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Let X be an algebraic variety over C, x0 ∈ X. What can be
recovered of the fundamental group π1(X, x0) from
algebro-geometric data? There are good reasons why the full
fundamental group can not be reconstructed.

Grothendieck showed how to recover the profinite completion
�π1(X, x0) that is, the projective limit of the finite quotients of
π1(X, x0). The essential point is that the finite quotients of
π1(X, x0) are the Galois groups of finite topological covers of X,
and these are all algebraic. This completion carries strictly less
information than π1(X, x0); for example, it may happen that
�π1(X, x0) = 0 but π1(X, x0) �= 0.

The profinite completion is defined using covers; but covers are
hard to construct. For example, there is no algebraic know proof
that if S is a finite subset of P1, then �π1(P1 � S) is a finite profinite
group over |S| − 1 generators, even when |S| = 3.
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Suppose that X is reduced and projective. Then a theorem of Nori
shows how to reconstruct �π1(X, x0) from the category Vect(X) of
vector bundles on X, as a C-linear tensor category, with a fiber
functor Vect(X) → VectC. Consider the category Rep

�
�π1(X, x0)

�
of

continuous finite dimensional representations �π1(X, x0) → GL(V)

of �π1(X, x0). Any such representation has a factorization
�π1(X, x0) → G → GL(V) through a finite quotient G of �π1(X, x0).
With this representation we associate a vector bundle on X, as
follows. The quotient G of �π1(X, x0) corresponds to a Galois
G-cover Y → X with a marked point y0 ∈ Y over x0. The quotient
(Y × V)/G → Y/G = X by the diagonal action is a vector bundle
on X. This gives a functor Rep

�
�π1(X, x0)

�
→ Vect(X). It was

observed by Weil that the vector bundles that one obtains in this
way are very special: they are finite.
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Vector bundles can be added (via direct sum) and multiplied (via
tensor product); they can not be subtracted. Suppose that
f (t) ∈ N[t] is a polynomial with non negative integer coefficients.
If E is a vector bundle on X, we can define f (E). The vector bundle
E is called finite if there exist f (t) and g(t) ∈ N[t], f (t) �= g(t), such
that f (E) � g(E). Finite vector bundles form a tensor subcategory
Fin(X) of Vect(X).
Theorem (Nori). The construction above gives an equivalence of
C-linear tensor categories Rep

�
�π1(X, x0)

�
� Fin(X).

It is known that one can recover �π1(X, x0) from Rep
�
�π1(X, x0)

�
as

the group of automorphism of the fiber functor. This is known as
Tannaka duality.

What happens when X is not projective? Vector bundles on X are
inadequate: for example, vector bundles on P1 � S are all trivial.
They must be replaced with parabolic bundles.
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(Real) parabolic bundles were introduced by Mehta and Seshadri
in dimension 1. Let us fast-forward, skipping a lot of important
work of Maruyama–Yokogawa, Biswas, Simpson, Iyer–Simpson,
and go to work of Niels Borne. Suppose that X is a smooth variety
over an algebraically closed field of characteristic 0, D is a divisor
with simple normal crossing on X. This means that D is a union of
smooth hypersurfaces D1, . . . , Dr intersecting transversally at each
point. Fix a sequence d = (d1, . . . , dr) of r positive integers.
Consider the set 1

d Zr def
= 1

d1
Z × · · · ×

1
dr

Z as a poset:
(w1, . . . , wr) ≤ (w�

1, . . . , w�
r) if wi ≤ w�

i for all i. This makes 1
d Zr

into a category: if w ≤ w� then there is a unique arrow from w to
w�, otherwise there is none.
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Definition (Simpson, Borne). A parabolic bundle on (X, D) with
weights in 1

d Zr is a functor 1
d Zr → Vect(X), satisfying the

following conditions.

(a) if w ≤ w�, then Ew → Ew� is injective.

(b) if ei ∈ Zr ⊆ 1
d Zr is the ith element of the canonical basis, then

the embedding Ew−ei → Ew identifies Ew−ei with Ew(−Di).

Parabolic bundles on (X, D) with weights in 1
d Zr form a category,

denoted by ParV1/d(X). If d divides d�, there is an embedding
ParV1/d(X) ⊆ ParV1/d�(X). The union of these categories is the
category of parabolic vector bundles on (X, D) denoted by
ParV(X, D). The category ParV(X) has a (highly non-obvious)
tensor product, allowing to talk about the category of finite
parabolic bundles Fin(X, D).
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Theorem (Nori, Borne). There is an equivalence of tensor categories
Rep

�
�π1(X � D, x0)

�
� Fin(X, D).

It is not at all clear how to associate a parabolic bundle with a
representation of �π1(X � D, x0). Borne does this by interpreting
parabolic bundles as bundles on certain orbifolds.

We embed the monoid of effective Cartier divisors on a variety X
in the symmetric monoidal category Div X of pairs (L, s), where L
is an invertible sheaf and s ∈ L(X). An arrow from (L, s) to (L�, s�)
is an isomorphism L � L� carrying s into s�. The monoidal
structure is given by tensor product. This category is more
complicated than the monoid of divisors, but invertible sheaves
with sections have the advantage of admitting pullbacks under
arbitrary morphisms.
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Let D be an effective Cartier divisor on a scheme S and d be a
positive integer. We can construct the stack of roots S[ 1

d D]. A
morphism T → S[ 1

d D] consists of a morphism f : T → S, together
with an object D of Div T and an isomorphism D⊗d � f ∗D. In the
previous context, consider

X[ 1
d D]

def
= X[ 1

d1
D1]×X · · · ×X X[ 1

dr
Dr].

Morphisms T → X[ 1
d D] correspond to morphisms f : T → X,

together with objects D1,T , . . . , Dr,T of Div T, and an isomorphism
D

⊗di
i,T � f ∗Di for each i. The stack X[ 1

d D] is algebraic, and a
Deligne–Mumford stack in characteristic 0. Its moduli space is X.
In Div X[ 1

d D] there are tautological divisors D1, . . . , Dr. Call
π : X[ 1

d D] → X the natural morphism.

Here is a local picture of π in the case r = 2.
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If E is a vector bundle on X[ 1
d D], we can associate with it a

parabolic bundle in ParV1/d(X, D): for each
i
d = ( i1

d1
, . . . , ir

dr
) ∈ 1

d Zr, set

Ei/d
def
= π∗E(i1D1 + · · ·+ irDr).

Theorem (Borne). There is an equivalence of tensor categories
Vect(X[ 1

d D]) with ParV1/d(X).

Abhyankar’s lemma says that �π1(X � D) is the limit of the
�π1(X[ 1

d D]). Hence every continuous representation of �π1(X � D)

comes from a representation of �π1(X[ 1
d D]) for some d. With this

you associate a finite vector bundle on X[ 1
d D], hence a parabolic

bundle. The Nori–Borne theorem says that this gives an
equivalence.
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Borne’s work left two main questions open.

1) In what generality can one define parabolic bundles? For
example, how about divisors with non-simple normal crossing? It
seems clear that one must use sheaves of weights.

2) How about parabolic coherent sheaves?

These problems are best seen in the context of logarithmic
geometry.

Borne and I define a notion of parabolic (quasi-)coherent sheaf for
logarithmic varieties with given weights. We also prove a general
version of Borne’s correspondence in this context.
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Let us review the notion of logarithmic structure in a somewhat
unorthodox language, using Deligne–Faltings structures. The fact
that a Deligne–Faltings structure defines a logarithmic structure is
somehow implicit in Kato’s construction of the logarithmic
structure associated with a homomorphism of monoids
P → O(X); going in the other direction, the construction is
contained in a paper of Lorenzon.

All sheaves on a scheme X will be defined on the small étale site
Xét. All monoids will be commutative.

Recall that for any scheme X we denote by Div X the symmetric
monoidal category of invertible sheaves with a specified section.
The arrows in Div X are given by isomorphisms. The identity is
(OX , 1). The invertible objects are the pairs (L, s) in which s does
not vanish anywhere.
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If A is a monoid, we will think of A as a discrete symmetric
monoidal category. We will consider symmetric monoidal
functors L : A → Div X. This means that for each element a ∈ A
we have an object L(a) = (La, sa) of Div X. We are also given an
isomorphism of L(0) with (OX , 1), and for a, b ∈ A an
isomorphism L(a + b) � L(a)⊗ L(b). These are required to satisfy
various compatibility conditions.
Definition. A Deligne–Faltings (DF) structure (A, L) on a scheme
X consists of a sheaf of monoids A and a symmetric monoidal
functor LU : A(U) → DivU for each étale map U → X, such that
(a) the LU are compatible with pullbacks via étale maps V → U

(this is best expressed with the language of fibered categories);
and

(b) if L(a) is invertible for some a ∈ A(U), then a = 0.
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The category of DF structures on a scheme X is equivalent to the
category of quasi-integral logarithmic structures on X. Recall that a
logarithmic structure M → OX is quasi-integral if the action of O∗

X
on M is free. If (X, M) is quasi-integral, the natural projection
π : M → M makes M into a O∗

X-torsor over M; then we obtain a
DF structure by setting A def

= M, and sending a section a ∈ A(U)

into the sheaf La of O∗
U-equivariant morphisms π−1(a) → OU ,

which is an invertible sheaf. The section sa is obtained from the
given homomorphism M → O.

A particularly interesting feature of this approach is the treatment
of charts.
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Let A be a sheaf of monoids on Xét. A chart for A consists of a
finitely generated monoid P, with a homomorphism of monoids
P → A(X), such that the induced homomorphism of sheaves of
monoids PX → A (where PX is the constant sheaf corresponding to
P) is a cokernel. This means that if K is the kernel of PX → A, the
induced homomorphism PX/K → A is an isomorphism. This is
much stronger than asking that PX → A be surjective.

If (A, L) is a DF structure on X, a chart for (A, L) is a chart for A.
From a chart P → A(X) one gets a symmetric monoidal functor
P → Div X. Given a scheme X, a finitely generated monoid P and
a symmetric monoidal functor P → Div X, there exists a DF
structure (A, L), unique up to a unique isomorphism, with a chart
P → A(X), with an isomorphism of the composite

P → A(X)
LX
−→ Div X with the given symmetric monoidal functor

P → Div X.
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A sheaf of monoids A is coherent if it is sharp, and étale locally has
charts. A DF structure (A, L) is coherent of A is coherent. We show
that a DF structure is coherent if and only if the associated
logarithmic structure is. Our charts exists on larger open sets than
Kato charts. For example, if D = (L, s) is an effective Cartier
divisor on X, the DF structure (A, L) generated by D is defined by
the symmetric monoidal functor N → Div X sending n ∈ N into
D⊗n, so it has a global chart; but it has a Kato chart only when D is
principal.

Now, in order to define our correspondence between parabolic
quasi-coherent sheaves and sheaves on root stacks we need to
define parabolic sheaves and root stacks. For both, we need a DF
structure (A, L) and a sheaf of denominators.
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Let A be a coherent sheaf of monoids on X. The weight system Awt

of A is a category whose objects are elements of Agp, and the
arrows from x to y are elements a ∈ A such that x + a = y ∈ A.
For example, (Nr)wt is the category associated with the poset Zr,
with the ordering defined by (w1, . . . , wr) ≤ (w�

1, . . . , w�
r) if wi ≤ w�

i
for all i.

This construction generalizes to sheaves of monoids, and
associates a stack of categories Awt with every sheaf of monoids A.

A system of denominators A → B is an injective homomorphism of
sheaves of monoids, where B is coherent, such that every section of
B locally has a multiple that comes from A.

Given a coherent DF structure (A, L) on a scheme X and a system
of denominators A ⊆ B, let us define parabolic sheaves.

If X is a scheme, we denote by QCoh X the category of
quasi-coherent sheaves on X.
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Let us write L(a) = (La, sa) for each a ∈ A(U).
Definition. A parabolic sheaf E with weights in B is given by a
functor : Bwt(U) → QCohU, denoted by b �→ Eb, for each étale
map U → X, and a functorial isomorphism Eb+a � Eb ⊗ La for
each b ∈ Bwt(U) and each a ∈ A(U), such that

(a) these data are compatible with pullbacks,
(b) The composite

Eb −→ Eb+a � Eb ⊗ La

is given by multiplication by sa, and

(c) other compatibility conditions are satisfied.

Parabolic sheaves with weights in B form a category, denoted by
ParB(X, A, L).

18



Let (A, L) be a coherent DF structure over a scheme X and A ⊆ B
be a system of denominators. With this data we can associate a
stack XB/A → X, which we call the root stack. Several particular
cases of the construction that follows have been worked out by
Martin Olsson, and the idea should be attibuted to him. It is a vast
generalization of the notion of root stack for sections of invertible
sheaves.

If f : T → X, there is a pullback DF structure ( f ∗A, f ∗L). The sheaf
f ∗A is simply the pullback sheaf, but f ∗L is a little complicated to
define. A morphism T → XB/A corresponds to a morphism
f : T → X and a DF structure Λ on T, with sheaf of monoids f ∗B,
together with an isomorphism of the restriction of of Λ to
f ∗A ⊆ f ∗B with the pullback of L to T. One can show that XB/A is
a tame algebraic stack with moduli space X, and a
Deligne–Mumford stack in characteristic 0.
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Let (A, L) be a coherent DF structure over a scheme X and A ⊆ B
be a system of denominators.
Theorem (Borne, —). The category of quasi-coherent sheaves on the
root stack XB/A is naturally equivalent to the category of parabolic
sheaves ParB(X, A, L).

To Do list:

1. Make this into a theory of quasi-coherent sheaves on a fine
saturated logarithmic scheme, by going to the limit over all
systems of denominators. This presents some non-trivial
difficulties.

2. Develop a theory of parabolic sheaves with real weights.

3. Prove a version of Nori’s theorem for fine saturated
logarithmic schemes.
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