
Nonlinearity 3 (1990) 507-518. Printed in the UK 

A class of systems with measurable Hannay angles 

Simon GoliitO and Stefan0 MarmiS 
7 Fachbereich Mathematik, Technische Universitat Berlin, Str. des 17. Juni 136, 
D-1000 Berlin 12, Federal Republic of Germany 
$ Dipartimento di Fisica, Universita di Bologna, Via Irnerio 46, 1-40126 Bologna, 
Italy 

Received 17 July 1989, in final form 2 November 1989 
Accepted by M V Berry 

Abstract. The Hannay angles arise in classical mechanics as an anholonomy effect for 
adiabatically time-dependent Hamiltonian systems. It is proven that for a class of 
systems with several degrees of freedom the Hannay angles can be experimentally 
investigated. Our method consists in averaging over the torus of initial angles of the 
motion. 
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1. Introduction 

In 1985, Hannay [19] discovered an anholonomy effect in classical mechanics closely 
corresponding to the Berry phase [7,8] in quantum mechanics and subsequently the 
term Hannay angles was coined. Until recently a difficulty in the experimental 
investigation of the Hannay angles seemed to have escaped attention. This was 
pointed out in [14], where averaging over the initial torus was suggested as a 
solution to the problem. 

Our objective here is to present a class of systems with several degrees of 
freedom that allow a measurement of the Hannay angles. We announced our results 
in [17]. 

More specifically, we consider a class of adiabatically time-dependent Hamil- 
tonian systems whose Hamiltonian is of the form 

h = h,(J) + EhQ, ($7, E t )  (1) 
where (J ,  ($7) E R" X U" are action-angle variables (U" being the n-dimensional 
torus). For small E > O  the quantity z :  = ~t is slow time. We assume hl to be 
T-periodic in t for some positive T. The crucial hypothesis under which the 
theorems of this paper will be formulated is that ho be z-independent, as opposed to 
the more general case otherwise considered in the context of Hannay angles. We 
point out that (1) is a special case of Hamiltonians describing slowly time-dependent 
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systems that are integrable in their instantaneously frozen frame. However, the class 
of systems described by (1) is rather wide. In particular, integrable time- 
independent systems that are slowly rotated (in coordinate space) give rise to a 
Hamiltonian of the form h = ho(J) + &hl(J, q, z) + &'h2(J, q, z), where &hl contains 
the generalised potential of the Coriolis force and E2h2 contains the potential of the 
centrifugal force and of the additional term arising if the angular velocity is not 
constant. Since in what follows we will only be interested in times t E [0, T/E], the 
contributions to evolution coming from E2h2 may be neglected (as on this time scale 
they give errors of order O(E) ) .  We also remark that the only two examples of 
systems with more than one degree of freedom and non-trivial Hannay angles 
known to us, the Foucault pendulum and a satellite moving around a slowly rotating 
oblate or prolate planet ([20,21,16]), belong to this class. 

VJho(J); the Hamiltonian equations of motion are 
Set f(J, q, t): = -V,hl(J, q, t), g ( J ,  q, z): = V J h l ( J ,  q, z), and o ( J ) :  = 

j = E f ( J ,  q, z) = 4) + %(J, q, z). (2) 
Here the overdot denotes the derivative with respect to time t. The adiabatic 
Hannay angles are defined for small E > 0 by 

TI& 

A q  := q(9 - qo - 1 o ( J ( t ) )  dl 
E 0 

where qo:  = q(0). 

replace the adiabatic Hannay angles by the geometrical Hannay angles 
Averaging theory will allow us (cf proposition 1 in section 2 and also [13,16]) to 

[gav(Jo, z) dz (4) 

where J o  : = J ( 0 )  and gav(J, z) : = 1;". . . Ji"g(J ,  q, z) dnq/(2n)". The geometrical 
origin of (4) is discussed in [16,15,18,24,27]. What makes the averaged quantity 
(4) useful is that it can be determined without solving the non-autonomous 
system (2). 

In [14] it was argued that in order to measure the Hannay angles experimentally 
one has to measure  TIE) and to complement this by an a priori estimate on the 
dynamical angles lT1& w(J( t ) )  dt. According to (3), this then allows the determina- 
tion of the Hannay angles and the comparison of theory and experiment. 

Unfortunately, there is no easy way of estimating the dynamical angles: neither 
can one solve (2) and determine J ( t )  explicitly nor can one directly invoke averaging 
theory. In fact, one of our main incentives in [16] was to apply averaging theory to 
the geometrical Hannay angles. As we will show, if the Hamiltonian is of the form 
( l ) ,  then the estimates of [16] can be improved and averaging theory will allow us to 
prove under certain conditions that maxtE[o,T/sl lJ( t )  - JoI = O ( E ' - ~ )  (as E-+ 0 for 
suitable a E [0, 4) and for large sets of initial values (cf remark 1 after the proof of 
the proposition in section 2)). Nevertheless the naive approximation T w ( J o ) / ~  to the 
dynamical angles is too crude: the error is of order O(E-') ,  i.e. it exceeds the 
Hannay angles (which are of order O(1)). 

We will prove that for multi-frequency systems with Hamiltonians of the form 



A class of systems with measurable Hannay angles 509 

(1) the dynamical angles averaged over the initial angles qo can be replaced (up to a 
small error term) by the simpler quantity Tw(Jo)I&. Consequently, the systems 
under consideration in this paper admit, in principle, for measurements of the 
Hannay angles (cf the discussion in section 3). 

We emphasise that the arguments used for proofs are standard, and conse- 
quently they will only be sketched. In fact, our motivation is to present an argument 
related to the experimental verification of the Hannay angles and not to provide new 
techniques for dealing with adiabatic invariance. The remarks following the 
proposition briefly summarise the improvements which are possible for the class of 
Hamiltonians (1) with respect to the general situation (cf, e.g., [3, 161). 

We now summarise the paper. In section 2 we prove an adiabatic theorem and a 
statement concerning the averaging of phase-space functions for systems governed 
by the Hamiltonian (1). For such systems the results of [25,16] can be improved. 
The averaging over the initial torus is dealt with in section 3, where we finally give a 
short conclusion and discussion. 

2. Adiabatic invariance and averaging of phase-space functions 

Suppose that the Hamiltonian (1) is defined for (J ,  cp) E G x U", where G is an open 
bounded subset of R". We assume hO and hl  to be Vm(G x U" X [0, TI), where G is 
the closure of G, and by Vm(G XU" X [0, TI)  we mean that hO and hl  have all 
derivatives on G X U" X [0, TI with bounded extensions to the closure. Assume, 
moreover, hl to have only finitely many Fourier components, i.e. there exists 
K E Zf such that 

where I Y I  : = lvll + . . . + I Y , ~  for vectors Y E Z". 
Both these assumptions are not optimal, but simplify our arguments con- 

siderably, making them less technical and allowing a clearer presentation of the 
ideas behind them. As we will remark, one can easily adapt our proof to the case 
where h is only of class V" and hl has infinitely many Fourier components. 

Let a(], q, z) be a real valued phase-space function of the Hamiltonian system 
(1) verifying the same assumptions as hl. We define 

A(t)  : = E f u ( J ( u ) ,  q(u ) ,  E U )  du A(t) : = E fuaV(Jn, E U )  du 
T o  T O  

where aav(J, t) : = If". . . Ig"a(J,  QJ, z) d"ql(2n)" is the average of a over the (fast) 
angular variables cp E U". When t = T / E ,  A(t)  and A(t) denote respectively the time 
average of u(Z, q, E )  and of its average over the (fast) angular variables during one 
adiabatic cycle. In the end we will identify a with the components of g = V,hl. 

. . . , J'")). If b E Vm(G x 
U" X [0, TI, Rm) and I E No: = N U {0}, we define the seminorm 

By 1 1  110 we denote the maximum norm. Let J = 

where clearly the multi-index p E N;. llbll? is defined analogously, except that the 
derivatives are taken with respect to q. 
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With these assumptions and definitions we can prove the adiabatic invariance of 
the actions J of the Hamiltonian (1) and an averaging theorem for phase-space 
functions in the spirit of the existence proof for Hannay angles given in [13,16]. As 
we will remark, whereas for the former the non-resonance condition (6) which we 
will impose can be replaced by the assumption that the Hessian of the unperturbed 
Hamiltonian ho is convex, thus obtaining a result for all initial conditions, the latter 
needs the non-resonance condition crucially since it is based on the procedure of 
elimination of non-resonant harmonics (see, for instance, [3] chapter 5 ) .  Moreover, 
the adiabatic invariance of the actions holds true for time scales much longer than 
1 / ~  (in fact, possibly exponentially long), whereas the averaging procedure for 
phase-space functions gives errors of O(1) already for time scales of order We 
stress that we obtain a better result for the conservation of the actions than shown in 
[16] because of our assumption that ho be not explicitly time dependent. 

Proposition 1. Consider all initial conditions (Jo,  qo) E G x Un such that J ( t )  E G for 
all times t E [0, T/E] and verifies the non-resonance condition 

I4W) YI ’ a (6) 
for all Y E h“\{O}, I Y I  S K and for some a E (0, 1). If E is sufficiently small, then one 
has 

E 
max I J ( ~ )  - J o I  ~ 1 1  

t€ [O,T/&]  a 
E 

max IA(t) -A(t)l S c 2 -  
t € [O, TI&] a2 

(7) 

where c1 and c2 are two positive constants independent of a and E. 

We note that our non-resonance assumption depends on the knowledge of the 
time evolution of J ( t ) ,  which is clearly unknown in general. However, if ho is 
non-degenerate or corresponds to a system of harmonic oscillators, one can easily 
verify (6), as shown in remarks 1 and 2. 

Proof, The proofs use standard techniques of first-order canonical perturbation 
theory and will only be sketched. These tools are presented in detail in [ l l ,  231. 

We look for a near-to-identity canonical transformation to new action-angles 
variables (J’ ,  q’)  = %(J, q;  z, E )  with generating function 

S ( J ’ ,  q;  tJ E )  = J ’  * q + ESl(J’, q, z) 

h 0 %-l+ E2- = h@’) + &hi(J’, z) + &(J’,  q’J  z, E ) .  

(9) 
such that 

(10) 
ss1 
dz 

The generating function (9) gives rise to the canonical transformation 

as1 J = J ’ + E - ( J ’ ,  q ; z )  
39 
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If one inserts (11) into (10) one finds that h@')  = ho(J'). Moreover, S1 has to solve 
the following homological equation: 

(13) 
3s: 
aQ3 

o ( J ' )  - (J ' ,  Cp; z) + hl(J', Q3, z) = h;(J',  z). 

The non-resonance condition (6) insures that (13) can be solved: 

hl,V(J', z) 
v €Z"\{O), I VI S K  - iwo (J ' ) Sl(J', Q 3 ;  4 = c 

where hl,v denotes the vth Fourier component of hl,v,  i.e. h 1 , Q ' ,  z)= 
JBn hl(J ' ,  q, t)e-iv'pl d"~3/(2n)". 

Applying the implicit function theorem and choosing E sufficiently small, one 
finds that the canonical transformation %( , ; z, E )  is well defined, invertible and 
satisfies 

IJ - J'I = B(:) a 

Since, by (lo), we have dJ'ldt = -aR,/aq, (7) follows immediately from (14) 
and (15). 

To prove (8) we only need to adapt the argument from [16]. From the definitions 
of A(t) and A(t) ,  one has 

A( t )  - A(t)  = E [aav(J(u),  E U )  - aav(Jo, E U ) ]  du 
T O  

+- ;lb H(J(u), Q I ( U ) ,  E U )  du (16) 

where 6 ( J ,  ~ 3 ,  ~ t )  : = a(J,  cp, ~ t )  - uav(J, ~ t )  denotes the oscillating part of a. The 
first term on the right-hand side of (16) can be immediately bounded uniformly with 
respect to t E [0, TIE] by means of (7): 

1; 6 [aav(J(u), E U )  - aav(Jo, E U ) ]  du 1 d ncl 1111 av 1 1  J - E 
a2 

whereas in order to give a bound to the last term we solve, again, a homological 
equation 

6- o v , w  =o. (17) 
In fact, exploiting again our non-resonance condition (6 ) ,  it follows immediately that 
(17) has the solution 
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where a, denotes the vth Fourier component of a. w satisfies 

If we now define 

then 

and by adding it to the last term on the right-hand side of (16), since w solves the 
homological equation (17), we obtain 

= .(;) 0 

Let us compare our proof with the one given in [16] (or the extension in [4,9], 
where the case of non-independent frequencies is considered), which followed 
Neishtadt's original approach [25].  One realises that the assumption that ho be not 
explicitly time dependent allows for introducing the non-resonance condition (6) 
since manifolds of constant action are either resonant or non-resonant. This gives 
the possibility of a pointwise solution of the homological equations (13), (17) and 
leads to a better E dependence for estimates (7) and (8). 

Remark 1. Non-degenerate ho. If ho is non-degenerate, i.e. if there exists a positive 
constant d < 03 such that for all J E G 

as is well known, the complement of the non-resonant set 

e : = {J E GI [ w Y ~ >  cx for all Y E Z"\{O}, I Y I  6 K )  

meas(G\G) c c,dK"a 

has a Lebesgue measure 
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for some c 3 > 0 .  For these systems one only needs to verify a non-resonance 
condition at time t = 0: imposing that 

for all I Y I  s K,  Y #0, one can easily check that (6) ,  and therefore (7) and (S), still 
hold true, provided that E is sufficiently small. 

Thus, from the estimate on the measure of the non-resonant set (22), one finds 
that (7) and (8) are valid for all initial conditions outside a set of Lebesgue measure 
of order a. Since the constants are independent of E and a, one can also choose 
a = E' for any a E [0, $) thus obtaining that the actions are almost adiabatic 
invariants for all initial conditions outside a set whose measure vanishes in the limit 
&--to, and that the geometrical Hannay angles (4) are given by 

Iw(J0) * VI > 2a (23) 

lim E-0 [ q(3 - qo - r & w ( J ( t ) )  dt] 

for almost every initial condition (Jo,  qo) E G x U". 

Remark 2. Harmonic oscillators. If the original unperturbed Hamiltonian describes 
a system of harmonic oscillators, i.e. 

then the frequency vector w E R" is independent of J .  In this case the non-resonance 
condition (6)  is just a condition on w E R" and is automatically verified for all times. 
Therefore (7) and (8) hold whenever 

for all Y E Z"\{O}, IpI s K. Moreover, if w is highly non-resonant so that it verifies a 
Diophantine condition, i.e. there exist y > 0 and ,U 5 n - 1 such that 

for all YEZ"\{O}, one can prove that the actions are adiabatic invariants for 
exponentially long times by adapting an argument due to Gallavotti [ l l ]  (see also 
[5, 6, 12]), provided that h has an analytic extension to a complex neighbourhood of 
G x U" X [0, T ]  (maintaining periodicity in t). The key idea is to construct the 
non-resonant normal form for the Hamiltonian h, as shown in remark 4, and to 
choose an optimal truncation order of the power series expansion (24) in E in a way 
such that the norm of the remainder is minimised. 

We also refer to the work of Leung and Meyer [22] and Fedoryuk [lo] who 
proved the adiabatic invariance of the actions to all orders (or even exponential 
adiabatic invariance [lo]) for the case of harmonic oscillators with slowly time- 
dependent frequencies. 

Remark 3. Time scales for  averaging of phase-space functions. Let us consider the 
simple one-degree-of-freedom system with Hamiltonian h(J, q) = J + E cos q, The 
equations of the motion for any initial condition (Jo,  qo) are trivially integrated and 
give ~ ( t )  = J O  - E cos(qo + t )  + E cos qo, q(t) = qo + t. Clearly IJ(t)  = O ( E )  for 
all times, but if one chooses the phase-space function a = J 2 ,  one finds 

ho(J) = w - J 

Iw * YI 3 a 

10 * VI 3 y 1v1-p 

E (J0)2t 
A( t )  - k(t) = E f [Jo + E cos qo - E cos(qo + t)I2 dt - - 

T O  T 
which is O(1) already at t = 
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This example shows that whilst (7) may hold true for much longer time scales, 
estimate (8) is in general wrong for t > 1 / ~ .  

Remark 4. Time scales for adiabatic invariance of actions. The example given in the 
previous remark suggests that (7) might hold true on longer time scales. In fact, if 
the non-resonance condition (6)  is verified by J( t )  for all t with 0 d t d E-‘ for some 
r E No one can prove that (7) holds for the same time scale by higher-order canonical 
perturbation theory. 

Again, the idea is to find a near-to-identity canonical transformation to new 
action-angle variables ( J ’ ,  rp’) = %(J,  rp; t, E )  generated by 

r 

S ( J ’ ,  q, z, E )  = J ’  rp + c EISl(J’, rp, z) 
1=1 

for some r a 1, such that 

A power expansion in E shows that at all orders E‘ with 1 d 16 r one must solve 

where Ql depends only on S,, . . . , Clearly the non-resonance condition ensures 
that (25) can be solved and the remainder R,+l is determined by means of the 
inverse function theorem 

One can verify that 

for some m a r ,  and one finds that (7) holds true, indeed, for all times 
t E [0, (TIE) ‘ ] .  We stress that in order to develop this standard perturbative scheme 
the assumption that ho is z independent is essential. 

Remark 5. Non-degenerate ho: adiabatic invariance of actions for exponentially long 
time scales. For non-degenerate Hamiltonian systems with one degree of freedom 
undergoing an adiabatic parameter change, Arnol’d showed [l] that KAM theory 
ensures that the action is a perpetual adiabatic invariant, i.e. it is invariant for all 
times. When the number of degrees of freedom exceeds one, examples show [3] 
that, in general, for a set of initial conditions whose Lebesgue measure is of order 1 
the actions can undergo a variation of order 1 over a time scale of E - ~ ” .  The slow 
variation of the parameters causes the system to very often experience structural 
transitions: a constant non-resonant action may become resonant and vice versa due 
to the explicit time dependence of ho. The resonant tori are generally destructed by 
the adiabatic change and give an everywhere dense set of bifurcation regions in 
phase space. However, if ho does not depend explicitly on t, as for (l), this cannot 
occur and, in fact, if h has an analytic extension to a complex neighbourhood of 
G x U x [0, TI (maintaining periodicity in z) one can show by means of phase-space 
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perturbation theory that whenever w(Jo) is non-resonant, i.e. verifies (23), one has 

IJ(t) - JO( C4EC5 (26) 
for 0 s t s c6 exp{(s*/s)"'}, where c4, c5, c6 and c7 are positive constants. 

Moreover, if one assumes that ho is not only non-degenerate but also convex (or, 
more generally, verifies a steepness condition [26]), i.e. there exists d' > 0 such that 
for all J E G and for all v E R", 

the non-resonance condition can be dropped, as remarked by Nekhoroshev [26]: 
(26) holds true for all initial conditions and for exponentially long times for 
non-autonomous systems for which the perturbation depends on the slow time Et, 

i.e. for systems with the Hamiltonian ( 1 ) .  
The readers familiar with the proof of the Nekhoroshev theorem in the autono- 

mous case will find the proof of this statement absolutely evident. For a proof of 
the Nekhoroshev theorem in the autonomous case we refer to [6,11,26] for Hamil- 
tonian flows and to [5 ]  for symplectic maps. It should be noted, however, that two 
assumptions are absolutely essential in addition to the convexity of ho. First, h must 
be analytic, since if we only require it to be smooth then the estimate is not 
exponential but a power estimate (as in remark 2). Second, for the non-autonomous 
system we are interested in, the time independence of ho plays a crucial r61e. 

To conclude, we stress that in contrast to the adiabatic invariance of the actions, 
the averaging theorem (8) for phase-space functions needs a non-resonance 
condition, since we want to average over the full n-dimensional torus. If the system 
is locked in some resonance one might, however, apply partial averaging on some 
embedded U"-" torus, where m is the dimension of the resonant module. 

Remark 6. Optimality of the assumptions. The assumption that h,  has only finitely 
many Fourier components can be made without loss of generality as we assumed hl 
to be smooth: in fact, one might allow hl to have infinitely many Fourier 
components and introduce an ultraviolet cut-off K(E). Split the Fourier series into 
two parts h f  and h r  which contain, respectively, modes satisfying I Y (  S K(E) and 
I Y I  > K(E). Then one finds that llhlllo = O(E), provided K(E) = O(E-~),  for any 
6 > 0, because the norm of the Fourier modes decays faster than any power of I Y I ,  
Therefore 1 1  Ehrllo = O(e2) would not affect the dynamics sensibly for the time scale 
0 s t G T / E  of interest. 

Moreover, one can drop the %" assumptions. It suffices to assume h,  E %"(G x 
U" x [0, TI) and a E Em-'(G x U" X [0, TI) with m 5 n + 3 and one may allow h ,  to 
have infinitely many Fourier components. In this case one has to choose 

1 qE) = q E - l K m - n - l )  

and obtain the statement of theorem 1. If one considers non-degenerate ho, as i? 
remark 1, one needs to make sure that the measure of the non-resonant set G 
vanishes for E--, 0 (and a = E"). This makes it necessary to require m 3 3n + 1. In 
fact, one needs 

n 
m - n - 1  

< a < ; .  
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3. Averaging over initial angles 

The goal of this section is to prove an averaging theorem; averaging refers in this 
context to the initial angles yo. For the class of systems we are considering this will 
enable us to obtain an a priori estimate for the averaged dynamical angles 
(si w(J(u) ,  E U )  du). By ( e )  we have denoted the average over the initial angles q0. 

Theorem 1. Let the same assumptions as in proposition 1 be satisfied and let Q(J,  z) 
be in %-(G x [0,  TI) .  Then there exists a constant cg such that 

E 
max I( Jrb Q(J(u) ,  E U )  du) - 6 Q(Jo,  E U )  du I S c g -  

ts [O,T/s ]  a4. 

Proof. Let (Jo,  yo) satisfy the assumptions of proposition 1, and set 

A : = [Q(J(u) ,  E U )  - Q(J0,  E U ) ]  du. 6 
Upon a Taylor expansion of Q(J ,  z) in J and applying the adiabatic theorem 
(formula (7)) one obtains, always assuming that t E [0,  T / E ] ,  

A = (J(u) - J o )  0 V,Q(Jo, E U )  du + 0 6 
Here and in the following O(.), E-- ,  0, is always meant uniformly in t E [0, T / E ]  and 

Because of the non-resonance assumption ( 6 )  second-order canonical perturba- 
tion theory can be used to prove the existence of a near-to-identity canonical 
transformation to new action-angle coordinates ( J ' ,  Q, ') verifying 

(JO, 91". 

I J  - J ' I  = o(2) - J '  d = o($) a dt 

If J' Q, + E S ( J ' ,  Q,; z, E )  is its generating function, one has also the estimate 
IlSllr= O(l / a ) ;  thus 

as dS J(u) -JO = [J'(u) - ( J ' ) O ]  + E -  @'(U), Q,(u); &U, E )  + E- ( ( J ' ) O ,  q o ;  0,  E ) .  
dQ, dQ, 

Because of (28) the first term on the RHS is of order 6'((~~/a') .  For the second 
contribution we may apply the proposition in section 2, yielding 0(e2 /a3) .  Finally, 

0 the last term vanishes upon averaging over Q,'. 

If we now replace in the proposition of theorem 1 the function SZ by the 
components of the angular frequencies w,  we get as a corollary that the average 
over the torus of the dynamical angles is equal to T w ( J 0 ) / & ,  up to an error of order 

We have applied an averaging procedure to a class of systems of several degrees 
of freedom governed by a Hamiltonian h = ho(J) + &hl(J, Q,, z). What is the scope 
of this method? 

It seems to us that such an averaging procedure is acceptable from the 
experimental point of view provided the experimentalist can prepare the system with 

q E / a4). 
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J o  fixed but varying q0. This premise, however, restricts the experimental 
applicability of the proposed averaging over the initial torus and limits the extent to 
which our result has an impact on experimental measurements of Hannay angles. 
One such a situation where the idea of averaging over initial angles seems not to be 
applicable is given, for instance, by the motion of celestial bodies, since in celestial 
mechanics one cannot choose initial conditions freely. 

One may also wonder whether a statement in the spirit of our theorem 1 may 
hold true for general ho, i.e. for ho = ho(J, t). We do not believe that our result on 
averaging over the initial torus would continue to hold under these general 
circumstances. In this situation, as we stressed several times, to a fixed value of J o  
there corresponds a frequency vector o ( J o ,  z) whose resonant or non-resonant 
character depends on the current value of z. This makes averaging over the initial 
torus a questionable procedure. It seems to us that for such general systems it is 
rather doubtful whether there is any experimental method for determining the 
anholonomy effect discovered by Hannay. 

Our expectation that theorem 1 may not be always true is supported by a Taylor 
expansion of o ( J ,  z) up to second order with respect to J .  Assume that one could 
treat the first-order term by averaging over initial angles. Note that in this paper the 
second-order term was not doing any harm because of the better conservation of the 
actions here (formula (7)): it involves the square of the deviation of the action from 
the initial action and therefore gives at most a contribution of order 6'(&/a4) to the 
dynamical angles, even without averaging over the initial torus. In general, 
however, the second-order term is of the order O ' ( E ~ ~ ) ,  where b E [0, 4) (cf [16]), and 
it is not plausible that averaging over cp0 would improve the rate of convergence to 
zero, due to positivity of the square. So it seems that this gives rises to a term of 
order 6"(~~'- l )  in the approximation to the dynamical angles. Since b < 1, this term 
exceeds the Hannay angles. In our opinion this indicates that theorem 1 may not be 
true for the case of ho = ho(J, z). However, we have not yet an explicit analytical 
counterexample. 

Finally we would like to point out that the problems in the measurement of the 
Hannay angles do not occur for the Berry phase. This is discussed in [14]. 
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