2. For each value α we choose a random sample {x1, . . . , xM} in Iα (the cardinality M of

this sample is usually 106 or 107).
3. For each xi ∈ Iα (i = 1, . . . , M) we evaluate hε(α, N, xi) as given in (1) (the number of

iterates N will be 104).
4. Finally, we evaluate the (approximate) entropy and determine the standard deviation

as well:

ĥε(α, N, M) := 1

M

M∑
i=1

hε(α, N, xi),

σ̂ε(α) :=
√√√√ 1

M

M∑
i=1

[hε(α, N, xi) − ĥε(α, N, M)]2.

2.1. Central limit theorem

Let us recall some convergence results for Birkhoff sums of α-transformations (see [14]). Let
us denote by BV (Iα) the space of real-valued, µα-integrable, bounded variation functions of
the interval Iα . We will denote by Snf the Birkhoff sum

Snf =
n−1∑
j=0

f ◦ T j
α .

5 Another choice is to throw away the whole orbit and restart; it seems there is not much difference on the final result.
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Lemma 2.1 (see [1]). Let α ∈ (0, 1] and f be an element of BV (Iα). Then the sequence

Mn =
∫

Iα




Snf − n

∫
f dµα

√
n




2

dµα

converges to a real non-negative value, which will be denoted by σ 2. Moreover, σ 2 = 0 if and
only if there exists u ∈ L2(µα) such that uρα ∈ BV (Iα) and

f −
∫

Iα

f dµα = u − u ◦ Tα. (2)

The condition given by (2) is the same as in the proof of the central limit theorem
for the Gauss map, and it is known as the cohomological equation. The main result is the
following [14, theorem 2.1]:

Theorem 2.2. Let α ∈ (0, 1] and f be an element of BV (Iα) such that (2) has no solutions.
Then, for every v ∈ R we have

lim
n→∞ µα




Snf − n

∫
I

f dµα

σ
√

n
� v


 = 1√

2π

∫ v

−∞
e−x2/2 dx.

By using the fact that the invariant density ρα is bounded from below by a positive
constant [16], one can show [14, proposition 2.6]:

Proposition 2.3. For every real-valued non-constant f ∈ BV (Iα), equation (2) has no
solutions. Hence, the central limit theorem holds.

Now, for every ε > 0 the function fε defined in the previous section is of bounded
variation, hence the central limit theorem holds and the distribution of the approximate entropy
hε(α, N, ·) approaches a Gaussian when N → ∞.

As a corollary, for the standard deviation of Birkhoff averages

Std

[
Snfε

n

]
= E

[(
Snfε

n
−
∫

Iα

fε dµα

)2
]1/2

= σ√
n

+ o

(
1√
n

)
.

Theorem 2.2 follows from a spectral decomposition method as presented in [1]. For the use of
bounded variation techniques in the treatment of piecewise expanding maps, see also [12, 15].

2.2. Speed of convergence

In terms of numerical simulations it is of primary importance to estimate the difference between
the sum computed at the nth step and the asymptotic value: a semi-explicit bound is given by
the following

Theorem 2.4. For every non-constant real-valued f ∈ BV (Iα), there exists C > 0 such that

sup
v∈R


µα




Snf − n

∫
Iα

f dµα

σ
√

n
� v


− 1√

2π

∫ v

−∞
e− x2

2 dx


 � C√

n
.

Proof. It follows from a Berry–Esséen type of inequality. For details see
[1, theorem 8.1]. �
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Figure 3. Standard deviation relative to the interval J = [0.295, 0.3043] (left); standard deviation
of the different runs on the Gauss map (right).

2.3. Dependence of standard deviation on α

Given these convergence results for the entropy, it is natural to ask how the standard deviation
varies with α. In this case not a single exact value of σε(α) is known; using the fact that natural
extensions of Tα are conjugate [5, 10], it is straightforward to prove the following:

Lemma 2.5. The map α �→ σ(α) is constant for α ∈ [
√

2 − 1,
√

5−1
2 ].

Proof. See proposition A.2 in the appendix. �
The numerical study of this quantity is pretty interesting. We first considered the window

J = [0.295, 0.3043], where the entropy is non-monotone. On this interval the standard
deviation shows quite a strange behaviour: the values we have recorded do not form a cloud
clustering around a continuous line (like for the entropy) but they cluster all above it (see
figure 3, left).

One might guess that this is due to the fact that the map α �→ σ(α) is only semicontinuous,
but the same kind of asymmetry takes place also on the interval J = [0.616, 0.618], where σ 2

is constant. Indeed, we can observe the same phenomenon also while evaluating σ̂ε(α) for a
fixed value α but taking several different sample sets (see figure 3, right).

On the other hand this strange behaviour cannot be detected for other maps, like the logistic
map, and could yet not be explained. Nevertheless, we point out that if you only consider C1

observables, the standard deviation of Birkhoff sums can be proved to be continuous, at least
for α ∈ (0.056, 2/3); see [14].

3. Matching conditions

In [10], Nakada and Natsui find a condition on the orbits of α and α − 1 which allows one to
predict the behaviour of the entropy more precisely. Let us denote for any α ∈ [0, 1], x ∈ Iα ,
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n � 1 by Mα,x,n the matrix such that T n
α (x) = M−1

α,x,n(x), i.e.

Mα,x,n =
(

0 εα,1

1 cα,1

)(
0 εα,2

1 cα,2

)
. . .

(
0 εα,n

1 cα,n

)
.

They proved the following:

Theorem 3.1 ([10, theorem 2]). Let us suppose that there exist positive integers k1 and k2

such that

(I) {T n
α (α) : 0 � n < k1} ∩ {T m

α (α − 1) : 0 � m < k2} = ∅,

(II) Mα,α,k1 = (1 1
0 1

)
Mα,α−1,k2 (⇒ T k1

α (α) = T k2
α (α − 1)),

(III) T k1
α (α)(= T k2

α (α − 1)) /∈ {α, α − 1}.
Then there exists η > 0 such that, on (α − η, α + η), h(Tα) is:

(i) strictly increasing if k1 < k2,
(ii) constant if k1 = k2,

(iii) strictly decreasing if k1 > k2.

It turns out that conditions (I)–(II)–(III) define a collection of open intervals (called
matching intervals); they also proved that each of the cases (i), (ii) and (iii) takes place at
least on one infinite family of disjoint matching intervals clustering at the origin, thus proving
the non-monotonicity of the entropy function. Moreover, they conjectured that the union of
all matching intervals is a dense, open subset of [0, 1] with full Lebesgue measure.

In the following we will analyse more closely the mechanism which leads to the existence
of such matchings. As a consequence, we shall see that it looks more natural to drop
condition (III) from the previous definition and replace (II) with

(II′) Mα,α,k1−1 =
(

1 1

0 1

)
Mα,α−1,k2−1

(
−1 0

1 1

)

(which implies 1
T k1−1(α)

+ 1
T k2−1(α−1)

= −1, see remark at the end of section 3.1).
We can now define the matching set as

M = {α ∈ (0, 1] s.t. (I) and (II′) hold}.
Note M is open, since the symbolic codings of α up to step k1 − 1 and of α − 1 up to step
k2 − 1 are locally constant.

Moreover, we will see that under this condition it is possible to predict the symbolic orbit
of α − 1 given the symbolic orbit of α, and vice versa. As an application, we will construct a
countable family of intervals which accumulates at a point different from 0.

Let us point out that our matching set M is a set slightly bigger than the union of all
matching intervals satisfying condition (I, II, III): in fact the difference is just a countable set
of points.

3.1. Encoding of matchings

Let us consider PGL(2, Z) := GL(2, Z)/{±I } as acting on R ∪ {∞} via Möbius
transformations, and denote by S, T , V the elements represented by the matrices

S =
(

0 −1

1 0

)
, T =

(
1 1

0 1

)
, V =

(
−1 0

0 1

)
.
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Using the fact that PSL(2, Z) is the free product of two cyclic groups of order 2 and 3
one can write the presentation

PGL(2, Z) = {S, T , V | S2 = I, (ST )3 = I, V 2 = I, V SV −1 = S, V T V −1 = T −1}.
Now, every step of the algorithm generating α-continued fractions consists of an operation

of the type

z �→ ε

z
− c, ε ∈ {±1}, c ∈ N,

which corresponds to the matrix T −cSV e(ε) with

e(ε) =
{

0 if ε = −1,

1 if ε = 1,

so if x belongs to the cylinder ((c1, ε1), . . . , (ck, εk)) we can express

T k
α (x) = T −ckSV e(εk) · · · T −c1SV e(ε1)(x).

Now, suppose we have a matching T k1
α (α) = T k2

α (α − 1) and let α belong to the cylinder
((a1, ε1), . . . , (ak1 , εk1)) and α − 1 belong to the cylinder ((b1, η1), . . . , (bk2 , ηk2)). One can
rewrite the matching condition as

T −ak1 SV e(εk1 ) · · · T −a1SV e(ε1)(α) = T −bk2 SV e(ηk2 ) · · · T −b1SV e(η1)T −1(α),

hence it is sufficient to have an equality of the two Möbius transformations

T −ak1 SV e(εk1 ) · · · T −a1SV e(ε1) = T −bk2 SV e(ηk2 ) · · · T −b1SV e(η1)T −1.

We call such a matching an algebraic matching. Now, numerical evidence shows that, if a
matching occurs, then

ε1 = +1, εi = −1 for 2 � i � k1 − 1, ηi = −1 for 1 � i � k2 − 1.

If we make this assumption we can rewrite the matching condition as

V e(εk1 )+1T ak1 (−1)
e(εk1

)

ST ak1−1S · · · T a1S = V e(ηk2 )T bk2 (−1)
[e(ηk2

)+1]

ST −bk2−1S · · · T −b1ST −1,

which implies e(εk1) = e(ηk2) + 1 mod 2, i.e. εk1ηk2 = −1. If for instance e(εk1) = 1 and
e(ηk2) = 0, by letting

U =
(

0 1

−1 −1

)

so that T = SU , one has

(U 2S)ak1 U(SU)ak1−1−2SU 2 · · · SU 2(SU)a1−2SUS

= (U 2S)bk2 −1US(U 2S)bk2−1−2US · · · US(U 2S)b1−2US. (3)

Since every element of PSL(2, Z) can be written as a product of S and U in a unique way,
one can get a relation between ar and br . Note that, since we are interested in α �

√
2 − 1,

ai � 2 and bi � 2 for every i, hence there is no cancellation in equation (3). By counting
the number of (U 2S) blocks at the beginning of the word, one has ak1 = bk2 − 1, and by
simplifying,

(SU)ak1−1−2SU 2 · · · SU 2(SU)a1−2SUS = S(U 2S)bk2−1−2US · · · US(U 2S)b1−2US. (4)

If we have e(εk1) = 0 and e(ηk2) = 1 instead, the matching condition is

(SU)ak1 −1SU 2(SU)ak1−1−2SU 2 · · · SU 2(SU)a1−2SUS

= (SU)bk2 SU 2S(U 2S)bk2−1−2US · · · US(U 2S)b1−2US,

which implies bk2 = ak1 − 1, and if you simplify you still get equation (4).
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From (4) one has that to every ar bigger than 2 it corresponds exactly to a sequence of
bi = 2 of length precisely ar − 2, and vice versa. More formally, one can give the following
algorithm to produce the coding of the orbit of α − 1 up to step k2 − 1 given the coding of the
orbit of α up to step k1 − 1 (under the hypothesis that an algebraic matching occurs, and at
least k1 is known).

1. Write down the coding of α from step 1 to k1 − 1, separated by a symbol �:

a1 � a2 � · · · � ak1−1.

2. Subtract 2 from every ar ; if ar = 2, then leave the space empty instead of writing 0:

a1 − 2 � a2 − 2 � · · · � ak1−1 − 2.

3. Replace stars with numbers and vice versa (replace the number n with n consecutive stars,
and write the number n in place of n stars in a row).

4. Add 2 to every number you find and remove the stars: you will get the sequence
(b1, . . . , bk2−1).

Example. Let us suppose there is a matching with k1 = n + 3 and α has initial coding
((3, +), (4, −)n, (2, −)). The steps of the algorithm are as follows:

Step 1

3 � 4 � 4 � · · · � 4�︸ ︷︷ ︸
n times

2

Step 2

1 � 2 � 2 � · · · � 2�︸ ︷︷ ︸
n times

Step 3

�1 � � 1 � �1 · · · 1 � �1︸ ︷︷ ︸
n times

Step 4

2 3 2 3 · · · 2 3︸ ︷︷ ︸
n times

so the coding of α − 1 is ((2, −)(3, −))n+1, and k2 = 2n + 3.

Remark. Let us remark that (4) is equivalent to

T −1ST −ak1−1S · · · T −a1SV = V ST −bk2−1S · · · T −b1ST −1,

which is precisely condition (II′): by evaluating both sides on α you get

1

T k1−1(α)
+

1

T k2−1(α − 1)
= −1.

3.2. Construction of matchings

Let us now use this knowledge to construct explicitly an infinite family of matching intervals
which accumulates on a non-zero value of α. For every n, let us consider the values of α such
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that α belongs to the cylinder ((3, +), (4, −)n, (2, −)) with the respect to Tα . Let us compute
the endpoints of such a cylinder.

• The right endpoint is defined by(
−4 −1

1 0

)n (−3 1

1 0

)
(α) = α − 1,

i.e. (
1 1

0 1

)(
−4 −1

1 0

)n (−3 1

1 0

)
(α) = α.

• The left endpoint is defined by(
−4 −1

1 0

)n (−3 1

1 0

)
(α) = − 1

α + 2
,

i.e. (
−2 −1

1 0

)(
−4 −1

1 0

)n (−3 1

1 0

)
(α) = α.

By diagonalizing the matrices and computing the powers one can compute these values
explicitly. In particular,

α1
min =

√
3 − 1

2
+

40
√

3 − 69

13
(2 +

√
3)−2n + O((2 +

√
3)−4n),

α1
max =

√
3 − 1

2
+

10
√

3 − 12

13
(2 +

√
3)−2n + O((2 +

√
3)−4n).

The αs such that α − 1 belongs to the cylinder ((2, −), (3, −))n+1 are defined by the
equations [(

−3 −1

1 0

)(
−2 −1

1 0

)]n+1

(α − 1) = α − 1

for the left endpoint and[(
−3 −1

1 0

)(
−2 −1

1 0

)]n+1

(α − 1) = α

for the right endpoint, so the left endpoint corresponds to the periodic point such that[(
−3 −1

1 0

)(
−2 −1

1 0

)]
(α − 1) = α − 1,

i.e.

α2
min =

√
3 − 1

2
and

α2
max =

√
3 − 1

2
+

33 − 19
√

3

2
(2 +

√
3)−2n + O((2 +

√
3)−4n).

By comparing the first order terms one gets asymptotically

α2
min < α1

min < α2
max < α1

max,
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hence the two intervals intersect for infinitely many n, producing infinitely many matching
intervals which accumulate at the point α0 =

√
3−1
2 . The length of such intervals is

α2
max − α1

min = 567 − 327
√

3

26
(2 +

√
3)−2n + O((2 +

√
3)−4n).

4. Numerical production of matchings

In this section we will describe an algorithm to produce a lot of matching intervals (i.e. find out
their endpoints exactly), as well as the results we obtained through its implementation. Our
first attempt to find matching intervals used the following scheme:

1. We generate a random seed of values αi belonging to [0, 1] (or some other interval of
interest). When a high precision is needed (we manage to detect intervals of size 10−60)
the random seed is composed of algebraic numbers, in order to allow symbolic (i.e. non-
floating point) computation.

2. We find numerically candidates for the values of k1 and k2 (if any) simply by computing
the orbits of α and of α −1 up to some finite number of steps, and numerically checking if
T k1

α (α) = T k2
α (α − 1) holds approximately for some k1 and k2 smaller than some bound.

3. Given any triplet (ᾱ, k1, k2) determined as above, we compute the symbolic orbit of ᾱ up
to step k1 − 1 and the orbit of ᾱ − 1 up to step k2 − 1.

4. We check that the two Möbius transformations associated with these symbolic orbits
satisfy condition (II′):

Mα,α,k1−1 =
(

1 1

0 1

)
Mα,α−1,k2−1

(
−1 0

1 1

)
.

5. We solve the system of quadratic equations which correspond to imposing that α and α−1
have the same symbolic orbit as ᾱ and ᾱ − 1, respectively.
Let us remark that this is the heaviest step of the whole procedure since we must solve
k1 + k2 − 2 quadratic inequalities; for this reason the value k = k1 + k2 may be thought of
as a measure of the computational cost of the matching interval and will be referred to as
order of matching.

Following this scheme, we detected more than 107 matching intervals, whose endpoints
are quadratic surds; their union still leaves many gaps, each of which is smaller than 6.6×10−6.
A table with a sample of such data is given in the appendix6.

In order to detect some patterns in the data, let us plot the size of these intervals (figure 4,
left). For each matching interval ]α−, α+[, we drew the point of coordinates (α−, α+ − α−).
It seems there is some self-similar pattern: in order to understand its structure better it is useful to
identify some ‘borderline’ families of points. The most evident family is the one that appears
as the higher line of points in figure 4 (left) (which we have highlighted by circles): these
points correspond to matching intervals which contain the values 1/n, and their endpoints are
α−(n) = 1

2 [
√

n2 + 4 − n], α+(n) = 1
2n−2 [

√
n2 + 2n − 3 − n + 1]; this is the family In already

exhibited in [10]. Since α−(n) = 1/n − 1/n3 + o(1/n3) and α+(n) = 1/n + 1/n3 + o(1/n3),
for n � 1 the points (α−(n), α+(n) − α−(n)) are very close to ( 1

n
, 2

n3 ). This suggests that this
family will ‘straighten’ if we replot our data in the log–log scale. This is indeed the case, and
in fact it seems that there are also other families which, in log–log scale, get perfectly aligned
along parallel lines of slope 3 (see figure 4, right).

6 A more efficient algorithm, which avoids random sampling, will be discussed in section 4.1.
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Figure 4. Size of matchings both in normal (right) and log–log scale (left).

If we consider the ordinary continued fraction expansion of the elements of these families
we realize that they obey some very simple empirical rules7:

(i) the endpoints of any matching interval have a purely periodic continued fraction expansion
of the type [0; a1, a2, ..., am, 1] and [0; a1, a2, ..., am + 1]; this implies that the rational
number corresponding to [0; a1, a2, ..., am + 1] is a common convergent of both endpoints
and is the rational with smallest denominator which falls inside the matching interval;

(ii) any endpoint [0; a1, a2, ..., am] of a matching interval belongs to a family
{[0; a, a2, ..., am] : a � max2�i�m ai}; in particular this family has a member in each
cylinder Bn := {α : 1/(n + 1) < α < 1/n} for n � a, so that each family will cluster at
the origin.

(ii′) other families can be detected in terms of the continued fraction expansion: for instance
on each cylinder Bn (n � 3) the largest matching interval on which h is decreasing has
endpoints with expansion [0; n, 2, 1, n − 1, 1] and [0; n, 2, 1, n];

(iii) matching intervals seem to be organized in a binary tree structure, which is related to
the Stern–Brocot tree8 (figure 5): one can thus design a bisection algorithm to fill in the
gaps between intervals, and what is left over is a closed, nowhere dense set; this and the
following points will be analysed extensively in section 4.1;

(iv) if α ∈ Bn is the endpoint of some matching interval then α = [0; a1, a2, ..., am] with
ai � n ∀i ∈ {1, . . . , m}; this implies that the values α ∈ Bn which do not belong
to any matching interval must be bounded-type numbers with partial quotients bounded
above by n;

7 These rules have been proved to be correct, see [2].
8 Sometimes also known as Farey tree, see [4].
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Figure 5. A few of the largest matching intervals in the window [1/4, 1/3], and the corresponding
nodes of Stern–Brocot tree. The value on the y-axis is the logarithm of the size of each interval.

(v) it is possible to compute the exponent (k1, k2) of a matching from the continued fraction
expansion of any one of its endpoints.

From our data it is also evident that the size of these intervals decreases as k1 +k2 increases,
and low order matchings tend to disappear as α approaches zero (see figure 6).

Moreover, as α tends to 0 the space covered by members of families of type (ii) previously
encountered decreases, hence new families have to appear. One can quantify this phenomenon
from figure 4: since the size of matching intervals in any family decreases as 2/n3 on the
interval cylinder Bn (whose size decreases as 1/n2): this means that, as n increases, the mass
of Bn gets more and more split among a huge number of tiny intervals.

This fact compromises our numerical algorithm: it is clear that choosing floating point
values at random becomes a hopeless strategy when approaching zero. Indeed, even if there
still are intervals bigger than the double-precision threshold, in most cases the random seed
will fall in a really tiny interval corresponding to a very high matching order: this amounts to
having very little gain as the result of a really heavy computation.

We still can try to test numerically the conjecture that the matching set has full measure on
[0, 1]; but we must expect that the percentage of space covered by matching intervals (found
numerically) will decrease dramatically near the origin, since we only detect intervals with
k1 + k2 bounded by some threshold. The matching intervals we have found so far cover a
portion of 0.884 of the interval [0, 1]; this ratio increases to 0.989 if we restrict to the interval
[0.1, 1] and it reaches 0.9989 restricting to the interval [0.2, 1].

Figure 7 represents the percentage of the interval [x, 1] which is covered by matching
intervals of order k = k1 + k2 for different values of k9. It gives an idea of the gain, in terms of
the total size covered by matching intervals, one gets when refining the gaps (i.e. considering
matching intervals of higher order).

Finally, by looking at the scattered plot in figure 8, one can have a more precise picture
of the relationship between the order of matching (on the x-axis) and the size of the matching

9 Let us point out that for big values of k the graph does not take into account all matching intervals of order k but
only those we have found so far.
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Figure 6. Plot of the order k = k1 + k2 of matching intervals versus their position.
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Figure 7. Percentage of covering by matching intervals with k1 + k2 � c for different values of c.

interval (on the y-axis). The two data sets correspond, respectively, to the matching intervals
constructed via the bisection scheme and those found using a random seed. The two lines
bounding the cloud correspond to matching intervals with very definite patterns: the upper
line corresponds to the family In (with endpoints of type [0; n] and [0; n − 1, 1]), the lower
line corresponds to matching intervals with endpoints of type [0; 2, 1, 1, . . . , 1, 1, 1] and
[0; 2, 1, 1, . . . , 1, 2]. The latter ones converge to 3−√

5
2 , which is the supremum of all values

where the entropy is increasing.
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Figure 8. The order k1 + k2 versus the logarithm of the size of matching intervals.

Thus numerical evidence shows that if J is an interval with matching order k = k1 + k2,
then the size of J is bounded below by |J | � c0e−c1k where c0 = 8.4423... and c1 = 0.9624....
On the other hand we know for sure that, on the right of 0.0475 (which corresponds to the
leftmost matching interval of our list), the biggest gap left by the matching intervals found so
far is of order 6.6 × 10−6. So, if J is a matching interval which still does not belong to our
list, either J ⊂ [0, 0.0475] and k � 20, or its size must be smaller than 6.6 × 10−6 and by the
aforementioned empirical rule, its order must be k > 14.6. Hence, our list should include all
matching intervals with k1 + k2 � 14.

4.1. The matching tree

As mentioned before, it seems that matching intervals are organized in a binary tree structure.
To describe such a structure, we will provide an algorithm which allows one to construct
all matching intervals by recursively ‘filling the gaps’ between matching intervals previously
obtained, similarly to the way the usual Cantor middle third set is constructed.

In order to do so, let us first note that every rational value r ∈ Q∩(0, 1] has two (standard)
continued fraction expansions:

r = [0; a1, a2, . . . , am, 1] = [0; a1, a2, . . . , am + 1].

One can associate with r the interval whose endpoints are the two quadratic surds with continued
fraction obtained by endless repetition of the two expansions of r:

Definition 4.1. Given r ∈ Q ∩ (0, 1] with continued fraction expansion as above, we define
Ir to be the interval with endpoints

[0; a1, a2, . . . , am, 1] and [0; a1, a2, . . . , am + 1]

(in any order). The strings S1 := {a1, . . . , am, 1} and S2 := {a1, . . . , am + 1} will be said to
be conjugate and we will write S2 = (S1)

′.

Note that r ∈ Ir .



The entropy of α-continued fractions 2445

Definition 4.2. Given an open interval I ⊆ [0, 1] one can define the pseudocentre of I as the
rational number r ∈ I ∩ Q which has the minimum denominator among all rational numbers
contained in I .

It is straightforward to prove that the pseudocentre of an interval is unique, and the
pseudocentre of Ir is r itself.

We are now ready to describe the bisection algorithm:

1. The rightmost matching interval is [
√

5−1
2 , 1]; its complement is the gap J = [0,

√
5−1
2 ].

2. Suppose we are given a finite set of intervals, called gaps of leveln, so that their complement
is a union of matching intervals. Given each gap J = [α−, α+], we determine its
pseudocentre r . Let α± = [0; S, a±, S±] be the continued fraction expansion of α±,
where S is the finite string containing the first common partial quotients, a+ �= a− the first
partial quotient on which the two values differ and S± the rest of the expansion of α±,
respectively. The pseudocentre of [α−, α+] will be the rational number r with expansions
[0; S, a, 1] = p/q = [0; S, a + 1] where a := min(a+, a−).

3. We remove from the gap J the matching interval Ir corresponding to the pseudocentre r:
in this way the complement of Ir in J will consist of two intervals J1 and J2, which we
will add to the list of gaps of level n + 1. It might occur that one of these new intervals
consists of only one point, i.e. two matching intervals are adjacent.

By iterating this procedure, after n steps we will get a finite set Gn of gaps, and clearly⋃
J∈Gn+1

J ⊆ ⋃
J∈Gn

J . We expect that all intervals obtained by taking pseudocentres of gaps
are matching intervals, and that the set on which matching fails is the intersection

G∞ :=
⋂
n∈N

⋃
J∈Gn

J.

Table 1 contains the list of the elements of the family Gn of gaps of level n for n = 0, . . . , 4:
when a gap is reduced to a point we mark the corresponding line with the symbol �. A few
steps of the algorithm are also displayed in figure 9.

The numerical evidence supporting the correctness of this scheme is quite robust: all
1 169 731 intervals obtained by running the first 23 steps turn out to be real matching intervals.

We can also prove the following:

Lemma 4.1. G∞ consists of numbers of bounded type; more precisely, the elements of
G∞ ∩ ( 1

n+1 , 1
n

] have regular continued fraction bounded by n.

Proof. The scheme described before forces all endpoints of matching intervals containted in
the cylinder Bn =]1/(n + 1), 1/n[ to have quotients bounded by n. We now claim that, if
γ = [0; c1, c2, . . . , cn, . . .] /∈ M, then, ck � c1 for all k ∈ N.

If γ /∈ M then γ ∈ ⋃
J∈Gn

J for all n ∈ N; let us call Jn the member of the family Gn

containing γ . It may happen that there exists n0 such that Jn = {γ } ∀n � n0. γ is an endpoint
of two adjacent matching intervals, hence it has bounded type. Otherwise, Jn = [αn, βn] with
βn − αn > 0 ∀n > c1, where αn, βn are the endpoints of two matching intervals. Now, if
pn/qn is the pseudocentre of Jn from the minimality of qn it follows that |βn −αn| < 2/qn, but
also that qn+1 > qn (since pn+1/qn+1 ∈ Jn+1 ⊂ Jn); these two properties together imply that
0 � γ − αn < 2/qn → 0 as n → +∞. This implies γ cannot be rational, since γ ∈ Jn ∀n

and the minimum denominator of a rational sitting in Jn is qn → +∞. Hence, since αn → γ ,
for every fixed k ∈ N, there is some n(k) such that for all n � n(k) all the partial quotients up
to level k of γ coincide with those of αn, which are bounded by c1. �
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Table 1. Gaps of level n for n = 0, . . . , 4.

α− α+

G0 0 [0; 1]

G1 0 [0; 2]
� [0; 1, 1] [0; 1]

G2 0 [0; 3]
[0; 2, 1] [0; 2]

� [0; 1, 1] [0; 1]

G3 0 [0; 4]
[0; 3, 1] [0; 3]
[0; 2, 1] [0; 2, 1, 1]

� [0; 2, 2] [0; 2]
� [0; 1, 1] [0; 1]

G4 0 [0; 5]
[0; 4, 1] [0; 4]
[0; 3, 1] [0; 3, 1, 1]
[0; 3, 2] [0; 3]
[0; 2, 1] [0; 2, 1, 2]
[0; 2, 1, 1, 1] [0; 2, 1, 1]

� [0; 2, 2] [0; 2]
� [0; 1, 1] [0; 1]

... ... ...

Figure 9. Recursive construction of the matching set.

Lemma 4.1 shows that the correctness of our bisection scheme (i.e. the fact that G∞ =
[0, 1] \ M) implies claim 1.1.

Note that G∞ ∩ (1/(n + 1), 1/n] has Hausdorff dimension strictly smaller than one for
each n. Moreover, the Hausdorff dimension of n-bounded numbers tends to 1 as n → ∞.
We think that, similarly, H.dim{( 1

n+1 , 1
n

] \ M} → 1; this could explain why finding matching
intervals near the origin becomes a tough task.
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Remark. Since we have associated a rational number with each matching interval, one
can think of the bisection algorithm as acting on Q, and get a binary tree whose nodes are
rationals: this object has already been widely studied in the number-theoretical literature, and
it is known as the Stern–Brocot tree (see [4]).

Given that all matching intervals correspond to some rational number, one can ask which
subset of Q actually arises in that way.

Definition 4.3. An interval Ir , r ∈ Q ∩ (0, 1] is maximal if Ir � Ir ′ ∀r ′ ∈ Q ∩ (0, 1], r ′ �= r .

We expect10 that the matching intervals are precisely the maximal intervals, so that the
matching set is

M =
⋃

r∈(0,1]∩Q

Ir =
⋃

r∈(0,1]∩Q

Ir maximal

Ir .

We have also found an empirical rule to reconstruct the periods (k1, k2) of a matching
interval from the labels of its endpoints. Let S = [a1, . . . , a
] be a label of the endpoint s of
some matching interval:

1. If s is a left endpoint then

k1 = 2 +
∑

j even

aj , k2 =
∑
j odd

aj .

2. If s is a right endpoint then

k1 = 1 +
∑

j even

aj , k2 = 1 +
∑
j odd

aj .

Using this rule, we are able to prove that every neighbourhood of the point [0; 3, 1̄]
contains intervals of matching of all types: with k1 < k2, k1 = k2 and k1 > k2. Indeed, it is
not difficult to realize that [0; 3, 1̄] is contained in the family of gaps JP of endpoints [0; 3, P ]
and [0; 3, P , 1] where P is a string of the type 1, 1, . . . , 1, 1 of even length; by our rule the left
endpoint of JP is the right endpoint of an interval of matching where k1 < k2. Nevertheless,
by performing a few steps of the algorithm, it is not difficult to check that the gap JP contains
the interval CP of endpoints [0; 3, P , 2, 1, 1] and [0; 3, P , 2, 1, 1] (on which k1 = k2) but also
DP of endpoints [0; 3, P , 2, 1, 2, 1]and [0; 3, P , 2, 1, 3] (on which k1 > k2).

4.2. Adjacent intervals and period doubling

Let us now focus on pairs of adjacent intervals (corresponding to isolated points in [0, 1]\M):
our data show they all come in infinite chains, and can be obtained from some starting matching
interval via a ‘period doubling’ construction.

Let us start with a matching interval ]α, β[; α = [0; S] where S is a sequence of positive
integers of odd length; define the sequence of strings{

S0 = S,

Sn+1 = (SnSn)
′,

(5)

where S ′ denotes the conjugate of S as in definition 4.1. Let an := [0; Sn] and bn := [0; S ′
n];

then the sequence In :=]an, bn[ is formed by a chain of adjacent intervals: clearly bn+1 = an;
moreover an < bn because |Sn| is odd for all n.

10 This fact has now been proved in [2].
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Assuming this scheme, we can construct many cluster points of matching intervals. For
instance, let us look at the first (i.e. rightmost) one: we start with the interval ](

√
5 − 1)/2, 1[

so that the first terms of the sequence Sn are

S0 = (1),

S1 = (2),

S3 = (2, 1, 1),

S4 = (2, 1, 1, 2, 2),

S5 = (2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1),

The corresponding sequence an converges to the first (i.e. rightmost) point α̂ where
intervals of matching cluster. We can also determine the continued fraction expansion of
the value α̂, since it can be obtained by just merging11 the strings (Sn)n ∈ N:

α̂ = [0; 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, . . .].

Numerically12, α̂ ∼= 0.386749970714300706171524803485580939661 . . ..
It is evident from formula (5) that any such cluster point will be a bounded-type number;

one can indeed prove that no cluster point of this type is a quadratic surd.

5. Behaviour of entropy inside the matching set

In [10], the following formula is used to relate the change of entropy between two sufficiently
close values of α to the invariant measure corresponding to one of these values: more precisely

Proposition 5.1. Let us suppose the hypotheses of proposition 3.1 hold for α: then for η > 0
small enough

h(Tα−η) = h(Tα)

1 + (k2 − k1)µα([α − η, α])
(6)

and similarly

h(Tα) = h(Tα+η)

1 + (k2 − k1)µα+η([α, α + η])
. (7)

By exploiting these formulae, we will get some results on the behaviour of h(Tα).

5.1. One-sided differentiability of h(Tα)

Equation (6) has interesting consequences on the differentiability of h: we can rewrite it as

h(Tα) − h(Tα−η) = h(Tα−η)(k2 − k1)µα([α − η, α])

and dividing by η

h(Tα) − h(Tα−η)

η
= h(Tα−η)(k2 − k1)

µα([α − η, α])

η
.

11 This can be done since, by (5), Sn is a substring of Sn+1.
12 This pattern has been checked up to level 10, which corresponds to a matching interval of size smaller than 10−200;
see also table A.1 in the appendix.
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Since ρα has bounded variation, then there exists R(α) = limx→α− ρα(x), therefore

lim
η→0

µα([α − η, α])

η
= R(α)

and by the continuity of h (which is obvious in this case by equation (6))

lim
η→0

h(Tα) − h(Tα−η)

η
= h(Tα)(k2 − k1) lim

x→α−
ρα(x),

hence the function α �→ h(Tα) is left differentiable in α. On the other hand, one can slightly
modify the proof of (7) and realize it is equivalent to

h(Tα+η) = h(Tα)

1 + (k1 − k2)µα([α − 1, α − 1 + η])
,

which reduces to
h(Tα+η) − h(Tα)

η
= µα([α − 1, α − 1 + η])

η

h(Tα)(k2 − k1)

1 + (k1 − k2)µα([α − 1, α − 1 + η])
.

Since the limit

lim
η→0

µα([α − 1, α − 1 + η])

η
= lim

x→(α−1)+
ρα(x)

also exists, then h(Tα) is also right differentiable in α; more precisely

lim
η→0

h(Tα+η) − h(Tα)

η
= h(Tα)(k2 − k1) lim

x→(α−1)+
ρα(x).

We conjecture that in such points the left and right derivatives are equal. This is trivial for
k1 = k2; for k1 �= k2 it is equivalent to say limx→α− ρα(x) = limx→(α−1)+ ρα(x).

5.2. The entropy for α � 2
5

Corollary 5.2. For 2
5 � α �

√
2 − 1, the entropy is

h(Tα) = π2

6 log

(√
5 + 1

2

) .

Proof. Every α in the interval (0.4,
√

2 − 1) satisfies the hypotheses of the theorem with
k1 = k2 = 3, hence h(Tα) is locally constant, and by continuity h(Tα) = h(T√

2−1), whose
value was already known. �

Remark. By using our computer-generated matching intervals, we can analogously prove
h(Tα) = h(T√

2−1) for
√

2 − 1 � α � 0.386749970714300706171524 . . . .

5.3. Invariant densities

In the case α �
√

2 − 1 it is known that invariant densities are of the form

ρα(x) =
r∑

i=1

χIi
(x)

Ai

x + Bi

,

where Ii are subintervals of [α − 1, α].
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For these values of α, a matching condition is present and the endpoints of Ii (i.e. the
values where the density may ‘jump’) correspond exactly to the first few iterates of α and
α − 1 under the action of Tα . We present some numerical evidence in order to support the
following:

Conjecture 5.3. Let α ∈ [0, 1] be a value such that one has a matching of type (k1, k2) (i.e.
with T k1

α (α) = T k2
α (α − 1)). Then the invariant density has the form

ρα(x) =
r∑

i=1

χIi
(x)

Ai

x + Bi

(8)

where each Ii is an interval with endpoints contained in the set

S := {T m
α (α) : 0 � m < k1} ∪ {T n

α (α − 1) : 0 � n < k2}.
Therefore, the number of branches is bounded above by k1 + k2 − 1.

In all known cases, moreover, there exists exactly one Ii which contains α and exactly one
which contains α − 1; thus, on neighbourhoods of α and α − 1, the invariant density has the
simple form ρα|Ii

(x) = Ai

x+Bi
.

As an example of such numerical evidence we report a numerical simulation of the invariant
density for some values of α in the interval [

√
13−3
2 ,

√
3−1
2 ] where a matching of type (2, 3)

occurs. We fit the invariant density with the function A+/(x + B+) on the interval [max{S}, α]
and with the function A−/(x + B−) on [α − 1, min{S}].

α = 0.310 α = 0.320 α = 1
3 α = 0.338 α = 0.350 α = 0.360

A+ 1.76114 1.76525 1.77603 1.78963 1.81981 1.84658
B+ 1.64768 1.63487 1.62374 1.62987 1.64092 1.65138
A− 1.77289 1.78874 1.81488 1.82411 1.84562 1.85959
B− 2.66097 2.66081 2.66583 2.66751 2.66915 2.6658

Moreover, from these numerical data it is apparent that the leftmost branch of the hyperbola
is nothing else than a translation by 1 of the rightmost one (i.e. A+ = A−, B− = B+ + 1); see
also figure 10.

5.4. Comparison with the entropy

If I ⊂ [0, 1] is a matching interval, the knowledge of the invariant density for one single value
of α ∈ I plus equation (6) allows us to recover the entropy in the whole interval. Let α belong
to an interval where a matching of type (k1, k2) occurs and suppose, according to the previous
conjecture, that on [x, α] the invariant density has the form

ρα(x) = A

x + B

for some A, B ∈ R and x = max{T n
α (α), 1 � n < k1} ∪ {T m

α (α − 1), 1 � m < k2}. Then by
(6), for x < α sufficiently close to α

h(x) = h(α)

1 + (k2 − k1)A log

(
B + α

B + x

) . (9)

We think that the entropy has in general such form for values of α where a matching occurs.
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Figure 10. Invariant density for α = 0.338.

Let us consider the particular case of the interval [0.295, 0.3042]. In the region to the right
of the big central plateau (i.e. for α > −3+

√
13

2 ) the behaviour of entropy looks approximately
linearly increasing, as conjectured in [7, section 3]. We will provide numerical evidence that
it actually has the logarithmic form given by equation (9) on the interval [

√
13−3
2 ,

√
3−1
2 ]. To

test this hypothesis, we proceed as follows:

1. We fit the data of the invariant density for α = 0.338, obtaining the constants A+ and B+

which refer to the rightmost branch of the hyperbola (the data are already given in the
previous table).

2. We fit the data of the entropy already calculated (relative to the window [0.30277, 0.3042])
with function (9). We assume A+ and B+ as given constants and we look for the best
possible value of h(α) (which we did not have from previous computations). The result
given is h(α) ∼= 3.28302. In the figure 11 we plot the obtained function in the known
window, as well as a linear fit. In this interval, the difference between the two functions
is negligible (figure 11, left).

3. In order to really distinguish between linear and logarithmic behaviour of the entropy,
we computed some more numerical data for the entropy far away to the right but in
the same matching interval. In this region the linear and logarithmic plots are clearly
distinguishable, and the new points seem to perfectly agree with the logarithmic formula13

(figure 11, right).

Note that these data agree with equation (9) also for x > α, which is equivalent to say
ρα(x) = A

B+1+x
for x in a right neighbourhood of α − 1.
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[0.30277, 0.3042] since we used the package CLN, a C++ library to perform computations in arbitrary precision.



2452 C Carminati et al

 3.18

 3.1805

 3.181

 3.1815

 3.182

 3.1825

 3.183

 3.1835

 3.184

 3.1845

 0.303  0.3035  0.304
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Figure 11. Invariant density for α = 0.338.
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Appendix

In this appendix we give the proof of two simple results which are of some relevance for the
issues discussed in this paper.

Proposition A.1. If x0 is a quadratic surd then x0 is a pre-periodic point for Tα , α ∈ [0, 1].

For α = 1 this is the well-known Lagrange theorem, and this statement is known to be
true for α = 0 and α ∈ [1/2, 1] [6]. Since we did not find a reference containing a simple
proof of this fact for all α ∈ [0, 1] we sketch it here, in few lines: this proof follows closely the
classical proof of Lagrange theorem for regular continued fractions given by [3] which relies
on the approximation properties of convergents, therefore it works for α > 0.

If x0 is a quadratic surd then F0(x0) = 0 for some F0(x) := A0x
2 + B0x + C0 quadratic

polynomial with integer coefficients. On the other hand, since14 x0 = pn−1xn+pn

qn−1xn+qn
, setting

Fn(x) := F0(
pn−1x+pn

qn−1x+qn
)(qn−1x + qn)

2, we get that Fn(xn) = F0(x0) = 0.

Moreover Fn(x) = Anx
2 + Bnx + Cn with


An = F0(pn−1/qn−1)q

2
n−1,

Cn = F0(pn/qn)q
2
n,

B2
n − 4AnCn = B2

0 − 4A0C0.

(10)

BothAn, Bn are bounded since |F0(pn/qn)| = |F0(pn/qn)−F0(x0)| = |F ′
0(ξ)|·|pn

qn
−x0| �

C
αq2

n
; moreover from the last equation in (10) it follows that Bn are bounded as well.

14 To simplify notation we shall write pn, qn instead of pn,α, qn,α .
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Proposition A.2. The variance σ 2(α) is constant for α ∈ [
√

2 − 1, (
√

5 − 1)/2].

This result relies on the fact that for all α ∈ [
√

2 − 1, (
√

5 − 1)/2] the maps Tα have
natural extensions T̃α which are all isomorphic to T̃1/2. In the following we shall prove
the claim for α ∈ [

√
2 − 1, 1/2] and we shall write T1 instead of Tα and T2 instead of

T1/2. So Tj : Ij → Ij , (j = 1, 2) are one-dimensional maps with invariant measure µj ;
T̃j : Ĩj → Ĩj , (j = 1, 2) are the corresponding two-dimensional representations of the natural
extension with invariant measure µ̃j , and 
 : Ĩ1 → Ĩ2 is the (measurable) isomorphism


 ◦ T̃1 = T̃2 ◦ 
, 
∗µ̃1 = µ̃2.

First let us point out (see [10, pp 1222–3]) that 
 is almost everywhere differentiable and has
a diagonal differential; moreover T̃j are almost everywhere differentiable as well and have
triangular differential. Therefore

d
|T1(x,y) dT̃1|(x,y) = dT̃2|
(x,y) d
(x,y) (11)

and it is easy to check that, setting T̃ x
j the first component of T̃j , a scalar analogue holds as well:

∂
x

∂x

∣∣∣∣
T1(x,y)

∂T̃ x
1

∂x

∣∣∣∣
(x,y)

= ∂T̃ x
2

∂x

∣∣∣∣

(x,y)

∂
x

∂x

∣∣∣∣
(x,y)

. (12)

So we get that, for all k,

log

∣∣∣∣∣∂T̃ x
1

∂x

∣∣∣∣∣ = log

∣∣∣∣∣∂T̃ x
2

∂x
◦ 


∣∣∣∣∣ + log

∣∣∣∣∂
x

∂x

∣∣∣∣− log

∣∣∣∣∂
x

∂x
◦ T̃1

∣∣∣∣ .
Since T̃ x

1 is µ̃1-measure preserving
∫
Ĩ1

log | ∂
x

∂x
| − log | ∂
x

∂x
◦ T̃1| dµ̃1 = 0; so, taking into

account that 
µ̃1 = µ̃2 we get∫
Ĩ1

log

∣∣∣∣∣∂T̃ x
1

∂x

∣∣∣∣∣ dµ̃1 =
∫

Ĩ1

log

∣∣∣∣∣∂T̃ x
2

∂x
◦ 


∣∣∣∣∣ dµ̃1 =
∫

Ĩ2

log

∣∣∣∣∣∂T̃ x
2

∂x

∣∣∣∣∣ dµ̃2 := m.

Let us define g1 := log | ∂T̃ x
1

∂x
| and g2 := log | ∂T̃ x

2
∂x

| (so that
∫
Ĩ1

g1 dµ̃1 = ∫
Ĩ2

g2 dµ̃2 = 0)

and ST
Ng := ∑N−1

k=0 g ◦ T k; we easily see that

S
T̃1
N g1 = S

T̃2
N g1 ◦ 
 log

∣∣∣∣∂
x

∂x
◦ T̃ k

1

∣∣∣∣− log

∣∣∣∣∂
x

∂x
◦ T̃ k+1

1

∣∣∣∣ ,
which means that S

T̃1
N g1 and S

T̃2
N g2 ◦ 
 differ by a coboundary.

Lemma A.3. Let u, v be two observables such that

1. limN→+∞
∫
( SN v√

N
)2 dµ = l ∈ R;

2. u = v + (f − f ◦ T ) for some f ∈ L2.

Then

lim
N→+∞

∫ (
SNv√

N

)2

dµ = lim
N→+∞

∫ (
SNu√

N

)2

dµ.

The lemma implies

lim
N→+∞

∫
Ĩ1

(
S

T̃1
N g1√
N

)2

dµ̃1 = lim
N→+∞

∫
Ĩ2

(
S

T̃2
N g2√
N

)2

dµ̃2. (13)
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This information can be translated back to the original systems: since ∂T̃ x
1

∂x
|(x,y) = T ′

1(x),
∂T̃ x

2
∂x

|(x,y) = T ′
2(x) if we define

G1 := log |T ′
1(x)| −

∫
I1

log |T ′
1(x)| dµ1,

G2 = log |T ′
2(x)| −

∫
I2

log |T ′
2(x)| dµ2,

we get g1(x, y) = G1(x) and g2(x, y) = G2(x); therefore S
T̃1
N g1 = S

T1
N G1 and S

T̃2
N g2 = S

T2
N G2.

Finally, by equation (13), we get

lim
N→+∞

∫
I1

(
S

T1
N G1√

N

)2

dµ1 = lim
N→+∞

∫
I2

(
S

T2
N G2√

N

)2

dµ2.

A.1. Tables

Table A.1. A chain of adjacent matching intervals (see section 4.2).

(k1 k2) Size (α−, α+)

(257 257) 5.43e-201 (..........., ...........)
(129 129) 7.27e-101 (..........., ...........)
(65 65) 7.98e-51 (..........., ...........,)

(33 33) 8.81e-26




{−1051803916417

+ 5
√

110424870216034832616745}/,
1576491320449

−1 +

√
31529826409

128045

)

(17 17) 2.78e-13

(
−1 +

√
31529826409

128045
,

−433 +
√

467857

649

)

(9 9) 5.2e-7

(
−433 +

√
467857

649
,

−13 + 5
√

13

13

)

(5 5) 6.75e-4

(
−13 + 5

√
13

13
,

−2 +
√

10

3

)

(3 3) 2.68e-2

(
−2 +

√
10

3
, −1 +

√
2

)

(2 2) 2.04e-1
(
−1 +

√
2 ,

−1 +
√

5

2

)

Table A.2. A sample of matching intervals found as in section 4.

(k1 k2) Size
(
α− , α+

)
(k1 k2) Size

(
α− , α+

)
(3 9) 7.69e-4

(
−8 +

√
82

9
,

−2 +
√

5

2

)
(8 6) 6.42e-5

(
−33 +

√
2305

64
,

−77 +
√

7221

34

)

(2 8) 3.68e-3

(
− 4 +

√
17,

−7 +
√

77

14

)
(5 5) 1.46e-3

(
−7 +

√
101

13
, −2 +

√
5

)

(3 8) 1.11e-3

(
−7 +

√
65

8
,

−7 + 3
√

7

7

)
(2 4) 2.77e-2

(
− 2 +

√
5,

−3 +
√

21

6

)
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(2 7) 5.44e-3

(
−7 +

√
53

2
,

−3 +
√

15

6

)
(3 6) 2.1e-3

(
−7 +

√
65

4
,

−6 + 4
√

5

11

)

(3 8) 6.98e-4

(
−19 +

√
445

14
,

−9 + 2
√

30

13

)
(4 6) 7.02e-4

(
−11 +

√
226

15
,

−23 + 3
√

93

22

)

(3 7) 1.69e-3

(
−6 + 5

√
2

7
,

−3 + 2
√

3

3

)
(3 5) 3.97e-3

(
−5 +

√
37

4
,

−9 +
√

165

14

)

(4 7) 8.12e-4

(
−17 +

√
445

26
,

−3 +
√

11

2

)
(4 6) 5.77e-4

(
−13 +

√
257

11
,

−2 + 2
√

2

3

)

(2 6) 8.54e-3

(
− 3 +

√
10,

−5 + 3
√

5

10

)
(4 5) 1.51e-3

(
−15 +

√
445

22
,

−8 + 3
√

11

7

)

(3 8) 6.06e-4

(
−11 +

√
145

6
,

−10 + 2
√

42

17

)
(5 5) 7.88e-4

(
−10 +

√
226

18
,

−23 + 5
√

29

14

)

(3 7) 1.12e-3

(
−8 +

√
82

6
,

−15 +
√

357

22

)
(3 4) 1.02e-2

(
−3 +

√
17

4
,

−3 +
√

15

3

)

(3 6) 2.76e-3

(
−5 +

√
37

6
,

−5 +
√

35

5

)
(4 6) 8.86e-4

(
−11 +

√
170

7
,

−19 + 3
√

93

34

)

(4 6) 1.34e-3

(
−7 +

√
82

11
,

−15 +
√

285

10

)
(4 5) 1.78e-3

(
−15 +

√
365

14
,

−7 + 3
√

11

10

)

(9 7) 2.38e-5

(
−51 + 13

√
29

100
,

−117 +
√

15621

42

)
(5 5) 7.09e-4

(
−11 +

√
257

17
,

−6 + 2
√

14

5

)

(5 6) 7.91e-4

(
−9 +

√
145

16
,

−10 + 2
√

30

5

)
(8 6) 2.73e-5

(
−54 +

√
7057

101
,

−127 + 7
√

453

74

)

(9 7) 2.25e-5

(
−53 +

√
5185

99
,

−30 + 4
√

66

13

)
(4 4) 5.24e-3

(
−4 +

√
37

7
,

−3 +
√

13

2

)

(10 7) 1.54e-5

(
−127 +

√
30629

250
,

−73 +
√

6083

26

)
(8 6) 2.73e-5

(
−54 +

√
7057

101
,

−127 + 7
√

453

74

)

(2 5) 1.45e-2

(
−5 +

√
29

2
,

−1 +
√

2

2

)
(2 3) 6.32e-2

(
−3 +

√
13

2
,

−1 +
√

3

2

)

(3 8) 6.57e-4

(
−23 +

√
629

10
,

−10 +
√

195

19

)
(4 6) 6.9e-4

(
−13 +

√
290

11
,

−23 +
√

1365

38

)

(3 7) 1.06e-3

(
−9 +

√
101

5
,

−4 +
√

30

7

)
(4 5) 1.72e-3

(
−15 +

√
533

22
,

−4 +
√

30

4

)

(3 6) 1.98e-3

(
−13 +

√
229

10
,

−2 +
√

7

3

)
(3 4) 9.87e-3

(
−7 +

√
85

6
,

−3 + 2
√

6

5

)

(4 6) 7.42e-4

(
−10 +

√
170

14
,

−7 +
√

69

6

)
(4 5) 1.45e-3

(
−9 +

√
145

8
,

−8 + 2
√

42

13

)

(9 7) 1.03e-5

(
−81 +

√
13226

155
,

−187 + 3
√

4669

82

)
(4 4) 3.82e-3

(
−5 +

√
65

8
,

−11 +
√

221

10

)

(3 5) 4.94e-3

(
−4 +

√
26

5
,

−2 +
√

6

2

)
(5 5) 6.75e-4

(
−13 + 5

√
13

13
,

−2 +
√

10

3

)

(4 6) 8.44e-4

(
−10 +

√
145

9
,

−19 + 3
√

69

26

)
(3 3) 2.68e-2

(
−2 +

√
10

3
, −1 +

√
2

)

(7 6) 1.11e-4

(
−25 +

√
1297

48
,

−29 +
√

1023

13

)
(2 2) 2.04e-1

(
−1 +

√
2 ,

−1 +
√

5

2

)

(4 5) 2.45e-3

(
−11 +

√
229

18
,

−3 + 2
√

3

2

)
(2 1) 3.82e-1

(
−1 +

√
5

2
, 1

]
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