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Let k be a field; for expository reasons, I will always assume
char k = 0. Consider a class M of objects of type (X , ξ), where X
is a proper variety over an extension of k , and ξ is an additional
structure, for example, a polarization on X .

We will be interested in pointed varieties (X , p), that is, varieties
X → Spec k with a fixed smooth rational point p ∈ X (k).

We will require some conditions on M , which will be satisfied in
all the obvious examples: there should be a good notion of family
of objects of M , satisfying existence of pullbacks, a finite
presentation condition, étale descent, and representability of
isomorphism group schemes.
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Let (X , ξ) be an object of M over the algebraic closure k ,
k ⊆ k ′ ⊆ k an intermediate extension. We say that (X , ξ) is
defined over k ′ if there exists an object (X ′, ξ′) over k ′ such that
(X ′, ξ′)k ' (X , ξ).

Set G
def
= Gal(k/k) and G ′

def
= Gal(k/k ′) ⊆ G . By Galois descent,

(X , ξ) is defined over k ′ if and only if there exists an action of G ′

on (X , ξ), compatible with the action of G ′ on Spec k .

If s ∈ G , denote by (X , ξ)s the pullback of (X , ξ) along
s : Spec k → Spec k . If H is the open subgroup of G consisting of

s ∈ G such that (X , ξ)s ' (X , ξ), the fixed subfield k
H

is the field
of moduli of (X , ξ), denoted by M(X , ξ). It is a finite extension of
k , and is contained in every field of definition.
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When M is a class of objects possessing a moduli space
M → Spec k (for example, smooth curves of genus at least 2, or
polarized abelian varieties), an object (X , ξ) over k gives a
morphism Spec k → M; then if p is the image of Spec k → M,
then M(X , ξ) is the residue field k(p).

The field of moduli was first defined for polarized varieties by T.
Matsusaka in 1958; the definition was clarified and extended by G.
Shimura and S. Koizumi. It has been intensively studied since
then, particularly for curves and abelian varieties.

Here is the basic question: when is an object (X , ξ) over k defined
over its field of moduli M(X , ξ)?

If Aut(X , ξ) is trivial, then (X , ξ) is defined over its field of moduli.
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Shimura gave examples of hyperelliptic curves not defined over
their fields of definition.

Fix a genus g ≥ 2. Let C be a conic over k with C (k) = ∅ and
D ⊆ C be a generic divisor of degree 2g + 2. Then Dk ⊆ Ck ' P1

k
is a smooth divisor of degree 2g + 2, and there exists a unique
hyperelliptic curve X → Ck of genus g ramified along Dk ; if
s ∈ Gal(k/k), then Xs ' X , so M(X ) = k .

If X comes from a curve Y over k , by the uniqueness of the g1
2

and the fact that Aut(Ck ,Dk) is trivial, this would be a double
cover Y → C ramified along D; by the standard description of
double covers this would correspond to a line bundle L on C with
L⊗2 ' OC (D). Then L would have degree g + 1, and if g is even
there is no such L. Hence X is not defined over k .
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Some known results.

(1) It is classical that every elliptic curve is defined over its field of
moduli.

(2) Let Ag be the moduli space of principally polarized abelian
varieties over C, k its field of rational functions, A the
corresponding abelian variety over k . Then the field of moduli
of A is k . In 1971 Shimura proved that A is defined over k if
and only if g is odd.

(3) If X is a hyperelliptic curve such that Aut(X )/〈τ〉 is not
cyclic, where τ : X → X is the hyperelliptic involution, then X
is defined over its field of moduli (B. Huggins, 2005).

(4) A smooth projective curve of genus 2 whose automorphism
group has order larger than 2 is defined over its field of moduli
(G. Cardona and J. Quer, 2005).

(5) Consider the pairs (X ,D), where X is a smooth conic, D ⊆ X
a smooth divisor of degree n. If n is odd, then (X ,D) is
defined over its field of moduli (A. Marinatto, 2011).
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Assume that Aut(X , ξ) is finite. If (X , ξ) is an object of M over k ,
s ∈ Gal

(
k/k

)
, and Xs ' X is an isomorphism over the

isomorphism s : Spec k → Spec k , this descends to a well defined
isomorphism

(
X/Aut(X , ξ)

)
s
' X/Aut(X , ξ). This gives descent

data for X/Aut(X , ξ) to M(X , ξ), and yields a model Q(X , ξ) of
X/Aut(X ) over M(X , ξ), the compression of (X , ξ).

Theorem [P. Dèbes – M. Emsalem (1998)]. Let X be a smooth
curve, and assume that Aut(X , ξ) ⊆ Aut(X ). If Q(X , ξ) has a
point over M(X , ξ), then (X , ξ) is defined over its field of moduli.

Dèbes and Emsalem only state this for naked smooth curves, and
1-pointed curves, but their proof (probably) yields this more
general statement.
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One case in which Q(X , ξ) has always a point over M(X , ξ) is
when the data ξ include a rational point. Thus we get that
n-pointed smooth curves of genus g , with n ≥ 1 and g ≥ 1, are
defined over their field of moduli. Here is another way of stating
this: if Mg ,n is the moduli space of n-pointed smooth curves of
genus g over a field of characteristic 0 and p ∈ Mg ,n, the

corresponding curve over k(p) is defined over k(p). This
generalizes the classical case (g , n) = (1, 1).

But how about the case dimX > 1?

Smooth pointed surfaces are not necessarily defined over their
fields of moduli (for example, Shimura showed that the generic
principally polarized abelian surface over C is not defined over its
field of moduli).
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Theorem [Bresciani – V.]. Let (X , ξ) be an object of M over k .
Assume the following conditions.

(1) Aut(X , ξ) is finite, and Aut(X , ξ) ⊆ Aut(X ).

(2) X is irreducible.

(3) There exists a dominant rational map Z 99K Q(X , ξ), where
Z is an integral scheme of finite type over M(X , ξ), and a
rational smooth point p ∈ Z

(
M(X , ξ)

)
.

Then (X , ξ) is defined over M(X , ξ).

When X is a smooth curve we have that Q(X , ξ) is smooth, so our
result gives that of Dèbes and Emsalem. In the general case it is
not enough to assume that Q(X , ξ) has a point over M(X , ξ).

Our aim is the following: if (X , p) is a pointed variety, find
conditions on Aut(X , p) implying that, if conditions (1) and (2)
above are satisfied, then (3) is also satisfied.
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A singularity over a field k is a pair (U, p), where U is a scheme of
finite type over k, and p ∈ U(k). Two singularities (U, p) and
(U ′, p′) are equivalent if ÔU,p ' ÔU′,p′ .

Let (U, p) be a singularity, π : Ũ → U a resolution. We say that
(U, p) is liftable if Ũ has a k-rational point over p. This condition
is independent of the resolution; furthermore, a singularity
equivalent to a liftable singularity is itself liftable.

When k = R liftable singularities are called central points, and play
a role in real algebraic geometry.

If G is a finite group, a G -singularity is a singularity (U, p) over k
such that (U, p)k is equivalent to a singularity of type (V /G , [q]),
where V is a smooth variety over k and G acts faithfully on V
with q ∈ V (k) as a fixed point. For example, a 2-dimensional
(Z/2)-singularity is a surface A1-singularity.

Definition. Let d be a positive integer. A finite group G is Rd if
every d-dimensional G -singularity is liftable.
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From our main theorem we get the following.

Corollary. Let (X , p) be an irreducible d-dimensional pointed
variety over k . If Aut(X , p) is a finite Rd -group, then (X , p) is
defined over its field of moduli.

So, for example, from Shimura’s result that a generic abelian
surface is not defined over its field of moduli we see that Z/2 is
not R2. And in fact it is easy to produce examples of surface
A1-singularities (U, p) with a minimal resolution Ũ in which the
exceptional divisor is a conic without rational points.

To apply this we need to have classes of finite groups that are Rd .
If G is not a subgroup of GLd(k), then G is Rd , but in an
uninteresting way: there exist no d-dimensional G -singularities.
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Clearly, every finite group is an R1 group. One can show that
cyclic groups of even order are not R2.

Giulio worked out a (very complicated) complete classification of
R2-groups. The following is a sample.

Proposition. The following classes of finite groups are R2.

(1) Groups of odd order.

(2) Groups of type (Z/m)2 × (Z/n), where n is odd.

(3) Dihedral groups.

(4) Finite subgroups of SL2(C) that are not cyclic of even order.

(5) More generally, finite subgroups of GL2(C) that do not
contain any pseudoreflexion and are not cyclic of even order.
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For general d we have two main results.

Theorem. Any finite group of order prime to d! is Rd .

Theorem. Let G be a group with trivial center, such that the
quotient map AutG → OutG from automorphisms to outer
automorphisms is split. Assume that either G is perfect, or that
every proper normal subgroup of G is perfect. Then G is Rd for all
d .

Examples include the symmetric and alternating groups Sn and An

for n = 5 or n ≥ 7. Simple groups with this property are fairly
common; they have been classified by A. Lucchini, F. Menegazzo
and M. Morigi, and include all sporadic groups.
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Another result that we can prove is the following. A group of order
2 is not Rd for any d ≥ 2; however, the following holds.

Theorem. Let (X , p) be an irreducible d-dimensional pointed
variety over k . If Aut(X , p) has order 2, d is odd, and p is an
isolated fixed point, then (X , p) is defined over its field of moduli.

This is a vast generalization of Shimura’s result that a generic
principally polarized abelian variety of odd dimension is defined
over its field of moduli.
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A sketch of proof of our main theorem.

Theorem. Let (X , ξ) be an object over k . Assume the following
conditions.

(1) Aut(X , ξ) is finite, and Aut(X , ξ) ⊆ Aut(X ).

(2) X is irreducible.

(3) There exists a dominant rational map Z 99K Q(X , ξ), where
Z is an integral scheme of finite type over k , and a rational
smooth point p ∈ Z (k).

Then (X , ξ) is defined over M(X , ξ).
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To prove this, we can base change from k to M(X , ξ), and assume
k = M(X , ξ). We need consider the moduli problem of twisted
forms of (X , ξ): these are families (Y → S , η) such that, when
pulled back to k , are étale locally products with (X , ξ).

These families over S correspond to morphisms S → G , where G is
a Deligne–Mumford stack G → Spec k. It is a gerbe; in other
words, any two objects are étale-locally isomorphic. It is usually
called the residual gerbe of (X , ξ). In particular, there is only one
object in G (k), which is (X , ξ) itself. So, (X , ξ) is defined over
M(X , ξ) if and only if G (k) 6= ∅. Let us show that there exists a
non-empty open subscheme V ⊆ Q(X , ξ) and a morphism V → G .
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Set Q = Q(X , ξ), and ignore ξ, for simplicity of notation. Because
X is irreducible, there exists a non-empty open subscheme U ⊆ X
on which Aut(X ) acts freely. The largest such U is invariant under
both Gal(k/k)-invariant and Aut(X ), so U/Aut(X ) ⊆ X/Aut(X )
descents to an open subscheme V ⊆ Q.

There is a family U × X → U in G over U; since Aut(X ) acts
freely over U this descends to a family (U × X )/Aut(X ) over
U/Aut(X ). The action of Gal(k/k) on this family is well defined,
so it descends to a family over V . This gives a morphism V → G .

So we have a non-empty open subscheme V ⊆ Q(X , ξ), and a
morphism V → G , so a rational function Z 99K G . The hypothesis
is that Z has a rational smooth point, but the rational map might
not be defined at this point.

This screams for a version of the Lang–Nishimura theorem!
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Let us recall the statement of the Lang–Nishimura theorem.

Theorem. Let X and Y integral schemes of finite type over a field
k , f : X 99K Y a rational map. Assume that

(1) Y is proper, and

(2) X has a k-rational smooth point.

Then Y (k) 6= ∅.

Theorem [Bresciani – V.]. The same statement holds when X
and Y are Deligne–Mumford stacks (in characteristic 0).

The proof depends on a new version of the valuative criterion of
properness for algebraic stacks, which in characteristic 0 is due to
Giulio alone. This completes the proof of the main theorem.

We use our version of the Lang–Nishimura theorem and stack
theoretic techniques even in the proof of our results on Rd -groups.
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In positive characteristic the definition of field of moduli must be
modified to keep inseparable extensions into account.

A version of our main theorem still holds. The automorphism
group scheme Autk(X , ξ) is not required to be reduced, but it
must be linearly reductive. The Lang–Nishimura theorem does not
hold for Deligne–Mumford stacks, but for tame stacks, as defined
by D. Abramovich, M. Olsson and myself.

The proof of the valuative criterion in positive characteristic is
much harder.


