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• Lecture 1: An introduction to dynamical systems and to time series. Periodic  and 

quasiperiodic motions. (Sept 18)

• Lecture 2: A priori probability vs. statistics: ergodicity, uniform distribution of 

orbits. The analysis of return times. Kac inequality. Mixing (Sep 25)

• Lecture 3: Shannon and Kolmogorov-Sinai entropy. Randomness and deterministic 

chaos. Relative entropy and Kelly's betting. (Oct 9)

• Lecture 4: Time series analysis and embedology: can we distinguish deterministic 

chaos in a noisy environment? (Tuesday, Oct 27, 11am-1pm)

• Lecture 5: Fractals and multifractals. (Nov 6, 3pm-5pm)
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Today’s references:

• Daniel Kaplan and Leon Glass: "Understanding 

Nonlinear Dynamics" Springer (1995) Chapter 6

• Sauer, Yorke, Casdagli: Embedology. J. Stat. Phys. 65 

(1991) 579-616

• Michael Small "Applied Nonlinear Time Series 

Analysis" World Scientific 

• Holger Kantz and Thomas Schreiber “Nonlinear Time 

Series Analysis” Cambridge University Press (2004)

The slides of all lectures will be available at my personal 

webpage: http://homepage.sns.it/marmi/
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An overview of today’s lecture

• Entropy of Bernoulli schemes and of Markov 

chains

• Lyapunov exponent of one-dimensional maps

• Stochastic and deterministic random time 

series: examples

• Takens theorem

• Embedology
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Entropy

In probability theory, entropy quantifies the uncertainty associated to a 
random process

Consider an experiment with mutually esclusive outcomes A={a1, …, 
ak}

• Assume that the probability of ai is pi , 0≤ pi ≤ 1, p1 +…+ pk =1

• If a1  has a probability very close to 1, then in most experiments the 
outcome would be a1  thus the result is not very uncertain. One doea
not gain much information from performing the experiment. 

• One can quantify the “surprise” of the outcome as

information= −log (probability)

• (the intensity of a perception is proportional to the logarithm of the 
intensity of the stimulus)
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Entropy 

The entropy associated to the experiment is

H=-∑ pi log pi 

Since

information = - Log (probability) 

entropy is simply the expectation value of the 

information produced by the experiment
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Entropy, coding and data 

compression

What does entropy measure?

Entropy quantifies the information content (namely the amount of
randomness of a signal)

Entropy : a completely random binary sequence has entropy= log2

2 = 1 and cannot be compressed

Computer file= infinitely long binary sequence

Entropy = best possible compression ratio

Lempel-Ziv algorithm (Compression of individual sequences via variable rate 

coding, IEEE Trans. Inf. Th. 24 (1978) 530-536): does not assume 
knowledge of probability distribution of the source and achieves
asymptotic compression ratio=entropy of source
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Entropy of a dynamical system 

(Kolmogorov-Sinai entropy)
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Entropy of Bernoulli schemes
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Topological Markov chains or 

subshifts of finite type
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Entropy of Markov chains
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Lyapunov exponent for a map of

an interval

• Assume that T is a piecewise smooth map of I=[0,1]

• By the chain rule we have

• If μ is an ergodic invariant measure for a.e. x the 

limit exists and it is given by 

it is also called the Lyapunov exponent of T
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Expanding maps and Rokhlin

formula

If T is expanding then it has a unique a.c.i.p.m. 

μ and the entropy h of T w.r.t. μ is equal to the 

Lyapunov exponent
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Examples of time-series in natural 

and social sciences
• Weather and climate measurements (temperature, pressure, rain, wind 

speed, …)

• Earthquakes

• Lightcurves of variable stars

• Sunspots

• Macroeconomic historical time series (inflation, GDP, 

unemployment,…)

• Financial time series (stocks, futures, commodities, bonds, …)

• Populations census (humans or animals)

• Physiological signals (ECG, EEG, …)
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Stochastic or chaotic?

• An important goal of time-series analysis is to 

determine, given a times series (e.g. HRV) if the 

underlying dynamics (the heart) is:

– Intrinsically random 

– Generated by a deterministic nonlinear chaotic 

system which generates a random output

– A mix of the two (stochastic perturbations of 

deterministic dynamics)
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The normal heart rhythm in humans is set by a small group of cells called the sinoatrial 

node. Although over short time intervals, the normal heart rate often appears to be 

regular, when the heart rate is measured over extended periods of

time, it shows significant fluctuations. There are a number of factors that affect these 

fluctuations: changes of activity or mental state, presence of drugs, presence of artificial 

pace- makers, occurrence of cardiac arrhythmias that might mask the sinoatrial rhythm 

or make it difficult to measure. Following the widespread recognition of the possibility of 

deterministic chaos in the early 1980s, considerable attention has been focused on the 

possibility that heart rate variability might reflect deterministic chaos in the physiological 

control system regulating the heart rate. A large number of papers related to the analysis 

of heart rate variability have been published in Chaos and elsewhere. However, there is 

still considerable debate about how to characterize fluctuations in the heart rate and the 

significance of those fluctuations. There has not been a forum in which these 

disagreements can be aired. Accordingly, Chaos invites submissions that address

one or more of the following questions:
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• Is the normal heart rate chaotic?

• If the normal heart rate is not chaotic, is there some more 

appropriate term to characterize the fluctuations  e.g., 

scaling, fractal, multifractal?

• How does the analysis of heart rate variability elucidate 

the underlying mechanisms controlling the heart rate?

• Do any analyses of heart rate variability provide 

clinical information that can be useful in medical 

assessment e.g., in helping to assess the risk of sudden 

cardiac death. If so, please indicate what additional clinical 

studies would be useful for measures of heart rate 

variability to be more broadly accepted by the medical 

community.

Oct 27, 2009 18
Dynamical systems, information and time 

series - S. Marmi



Chaotic brains at work!
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Embedding dimension = m

jmimjmim
N

m xxxx
N

C ,,,,2
),,(#

1
lim)(

)log(

)(log
lim)(

0

mC
md

Oct 27, 2009 26
Dynamical systems, information and time 

series - S. Marmi



Hsieh, JOF 1991
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Deterministic or random? 

Appearance can be misleading…
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Time delay map

Source: sprott.physics.wisc.edu/lectures/tsa.ppt Oct 27, 2009 29
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Logit and logistic

The logistic map x→L(x)=4x(1-x) preserves the 

probability measure dμ(x)=dx/(π√x(1-x))

The transformation h:[0,1] →R, h(x)=lnx-ln(1-x) 

conjugates L with a new map G

h L=G h 

definined on  R. The new invariant probability 

measure is dμ(x)=dx/[π(e     + e     )]

G and L have the same dynamics (the only 

difference is a coordinates change)

x/2 -x/2
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Statistical analysis of a time series: 

moments of the probability distribution 
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Higher moments: simmetry of 

the distribution and fat tails

• Skewness: measures simmetry of the data 

about the mean (third moment)

• Kurtosis: peakedness of the distribution 

relative to the normal distribution (hence the -3 

term)

• Leptokurtic distribution (fat tailed): has 

positive kurtosis
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Hyperbolic secant 
distribution

Parameters none

Support xϵ(-∞,+∞)

Probability density 
function (pdf)

½sech(½πx)

Cumulative 
distribution

function (cdf)

2arctan(exp(½πx))

π

Mean 0

Median 0

Mode 0

Variance 1

Skewness 0

Excess kurtosis 2

Entropy 4/π G ≈1.16624

Source: wikipedia

G = 0.915 965 594 177 219 015 054 603 

514 932 384 110 774... Catalan’s constant
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Takens theorem

• ϕ : X → X map, f : X → R smooth observable

• Time-delay map (reconstruction of the dynamics 

from periodic sampling):

• F(f,ϕ) : X → Rⁿ  n is the number of delays

• F(f,ϕ)(x) = (f(x), f(ϕ(x)), f(ϕ ϕ(x)), ..., f(ϕⁿ (x)))

• Under mild assumptions if the dynamics has an 

attractor with dimension k and n>2k then for almost 

any choice of the observable the reconstruction map 

is injective

-1
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Immersions and embeddings

• A  smooth  map  F  on  a compact smooth manifold A  is  an  immersion if  

the derivative map DF(x)  (represented by  the  Jacobian matrix  of  F  at  x)  

is one-to-one  at  every  point  xϵA.  Since DF(x)  is  a  linear  map,  this  is 

equivalent  to DF(x)  having full  rank  on the tangent space.  This can 

happen whether  or  not  F  is  one-to-one.  Under  an  immersion,  no  

differential structure  is lost in going from A  to F(A).

• An  embedding of A  is a smooth diffeomorphism from  A  onto  its image 

F(A),  that  is, a  smooth one-to-one map which  has a  smooth inverse.  For 

a compact manifold A,  the map F is an embedding  if and only if ,F  is a 

one- to-one immersion. 

• The set of embeddings is open in the set of smooth maps: arbitrarily small 

perturbations of an embedding will still be embeddings!
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Embedology (Sauer, Yorke, Casdagli, J. Stat. 

Phys. 65 (1991)

Whitney  showed that  a generic smooth map  ,F  from  a d-dimensional

smooth compact manifold  M  to Rⁿ , n>2d is actually a diffeomorphism on M. 

That  is, M  and F(M)  are diffeomorphic. We  generalize  this  in  two  ways:

• first, by  replacing "generic" with  "probability-one"  (in  a prescribed  sense),

• second, by  replacing  the manifold  M  by  a  compact  invariant  set A

contained  in  some Rk  that  may  have  noninteger  box-counting  dimension 

(boxdim).  In  that  case,  we show  that  almost every smooth map  from  a 

neighborhood  of A  to Rⁿ is one-to-one  as  long as n>2 * boxdim(A)

We  also show that almost every smooth map  is an embedding on compact subsets 

of  smooth  manifolds  within  l.  This  suggests  that  embedding techniques can  

be  used  to  compute  positive  Lyapunov  exponents  (but not  necessarily  

negative Lyapunov  exponents).  The  positive Lyapunov exponents are usually 

carried by  smooth  unstable manifolds on attractors.
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Takens  dealt with  a  restricted class of maps called delay-coordinate

maps: these are time series  of a single observed quantity  from  an  experiment. He 
showed  (F.  Takens, Detecting  strange attractors  in  turbulence, in  Lecture Notes  in Mathematics, 

No. 898 (Springer-Verlag,  1981  )  that if the dynamical  system  and  the observed  
quantity  are  generic,  then  the  delay-coordinate map  from  a d-dimensional  
smooth compact manifold M  to Rⁿ , n>2d is a diffeomorphism on M.

• we  replace generic with  probability-one 

• and the manifold  M  by  a  possibly  fractal  set. 

Thus,  for  a  compact  invariant subset A  under mild  conditions  on  the  dynamical  
system, almost every delay-coordinate  map  to Rⁿ is one-to-one  on A  provided 
that  n>2.boxdim(A). Also,  any  manifold  structure within  I  will  be preserved  
in  F(A). 

• Only C¹ smoothness is needed.; 

• For  flows, the delay must  be chosen so that  there are no  periodic orbits with 
period exactly equal to the time delay used or twice the delay

Embedology (Sauer, Yorke, Casdagli, J. Stat. 

Phys. 65 (1991)

Oct 27, 2009 37
Dynamical systems, information and time 

series - S. Marmi



Embedding method

• Plot x(t) vs. x(t- ), x(t-2 ), x(t-3 ), …

• x(t) can be any observable

• The embedding dimension is the # of delays

• The choice of and of the dimension are critical

• For a typical deterministic system, the orbit will be 

diffeomorphic to the attractor of the system (Takens

theorem)
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Choice of Embedding Parameters

Theoretically, a time delay coordinate map yields an valid embedding for any 

sufficiently large embedding dimension and for any time delay when the data are

noise free and measured with infinite precision. 

But, there are several problems:

(i) Data are not clean

(ii) Large embedding dimension are computationally expensive and unstable 

and require long time series (105 – 106 points …)

(iii)Finite precision induces noise

Effectively, the solution is to search for:

(i) Optimal time delay t

(ii) Minimum embedding dimension d

or

(i) Optimal time window tw

There is no one unique method solving all problems and neither there is a unique set 

of embedding parameters appropriate for all purposes.
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The Role of Time Delay 

Too small Too large A better

If is too small,x(t) and x(t- ) will be very close, then each reconstructed vector 

will consist of almost equal components  Redundancy ( R)

The reconstructed state space will collapse into the main diagonal

If is too large,x(t) and x(t- ) will be completely unrelated, then each reconstructed 

vector will consist of irrelevant components  Irrelevance ( I)

The reconstructed state space will fill the entire state space. 

http://www.viskom.oeaw.ac.at/~joy/March22,%202004.ppt
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Blood Pressure Signal

Small 

Large T

A better 

A better choice is: 

R < w < I

Caution: should not be

close to main period

Collapsing of state space

http://www.viskom.oeaw.ac.at/~joy/March22,%202004.ppt
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Some Recipes to Choose opt

Estimate autocorrelation function:

)()()()(
1

1
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1

0

txtxtxtx
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C
N

t

Then, topt C(0)/e or first zero crossing of C(t)

Modifications:

1. Consider minima of higher order autocorrelation functions, 

<x(t)x(t+t)x(t+2t)> and then look for time when these minima 

for various orders coincide.

2. Apply nonlinear autocorrelation functions: <x2(t)x2(t+2t)>

Based on Autocorrelation

http://www.viskom.oeaw.ac.at/~joy/March22,%202004.ppt

Oct 27, 2009 42
Dynamical systems, information and time 

series - S. Marmi



Based on Time delayed Mutual Information

The information we have about the value of x(t+ ) if we know x(t). 

1. Generate the histogram for the probability distribution of the signal x(t).

2. Let pi is the probability that the signal will be inside the i-th bin and 

pij(t) is the probability that x(t) is in i-th bin and x(t+ ) is in j-th bin. 

3. Then the mutual information for delay will be

i

i

iij

ji

ij ppppI log2)(log)()(
,

For  0, I( )  Shannon’s Entropy

opt First minimum of I( ) 
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