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Lecture 1: An introduction to dynamical systems and to time series. Periodic and

quasiperiodic motions. (Sept 18)

Lecture 2: A priori probability vs. statistics: ergodicity, uniform distribution of

orbits. The analysis of return times. Kac inequality. Mixing (Sep 25)

Lecture 3: Shannon and Kolmogorov-Sinai entropy. Randomness and deterministic

chaos. Relative entropy and Kelly's betting. (Oct 9)

Lecture 4: Time series analysis and embedology: can we distinguish deterministic

chaos in a noisy environment? (Tuesday, Oct 27, 11am-1pm)

Lecture 5: Fractals and multifractals. (Nov 6, 3pm-5pm)



Today’s references:

* Daniel Kaplan and Leon Glass: "Understanding
Nonlinear Dynamics" Springer (1995) Chapter 6

 Sauer, Yorke, Casdagli: Embedology. J. Stat. Phys. 65
(1991) 579-616

* Michael Small "Applied Nonlinear Time Series
Analysis" World Scientific

* Holger Kantz and Thomas Schreiber “Nonlinear Time
Series Analysis” Cambridge University Press (2004)

The slides of all lectures will be available at my personal
webpage: http://homepage.sns.it/marmi/



An overview of today’s lecture

* Entropy of Bernoulli schemes and of Markov
chains

 Lyapunov exponent of one-dimensional maps

* Stochastic and deterministic random time
series: examples

 Takens theorem
* Embedology
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Entropy

In probability theory, entropy quantifies the uncertainty associated to a

random process

Consider an experiment with mutually esclusive outcomes A={a, ...,

3y}

 Assume that the probability of a; isp;,, 0<p;<1,p, +...+ p =1

If a, has a probability very close to 1, then in most experiments the
outcome would be a, thus the result is not very uncertain. One doea
not gain much information from performing the experiment.

One can quantify the “surprise” of the outcome as
Information= —log (probability)

(the intensity of a perception is proportional to the logarithm of the
Intensity of the stimulus)
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Entropy

The entropy associated to the experiment is
H=-3 p;log p

Since
Information = - Log (probability)

entropy is simply the expectation value of the
Information produced by the experiment
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Entropy, coding and data
compression

What does entropy measure?

Entropy quantifies the information content (namely the amount of
randomness of a signal)

Entropy : a completely random binary sequence has entropy= log,
2 = 1 and cannot be compressed
Computer file= infinitely long binary sequence
Entropy = best possible compression ratio
Lempel-Ziv algorithm (Compression of individual sequences via variable rate
coding, IEEE Trans. Inf. Th. 24 (1978) 530-536): does not assume

knowledge of probability distribution of the source and achieves
asymptotic compression ratio=entropy of source

Oct 27, 2009 Dynamical systgms, informat.ion and time
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Entropy of a dynamical system
(Kolmogorov-Sinal entropy)

Given two partitions P and O

PV Q the join of P and Q@
BNC where B € Qand C € @
T - X — X measure preserving

P,=PVT'Pv...vT-n=Up

WT,P)= lim %H(Pﬂ) nNT) = Sup MT,P)
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Oct 27, 2009 series - S. Marmi

8



Entropy of Bernoulli schemes

Let N >2. Yy ={1....N}%

dlz,y) = 2-a(T.¥)  where a(z,y)=inf{|n|,.ne€Z, z, # yn}

The topological entropy of (Xy,0) is log N
(pl:- --:pN) c A(N) V({?’}) = Di

Definition 4.26 The Bernoulli scheme BS(pi1,....pn) is the measurable dynam-

i

ical system given by the shift map o : ¥y — XN with the (product) probability

measure [t = 1> on Y.

Proposition 4.27The Kolmogorov-Sinai entropy of the Bernoulli scheme BS(p1,...,pn)|
is — 3" i, pilog pi.
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Topological Markov chains or
subshifts of finite type

Ya={zxe¥n, (ziziy1) €e'Vie Z} FC{L...N-}E
> 4 18 a compact shift invariant subset of ¥
A = Ar the N x N matrix with entries a;; € {0,1}

ai_:{l — (i,j) el
! 0 otherwise
The restriction of the shift o to ¥4 is denoted o4

A™ = (@) and af? > 0 for all , j
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Entropy of Markov chains

Theorem 4.35 (Perron—Frobenius, see [Gan]) If A is primitive then there
exists an eigenvalue A4 > 0 such that :
(1) |Aa| > A for all eigenvalues A # A4 :
(ii) the left and right eigenvectors associated to A4 are strictly positive and are
unique up to constant multiples :

(iii) A4 is a simple root of the characteristic polynomial of A.

Let P = (F;;) be an N x N matrix such that
(1) Pz'j > 0 for all 2,7, and Pij >0 < A = 1:
(i) Yo Py=1foralli=1.....N:

l

(iii) P™ has all its entries strictly positive.
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Such a matrix is called a stochastic matriz. Applying Perron—-Frobenius
theorem to P we see that 1 is a simple eigenvalue of PP and there exists a normalized
eigenvector p = (p1.....pN) € AW such that p; > 0 for all 7 and

N
S piPy=pj. Y1<i<N.
i=1

We define a probability measure 2 on ¥ 4 corresponding to P prescribing its value

jﬂ'f“*fjk

foralli € Z, k > 0 and jg,.... 5 € {1,..., N}. It is called the Markov measure
associated to the stochastic matrix P.

on the cylinders :

- the subshift o4 preserves the Markov measure .
N

hu(oa) = — Z piPijlog Pi; hu(oca) < hiop(oa)
ij=1
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Lyapunov exponent for a map of
an interval

* Assume that T Is a piecewise smooth map of 1=[0,1]

* By the chain rule we have

n—1
1 n 7n 1 T (T
“log |T"(x) — T"(y)| = - 3 log|T'(T'a)] .

T 0
* If pis an ergodic invariant measure for a.e. x the
limit exists and it is given by [ log |T"| dy

It Is also called the Lyapunov exponent of T
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Expanding maps and Rokhlin

formula

If T Is expanding then It has a unigue a.c.1.p.m.
u and the entropy h of T w.r.t. u is equal to the
Lyapunov exponent

1
h =/ log | T"(x)|dpu
0
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Examples of time-series in natural
and soclal sciences

Weather and climate measurements (temperature, pressure, rain, wind
speed, ...)

Earthquakes
Lightcurves of variable stars
Sunspots

Macroeconomic historical time series (inflation, GDP,
unemployment,...)

Financial time series (stocks, futures, commodities, bonds, ...)
Populations census (humans or animals)
Physiological signals (ECG, EEG, ...)

Dynamical systems, information and time
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Stochastic or chaotic?

* An important goal of time-series analysis Is to
determine, given a times series (e.g. HRV) if the
underlying dynamics (the heart) Is:

— Intrinsically random

— Generated by a deterministic nonlinear chaotic
system which generates a random output

— A mix of the two (stochastic perturbations of
deterministic dynamics)

Dynamical systems, information and time
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CHAOS 18, 030201 (2008)

Announcement: A new feature—"“Controversial Topics
in Nonlinear Science: Is the Normal Heart Rate Chaotic?”

Leon Glass
Department af Physics, McGill University, Montréal, Québec H3G Y6, Canada
| Received 16 June 2008; published online 6 August 2008}

The normal heart rhythm in humans is set by a small group of cells called the sinoatrial
node. Although over short time intervals, the normal heart rate often appears to be
regular, when the heart rate is measured over extended periods of

time, it shows significant fluctuations. There are a number of factors that affect these
fluctuations: changes of activity or mental state, presence of drugs, presence of artificial
pace- makers, occurrence of cardiac arrhythmias that might mask the sinoatrial rhythm
or make it difficult to measure. Following the widespread recognition of the possibility of
deterministic chaos in the early 1980s, considerable attention has been focused on the
possibility that heart rate variability might reflect deterministic chaos in the physiological
control system regulating the heart rate. A large number of papers related to the analysis
of heart rate variability have been published in Chaos and elsewhere. However, there is
still considerable debate about how to characterize fluctuations in the heart rate and the
significance of those fluctuations. There has not been a forum in which these
disagreements can be aired. Accordingly, Chaos invites submissions that address

one or more of the following questions:



* s the normal heart rate chaotic?

o [f the normal heart rate 1s not chaotic, 1s there some more
appropriate term to characterize the fluctuations e.g.,
scaling, fractal, multifractal?

* How does the analysis of heart rate variability elucidate
the underlying mechanisms controlling the heart rate?

. If so, please indicate what additional clinical
studies would be useful for measures of heart rate
variability to be more broadly accepted by the medical
community.



Chaotic brains at work!

i -

R. Acsc 5S¢l Park, Sclences cde |s vie 7 Life Sclences 324 (2001) 773-7%3
2 o - ‘T Aar

‘Editions sclentifigues et médicales Elsevier 5A5. Tous droits réservés

Point sur / Concise review

Is there chaos in the brain? I. Concepts of nonlinear
dynamics and methods of investigation

Philippe Faure, Henri Korn*®

Biologie cellulaire et moléculaire du neurone (Inserm V261), Institut Pasteur, 25 rue Docteur Roux, 75724
Paris Cedex 15, France

Received 18 June 2001; accepted 2 July 2001

Communicated by Pierre Buser

Abstract — In the light of results obtained during the last two decades in a number of
laboratories, it appears that some of the tools of nonlinear dynamics, first developed and
improved for the physical sciences and engineering, are well-suited for studies of
biological phenomena. In particular it has become clear that the different regimes of
activities undergone by nerve cells, neural assemblies and behavioural patterns, the
linkage between them, and their modifications over time, cannot be fully understood in
the context of even integrative physiology, without using these new technigues. This
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networks and in the study of higher brain functions, will be critically reviewed. It will be
shown that the tools of nonlinear dynamics can be irreplaceable for revealing hidden
mechanisms subserving, for example, neuronal synchronization and periodic oscilla-
tions. The benefits for the brain of adopting chaotic regimes with their wide range of
potential behaviours and their aptitude to quickly react to changing conditions will also
he considered. @ 2001 Académie des sciences/Editions scientifiques et médicales
Elsevier SAS

Available online at www.sciencedirect.com
SBCIENCE @DIHEGT'

C. R. Biologies 326 (2003) 787-840

Neurosciences

Is there chaos in the brain? II. Experimental evidence
and related models

Henr1 Korn*, Philippe Faure

Récepreurs er Cognition ', CNRS 20582, institur Pastewr, 235, rue du Docrewr-Roux, 735724 Pavis cedex |5, France
Received 16 September 2003; accepted 17 September 2003

Mresented by Plerre Buser
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P.Faure, H. Kom f C.R. Acsd. 5ci. Parls, Sclences de la vie J Life Sclences 324 (2007) 773-7%3
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Figure 9. Reconstruction of phase spaces with the delay method. (A1-A2) Case of a continuous signal, as for example the recording of membrane
potential, V. (A1) The time series is subdivided into two sequences of measurements of the same length W (here equal to 100 points). Their starting
point is shifted by the time lagT. (A2) The trajectory in a two dimensional phase space is abtained by plotting, for each point of the time series, V,
against V... (B1-B2) In the case of a discrete signal, such as time intervals between action potentials in a spike train (B1), the same procedure is
applied to time intervals 1, 1.0, (B2)
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Fig. 5. Discharge patterns of a pacemaker neuron caused by a do current (Al-A3) representative samples of the recorded membrane potential.
(B1=B3) One-dimensional Poincaré maps of the corresponding sequence of spikes constructed using the delay method (see [ 1] for explanations).
(Al1-B1) Regular discharges of action potentials. (A2-B2) Periodic firing with two spikes per burst. (A3-B3) Chaotic bursting discharges.
(Adapted from [45], with permission of the Journal of Theoretical Biology.)
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THE JOURNAL OF FINANCE « VOL. XLVI, NO. 5 « DECEMBER 1991

Chaos and Nonlinear Dynamics:
Application to Financial Markets

DAVID A. HSIEH™

ABSTRACT

After the stock market crash of October 19, 1987, interest in nonlinear dynamics,
especially deterministic chaotic dynamics, has increased in both the financial press
and the academic literature. This has come about because the frequency of large
moves in stock markets is greater than would be expected under a normal distribu-
tion. There are a number of poasible explanations. A popular one is that the stock
market is governed by chaotic dynamics. What exactly is chaos and how is it
related to nonlinear dynamics? How does one detect chaos? Is there chaos in
financial markets? Are there other explanations of the movements of financial
prices other than chaos? The purpose of this paper is to explore these issues,
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Logistic map series (adjusted with mean)

1m -

075
0.50
.25

000

050 =

075 4

Al

I

___Logistic Map series

Random N(0,1) series
_Random N(0,1) series

bl Il

:'j rl

L‘r[li-;.l:_.lh .“ }Mﬁww

SIS 4 T e

i
. !
i _3.{
|

4

-1.00

Oct 27, 2009

1

18 27 40 63 66 79 92 105 178 131 144 157 170 183 196

T T T e Y T T T T Y I —
t 14 27 40 53 65 TP 92 105 118 131 144 157 170 183 156

Dynamical systems, information and time
series - S. Marmi

24



Oct 27, 2009

Autocorrelations

ACF of logletic map series ACF of random normal series
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Fig. 2. Comparison of logistic map and random series.
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Embedding dimension =m
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II. What Do We Find in the Stock Market?

Scheinkman and LeBaron (1989) used the Grassberger-Procaccia plots and
calculated the correlation dimension of weekly stock returns. They found
that the slope of logC {¢) versus loge appears to be around 6, even for
dimensions as high as 25. They, however, noted that this is not sufficient
evidence of chaos in stock returns, because there are a number of problems
with this graphical procedure.

First, Scheinkman and LeBaron (1989) pointed out that some nonlinear
stochastic model, such as Engle’s (1982) autoregressive conditional het-
eroskedasticity (ARCH) model, exhibit “dependence’ similar to that of chaotic
maps. Using data from the ARCH model, they showed that the slopes of the
graphs of log C(¢) versus loge increase at a rate slower than ».

Second, there is no way to verify that a process has an infinite correlation
dimension using a finite amount of data. Scientists typically use 100,000 or
more data points to detect low dimensional chaotic system. Financial
economists have substantially fewer points. The largest data sets generally
have 2,000 observations. If we use the imbedding dimension of 10, we have
only 200 nonoverlapping 10-histories. It is very hard to say whether 200
10-histories “fill up” a 10-dimensional space.

Hsieh, JOF 1991
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Deterministic or random?
Appearance can be misleading...

Gaussian white noise Determimistic Gaussian white tume series
=

P(Xx)
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Time delay map

Ganssian white noise Deterministic Gaussian white time series

N

Dynamical systems, information and time

‘Solrée: sprott.physics.wisc.edu/leetures/tsa.ppt

29



Logit and logistic

The logistic map x—L(x)=4x(1-X) preserves the
probability measure du(x)=dx/(zVx(1-x))
The transformation h:[0,1] —R, h(x)=Inx-In(1-x)
conjugates L with a new map G
h L=G h
definined on R. The new Invariant probability
measure IS du(X)=dx/[r(e ¥2 + e *2)]

G and L have the same dynamics (the only
~aifference Is a coorainates change) 50




Statistical analysis of a time serles:
moments of the probability distribution

_ N

mean T= > T

el 2 1 N —\2
variance 0% = =5 Qi1 (1 — )
standard deviation %
skewness (= + ZN (Ii_f)g

: . 1 N xr; —T 4

kurtosis K=—-3+x2 -1 ()
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Higher moments: simmetry of
the distribution and fat tails

» Skewness: measures simmetry of the data
about the mean (third moment)

» Kurtosis: peakedness of the distribution
relative to the normal distribution (hence the -3
term)

 Leptokurtic distribution (fat tailed): has
positive kurtosis

Oct 27, 2009 . . . 32
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Takens theorem

¢ : X —» X map, f : X — R smooth observable

Time-delay map (reconstruction of the dynamics
from periodic sampling):

~(f, ¢

) : X — R n is the number of delays

-(f, ¢

p)(X) = (F(X), f(p(X)), f(P (X)), ..., f(d™ (x))*

Under mild assumptions if the dynamics has an

attractor with dimension k and n>2k then for almost
any choice of the observable the reconstruction map
IS Injective



Immersions and embeddings

A smooth map F on acompact smooth manifold A is an immersion if
the derivative map DF(X) (represented by the Jacobian matrix of F at Xx)
IS one-to-one at every point xeA. Since DF(x) is a linear map, this is
equivalent to DF(x) having full rank on the tangent space. This can
happen whether or not F is one-to-one. Under an immersion, no
differential structure is lost in going from A to F(A).

 An embedding of A is a smooth diffeomorphism from A onto its image
F(A), that is, a smooth one-to-one map which has a smooth inverse. For
a compact manifold A, the map F is an embedding if and only if ,F isa
one- to-one immersion.

« The set of embeddings is open in the set of smooth maps: arbitrarily small
perturbations of an embedding will still be embeddings!

Oct 27, 2009 ynamical systems, information and time -
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Em bedology (Sauer, Yorke, Casdagli, J. Stat.

Phys. 65 (1991)

Whitney showed that a generic smooth map ,F from a d-dimensional

smooth compact manifold M to R», n>2d is actually a diffeomorphism on M.
That is, M and F(M) are diffeomorphic. We generalize this in two ways:

 first, by replacing "generic" with "probability-one” (in a prescribed sense),
» second, by replacing the manifold M by a compact invariant set A

contained in some Rk that may have noninteger box-counting dimension
(boxdim). In that case, we show that almost every smooth map from a
neighborhood of A to R» is one-to-one as long as n>2 * boxdim(A)

We also show that almost every smooth map is an embedding on compact subsets
of smooth manifolds within |. This suggests that embedding technigues can

be used to compute positive Lyapunov exponents (but not necessarily

negative Lyapunov exponents). The positive Lyapunov exponents are usually

carried by smooth unstable manifolds on attractors.

Dynamical systems, information and time
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Em bedology (Sauer, Yorke, Casdagli, J. Stat.
Phys. 65 (1991)

Takens dealt with a restricted class of maps called delay-coordinate

maps: these are time series of a single observed quantity from an experiment. He
showed (F. Takens, Detecting strange attractors in turbulence, in Lecture Notes in Mathematics,
No. 898 (Springer-Verlag, 1981 ) that if the dynamical system and the observed
quantity are generic, then the delay-coordinate map from a d-dimensional
smooth compact manifold M to R", n>2d is a diffeomorphism on M.

 we replace generic with probability-one
 and the manifold M by a possibly fractal set.

Thus, for a compact invariant subset A under mild conditions on the dynamical
system, almost every delay-coordinate map to R" is one-to-one on A provided
that n>2.boxdim(A). Also, any manifold structure within | will be preserved
in F(A).

 Only Ct smoothness is needed.;

 For flows, the delay must be chosen so that there are no periodic orbits with
period exactly equal to the time delay used or twice the delay

Oct 27, 2009 Dynamical systems, information and time 37
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Embedding method

Plot x(t) vs. x(t-7), x(t-27), X(t-37), ...

X(t) can be any observable

The embedding dimension is the # of delays
The choice of rand of the dimension are critical

For a typical deterministic system, the orbit will be
diffeomorphic to the attractor of the system (Takens

theorem)

D ical inf . .
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Choice of Embedding Parameters

Theoretically, a time delay coordinate map yields an valid embedding for any
sufficiently large embedding dimension and for any time delay when the data are
noise free and measured with infinite precision.

But, there are several problems:

(i) Data are not clean

(i) Large embedding dimension are computationally expensive and unstable
and require long time series (10° — 10° points ...)

(iii) Finite precision induces noise

Effectively, the solution is to search for:

(i) Optimal time delay t
(i) Minimum embedding dimension d
or
(i) Optimal time window t,,
There is no one unique method solving all problems and neither there is a unigque set
of embedding parameters appropriate for all purposes.

Oct 27, 2009 ynamical systems, information and time .
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The Role of Time Delay =

If 7is too small,x(t) and x(t-7) will be very close, then each reconstructed vector
will consist of almost equal components = Redundancy ()

mmmm)> The reconstructed state space will collapse into the main diagonal

If 7is too large,x(t) and x(t-7) will be completely unrelated, then each reconstructed
vector will consist of irrelevant components - Irrelevance (7))

mmmm)> The reconstructed state space will fill the entire state space.

40 40 40
20 Too smaj¥r 201 20|
0 0f 0f
-20 -20 -20
“%o 0 50 50 0 50 50 0 50

http://www.viskom.oeaw.ac.at/~joy/March22,%202004.ppt

Dynamical systems, information and time

27,2
Oct 27, 2009 series - S. Marmi

40



Blood Pressure Signal
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Some Recipes to Choose t

Based on Autocorrelation

opt

Estimate autocorrelation function:

N—-7-1

D x(t)x(t+7) = (x(O)x(t+7))

C(r) =
O =K1 2

Then, t,,, ~ C(0)/e  or first zero crossing of C(t)

Modifications:

1. Consider minima of higher order autocorrelation functions,
<X(t)x(t+t)x(t+2t)> and then look for time when these minima
for various orders coincide.

2. Apply nonlinear autocorrelation functions: <x?(t)x?(t+2t)>

http://www.viskom.oeaw.ac.at/~joy/March22,%202004.ppt
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Some Recipes to Choose t

Based on Time delayed Mutual Information

opt

The information we have about the value of x(t+7) if we know X(t).

1. Generate the histogram for the probability distribution of the signal x(t).

2. Let p; is the probability that the signal will be inside the i-th bin and
p;(t) Iis the probability that x(t) is in i-th bin and x(t+7) is in j-th bin.

3. Then the mutual information for delay z will be

For 7> 0, I(z) 2 Shannon’s Entropy

Topt & First minimum of 1(z)

Dynamical systems, information and time
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