ESSENTIAL DIMENSION OF HOMOGENEOUS POLYNOMIALS

Angelo Vistoli Scuola Normale Superiore

London, February 18, 2011

The theory of *essential dimension* was born in 1997 with the publication of "On the essential dimension of a finite group", by Joe Buhler and Zinovy Reichstein. It has since attracted a lot of attention.

The basic question is: how complicated is it to write down an algebraic or geometric object in a certain class? How many independent parameters do we need?

Let us start with the very general definition, due to Merkurjev.

We will fix a base field *k* of characteristic 0. Can take $k = \mathbb{Q}$ or $k = \mathbb{C}$.

Let Fields_k the category of extensions of k. Let F: Fields_k \rightarrow Sets be a functor. We should think of each F(K) as the set of isomorphism classes of some class of objects we are interested in. If ξ is an object of some F(K), a *field of definition* of ξ is an intermediate field $k \subseteq L \subseteq K$ such that ξ is in the image of $F(L) \rightarrow F(K)$.

Definition (Merkurjev). The *essential dimension of* ξ , denoted by ed_k ξ , is the least transcendence degree tr deg_k L of a field of definition L of ξ .

The *essential dimension of* F, denoted by $ed_k F$, is the supremum of the essential dimensions of all objects ξ of all F(K).

The essential dimension $\operatorname{ed}_k \xi$ is finite, under weak hypothesis on *F*. But $\operatorname{ed}_k F$ could still be $+\infty$.

It is easy to see that if *F* is represented by a scheme *X* of finite type over *k*, then $ed_k F = \dim X$. Thus, for example, if *g* and *d* are natural numbers, and F(K) is the set of smooth curves in \mathbb{P}_K^n of genus *g* and degree *d*, the essential dimension of *F* is the dimension of the Hilbert scheme of smooth curves of genus *g* and degree *d* in \mathbb{P}^n . But if we ask for the essential dimension of the functor of smooth curves of genus *g* and degree *d*, up to projective equivalence, the question may be very hard.

Suppose that we have an action of GL_n on some scheme X which is of finite type over k. The we can define the *functor of orbits* F: Fields_k \rightarrow Sets that sends each extension K of k into the set $X(K)/GL_n(K)$ of orbits for the action of $GL_n(K)$ on the set of K-rational points X(K). The *essential dimension of the action* is the essential dimension of this functor. Clearly $ed_k F \leq \dim X$. Here are some interesting examples.

- (1) Let $X_{n,d}$ be the affine space of dimension $\binom{d+n-1}{n-1}$ of forms of degree *d* in *n* variables, with the natural action of GL_n by base change. The functor of orbits is the functor $\mathbf{F}_{n,d}$ of forms of degree *d* in *n* variables, up to change of coordinates.
- (2) The functor $F_{\mathcal{M}_g}$ be the functor that associates with each extension $k \subseteq K$ the set of isomorphism classes of smooth projective curves of genus g is isomorphic to a functor of orbits for $g \neq 1$.
- (3) If $G \subseteq GL_n$ is a closed subgroup, the functor of orbits for the action of GL_n on GL_n/G is isomorphic to the functor of isomorphism classes of *G*-torsors.

The essential dimension of the functor of isomorphism classes of G-torsors is known as the essential dimension of G. Buhler and Reichstein introduced this concept for finite groups, with a rather different geometric definition. This case has been studied a lot, but many important questions are still open. For example, the essential dimension of PGL_n is very interesting, because PGL_n-torsors correspond to Brauer–Severi varieties, and also to central simple algebras.

Assume that *k* contains enough roots of 1. It is know that $ed_k PGL_2 = ed_k PGL_3 = 2$; this follows from the fact that central simple algebras of degree 2 and 3 are *cyclic*. This is easy for degree 2; in degree 3 it is a theorem of Albert. A cyclic algebra of degree *n* over *K* has a presentation of the type $x^n = a$, $y^n = b$ and $yx = \omega xy$, where $a, b \in K^*$ and ω is a primitive n^{th} root of 1. Hence a cyclic algebra is defined over a field of the type k(a, b), and has essential dimension at most 2. When *n* is a prime larger than 3, it is only known (due to Lorenz, Reichstein, Rowen and Saltman) that

$$2 \le \operatorname{ed}_k \operatorname{PGL}_n \le \frac{(n-1)(n-2)}{2}$$

Computing $ed_k PGL_n$ when n is a prime is an extremely important question, linked with the problem of cyclicity of simple algebras of prime degree. If every simple algebra of prime degree is cyclic, then $ed_k PGL_n = 2$. Most experts think that a generic simple algebra of prime degree larger than 3 should not be cyclic. One way to show this would be to prove that $ed_k PGL_n > 2$ when n is a prime larger than 3.

Consider the functor $\mathbf{F}_{n,2}$, associating with an extension K the set of isometry classes of quadratic forms. Of course, every quadratic form can be diagonalized, i.e., written in the form $\sum_{i=1}^{n} a_i x_i^2$; this implies that its orbit is defined on an extension $k(a_1, \ldots, a_n)$ of transcendence degree at most n. So $\operatorname{ed}_k \mathbf{F}_{n,2} \leq n$. Can one do better? It was proved by Z. Reichstein in 2000 that $\operatorname{ed}_k \mathbf{F}_{n,2} = n$.

In this examples, as in most cases, getting upper bounds is much easier than getting lower bounds.

In 2003, Grégory Berhuy and Giordano Favi proved that $ed_k F_{3,3} = 4$ (more or less).

In 2005 Berhuy and Reichstein proved the following result. Assume that $n \ge 4$ and $d \ge 3$, or n = 3 and $d \ge 4$, or n = 2 and $d \geq 5$ (these conditions mean that the generic hypersurface of degree *d* in *n* variables has no non-trivial projective automorphisms). Let $\Phi_{n,d}(x)$ be the generic *n*-form of degree *d*; in other words, the form all of whose coefficients are independent indeterminates; or the form corresponding to the generic point of $X_{n,d}$. The essential dimension $\operatorname{ed}_k \Phi_{n,d}(x)$ is the essential dimension of the orbit of $\Phi(x)$. There is an obvious lower bound for ed_k $\Phi_{n,d}(x)$, which is $\binom{d+n-1}{n-1} - n^2$ (the dimension of the moduli space $M_{n,d}$ of *n*-forms of degree *d*). The point is that there is a dominant invariant rational map $X_{n,d} \dashrightarrow M_{n,d}$, so a field of definition of a form in the orbit of $\Phi_{n,d}(x)$ must always contain $k(M_{n.d}).$

Theorem (Berhuy, Reichstein).

(a) *If* gcd(n, d) = 1, *then*

$$\operatorname{ed}_k \Phi_{n,d}(x) = \binom{d+n-1}{n-1} - n^2 + 1.$$

(b) Suppose that $gcd(n,d) = p^i$, where p is a prime and i > 0. Call p^j the largest power of p dividing d. Then

$$\operatorname{ed}_k \Phi_{n,d}(x) = \binom{d+n-1}{n-1} - n^2 + p^j.$$

But is $\operatorname{ed}_k \mathbf{F}_{n,d}$ equal to $\operatorname{ed}_k \Phi_{n,d}(x)$? In other words, could it happen that there are special forms that are more complicated than the generic one?

Suppose that *X* is an integral scheme of finite type over *k* with an action of GL_n , and call *K* its field of fraction. Let *F* be its orbit functor. We define the *generic essential dimension of F*, denoted by $g \operatorname{ed}_k F$, as the essential dimension of the orbit of the generic point Spec $K \to X$. This turns out to depend only on *F*, and not on the specific group action. The result of Berhuy and Reichstein is about the generic essential dimension of $\mathbf{F}_{n,d}$. Obviously, $\operatorname{ed}_k F \ge g \operatorname{ed}_k F$.

In order to determine the essential dimension of *F*, we split the work into two parts.

- (a) We compute $g ed_k F$.
- (b) We show that $\operatorname{ed}_k F = \operatorname{g}\operatorname{ed}_k F$.

The techniques involved are very different.

Let us see an example in which $\operatorname{ed}_k F > \operatorname{ged}_k F$. Let M_n be the affine space of $n \times n$ matrices, and let GL_n act on it by left multiplication. Let F_n be the orbit functor. The generic $n \times n$ matrix is invertible, so it has the identity matrix in its orbit, therefore $\operatorname{ged}_k F_n = 0$. On the other hand, two matrices A in B in $\operatorname{M}_n(K)$ are in the same orbit if and only if ker $A = \ker B$; so $F_n(K)$ can also be described as the set of linear subspaces of K^n . So $F_n(K)$ is the set of K-points of the disjoint union of Grassmannians $\coprod_{i=0}^n \operatorname{G}(i,n)(K)$; hence $\operatorname{ed}_k F_n$ equals the dimension of $\coprod_{i=0}^n \operatorname{G}(i,n)$, which is positive if $n \ge 2$.

Is there a general case in which we can assert that $ed_k F = g ed_k F$?

Yes.

Genericity theorem (Brosnan, Reichstein, —). Suppose that GL_n acts with finite stabilizers on a connected smooth variety X over k. Let F be the orbit functor. Then $ed_k F = g ed_k F$.

This is a particular case of the general statement about Deligne–Mumford stacks.

This is definitely false, in general, when *X* is singular. It seems very hard to say something in the singular case.

Corollary. Suppose that GL_n acts with finite stabilizers on a connected smooth variety X over k, with trivial generic stabilizer. Let F be the orbit functor. Then $ed_k F = \dim X - n^2$.

Here is an application. Recall that $F_{\mathcal{M}_g}$ is the functor that associates with each extension $k \subseteq K$ the set of isomorphism classes of smooth projective curves of genus g. What is $\operatorname{ed}_k F_{\mathcal{M}_g}$? In other words, how many independent variables do you need to write down a general curve of genus g?

Curves of genus 0 are conics, hence they can be written in the form $ax^2 + by^2 + z^2 = 0$, so $\operatorname{ed}_k F_{\mathcal{M}_0} \leq 2$. By Tsen's theorem, $\operatorname{ed}_k F_{\mathcal{M}_0} = 2$. An easy argument using moduli spaces of curves reveals that $\operatorname{ed}_k F_{\mathcal{M}_g} \geq 3g - 3$ for $g \geq 2$, and $\operatorname{ed}_k F_{\mathcal{M}_1} \geq 1$.

Theorem (Brosnan, Reichstein, —).

$$\operatorname{ed} F_{\mathcal{M}_g} = \begin{cases} 2 & \text{if } g = 0 \\ +\infty & \text{if } g = 1 \\ 5 & \text{if } g = 2 \\ 3g - 3 & \text{if } g \ge 3. \end{cases}$$

What can one say when the stabilizers are not finite? Let us go back to our example of the action of GL_n by left multiplication on M_n . In this case the generic essential dimension is 0. If a matrix $A \in M_n(K)$ has rank r, then the orbit of A in $M_n(K)$ is in natural correspondence with the K-points of the Grassmannian G(r, n) of quotients of dimension r; so its essential dimension is 0 exactly when A is invertible or A = 0. The stabilizer of A is a parabolic subgroup of GL_n , and this is never reductive, unless A is invertible or A is 0.

Recall that a linear algebraic group *G* over *k* is *reductive* when one of the following equivalent condition is satisfied.

- (a) *G* contains no non-trivial normal unipotent subgroups.
- (b) *G* is *linearly reductive*, i.e., the linear representations of *G* are completely reducible.

This, and many other examples, let Reichstein and myself to conjecture the following result, which recently became a theorem.

Generalized genericity theorem (Reichstein, —). Let X be a smooth connected variety with an action of GL_n , and call F its orbit functor. Assume that the generic stabilizer is finite. Let K be an extension of k, and let $\xi \in X(K)$, such that the stabilizer of ξ is reductive. Then the essential dimension of the orbit of ξ is at most equal to the generic essential dimension of the orbit functor.

In particular, if all stabilizers are reductive, then $\operatorname{ed}_k F = \operatorname{ged}_k F$.

More generally, this can be stated for algebraic stacks.

This can be applied to the action of GL_n on the space of forms $X_{n,d}$. The forms whose stabilizer is not reductive are very special, and they live in a subvariety of $X_{n,d}$ of high codimension. **Theorem** (Reichstein, —). *Assume that* $n \ge 2$ *and* $d \ge 3$ *. Then*

$$\operatorname{ed}_k \mathbf{F}_{n,d} = \operatorname{ged}_k \mathbf{F}_{n,d}.$$

Corollary. Assume that $n \ge 4$ and $d \ge 3$, or n = 3 and $d \ge 4$, or n = 2 and $d \ge 5$.

(a) *If* gcd(n, d) = 1, *then*

$$\operatorname{ed}_k \mathbf{F}_{n,d} = \begin{pmatrix} d+n-1\\ n-1 \end{pmatrix} - n^2 + 1.$$

(b) Suppose that $gcd(n,d) = p^i$, where p is a prime and i > 0. Call p^j the largest power of p dividing d. Then

$$\operatorname{ed}_k \mathbf{F}_{n,d} = \begin{pmatrix} d+n-1\\ n-1 \end{pmatrix} - n^2 + p^j.$$