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Abstract We consider the radius of convergence p(o) of the Lindstedt series for the standard 
map and study its scaling behaviour as the rotation number tends to a rational value p/q both 
through real. diophantine numbers and through complex values. We compute numerically p(o) 
by means of Pad€ approximants, and therefore are able to plunge deeply into the asymptotic 
regime by computing P(O) very close to resonances. The scaling law P(O) - 10 - p/qIB/q, 
with ,9 = 2, is observed, this is consistent with the conjeaUre that p(o) - e-28(u), where B(o) 
is a purely arithmetical function called Brjwo’sfinction, In the case of the first two resonancm 
( p / q  = 011 and p / q  = 112) we prove that the conjugating function to rotations Gindstedt 
series) u(0)  tends to a limit u@/q)(0) as o tends to the resonance and e is scaled in such a way 
to keep the radius of convergence fixed; this limit is analytically computed and its singularides 
in the complex 8 and 6 planes are found to agree withthe results obtained by Pad6 approximants. 
The relevance of these results for a pertorbative approach to renormalization theory is discussed. 

AMs classification scheme numbns: 54Cxx 

1. Introduction 

In this paper we continue the study of the standard map at complex rotation numbers that 
we began in [ 11; complex rotation numbers were considered in the very first works on the 
topic (see e.g. [Z]) and appear naturally when discussing small denominators problems; see 
also [3,4] for the study of Hamiltonian maps in the complex plane. 

To fix the notation, we recall that the standard map is an area-preserving twist 
diffeomorphism of the cylinder T x B into itself given by: 

x‘ = x + y +&sinx 

y’ = y + E  sinx 

with x E T and y E R. W e  regard the nonlinear term E sin x as a ‘perturbation’ of the linear 
map ( x ,  y )  H (x’ = x + y, y‘ = y). for which the dynamics is given by rotation on the 
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cylinder: x, = 2zno + xo, y" = 2nw.  We note that the variable y may be eliminated to 
give one second order recurrence:.. 

A Berreiti and S Manni 

xn+l - Zx, + x,-l = E sin x,, (1) 

which may be seen as the Lagrangian form of the standard map. 
It is well known (see e.g. [5], more references can be found in [6]) that if w is 

irrational and satisfies a diophantine condition then the dynamics of the perturbed map 
can be analytically conjugated to the dynamics of the unperturbed, linear map provided that 
the perturbation is small enough, i.e. there exists a function u,(6', E), jointly analytic in 
(e, E) for I ImOl < e,  I E ~  2 E such that if: 

x = e  + u,(e, E) 

y = 2zw + u,(e, E )  - u,(e - 2x0, E )  

then in the new variable 0 the dynamics is the one of the unperturbed, linear map 
0, = %no + 00. We note also that the existence of a smooth conjugation to a rotation of 
rotation number w is the same thing as the existence of a homotopically non- vial invariant 
curve of  the same rotation number and of the same smoothness class, as a simple application 
of Birkhoff s theorem and of the implicit function theorem shows. 

The diophantine condition which, following [5], guarantees the existence of an analytic 
conjugation U,(@,&) may be stated in terms of the continued fraction expansion of w. In 
fact, let: 

1 

a1 + -= 
w =  = k , a z .  ... I 

a = + . . .  
and let p k / @  be the sequence of rational approximants to w obtained by truncating its 
continued fraction expansion; then the diophantine condition mentioned above takes the 
form: 

%+I = O(& 
with y 2 2. 

It is immediate to verify that the function u,(S, E) satisfies the equation: 

(D&&e, E )  = +&U, E) ~- zu,(e, E) + u,(e - Z H ~ ,  E) = &sin(@ + U,@, E)). (2) 

Imposing the condition that the mean of U, over 0 must be 0 the solutions are formally 
unique. Note that 0, = D,+1, so U,+, = U, for all U.  

We can then study the analyticity properties of the function U, expanding it in a Taylor 
series in E and in a Fourier series in 0 (the so called Lindstedt series [7]): 

The coefficients $,,a may be easily computed recursively by inserting this expansion in 
equation (2); we obtain: 

D:U, (e) = sine 
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(in particular, it is easy to see that for the standard map the sum over k in (3) is actually 
restricted to Ikl < n). It is therefore clear how, due to the unboundedness of the operator 
0;' which appears in (4), small divisors enter into the Lindstedt series and make it difficult 
to study the analyticity properties of the conjugating function U: To control these small 
divisors, the machinery of superconvergent methods leading to KAM theory [8] has been 
devised (but see [9, IO] for an alternative, direct approach). 

In [ 121 the analytic properties of the conjugating function to the golden mean rotation 
were studied by means of Pad6 approximants; evidence for a natural boundary on a circle of 
radius equal to the breakdown tbreshold for the golden mean invariant curve (as computed, 
e.g., by Greene's residues method) was found. 

The origin of this natural boundary was clarified in [l] by studying the conjugating 
function at complex rotation numbers: in fact, if w has a non-zero imaginary part, the small 
divisors disappear and the convergence of the series (3) can be easily proved directly. In 
thii way, the series (3) is regarded as an expansion of an analytic function u(8, E,  w )  of three 
variables; the existence of an analytic conjugation to a rotation of given rotation number 00 
at a given EO is therefore related to the existence and regularity of the limit of u(e, EO, w )  as 
w tends to 00. In other words, there is only one 'complex' KAM torus, which analytically 
continues to real, homotopically non-trivial invariant curves as w tends to safficiently 
irrational, real w, provided E is small enough. Using Pad6 approximants, we show that 
the natural boundaries appearing at real, diophantine w are due to the accumulations of 
lines of complex singularities related to resonances. In particular, if we take the real part 
of w to be diophantine and we let the imaginary part tend to 0, the radius of convergence 
of the Lindstedt series tends to the critical breakdown threshold and the number of lines of 
singularities increases, creating the natural boundary. 

The situation is made clearer if we look at the behaviour of the radius of convergence 
as o tends to a resonance, i.e. a real, rational value p/q. In this case, the radius of 
convergence tends to 0 as w tends to the resonance, and what is quite remarkable is that if 
w is sufficiently near to the resonance, so as to isolate its contribution from the neighbouring 
ones, then exactly 2q lines of singularities appear. 

A similar situation occurs also for the dissipative standard map as shown in [ 111, where it 
is remarked the analogy between the effect of the imaginary part of the rotation number and 
the introduction of dissipation in the system: in both cases small denominators disappear. 

Later we will explain the nature of these lines of singularities which appear in the 
Pad6 approximants, and relate it to branch points and cuts for U ,  regarded as an analytic 
function of E ,  and we will explicitly compute such singularities when w tends to the first 
two resonances (011 and 112). 

2. Scaling of the radius of convergence 

An important object to study is therefore the radius of convergence of the series (3): 

It clearly provides a lower bound to the threshold E&) for the breakdown of the KAM 
invariant curve with rotation number w, and for the standard map they are generally believed 
to be the same (as numerical evidence also suggests: see [12,13] for details; but see [14] 
for a different viewpoint). The function p ( o )  is a very complicated one, since it vanishes 
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on all rationals and is everywhere discontinuous on the real axis; on the other hand it is 
non-zero and harmonic of f  the real axis. 

The radius of convergence p(w)  is related to a purely arithmetic function, called Brjuno’s 
function by Yoccoz, defined e.g. by the relation: 

A Eerretti and S Manni 

B(@) = - l o g o + ~ ~ B ( w - ’ )  f o r o E R n [ O , $ ]  (5) 

with the boundary conditions: 

E(@) E(u + 1) = B ( - o ) .  

We note that B(o) depends only on the arithmetic properties of 0, in particular on the 
growth rate of the denominators of the convergenfs of its continued fraction expansion; it 
can be easily shown (see [15]) that it is finite if and only if Bjuno’s condition: 

is satisfied. In the case of iterated complex analytic maps (the so-called Siegel’s problem), 
Yoccoz [IS] proved that the absolute value of the difference of the logarithm of the Siege1 
radius (which is the equivalent, for that case, of our p(w)) with Brjuno’s function is bounded 
for all irrational rotation numbers. 

It is quite natural to ask a similar question also for the standard map. In particular, one 
can look at the quantity: 

and ask whether for some 0 E E?.+ it is bounded and continuous as conjectured in [6] 
(conjecture 3.3). If this proves true, then we can write the critical radius p(w) as the 
product of a purely arithmetic function, which captures all of the singular behaviour of 
p(w) at resonances, and a bounded strictly positive continuous function C(w): 

p(w) = C(w)e-BB(@. (7) 

f3 may be looked upon as a ‘critical exponent’ which characterizes the ‘strength’ of the 
singularities of u(S, E ,  w )  at real, rational w. 

For the semi-standard map, which is a complexified version of the standard map whose 
Lindstedt series has a simpler structure, it has been proved [I61 using the standard majorant 
series method [17], Bjuno’s counting lemma [18] and a minorant series argument, that 
Bjuno’s condition is indeed necessary and sufficient for p ( w )  to be non-zero. On the 
numerical side, for the semistandard map it is easy to compute the critical function by 
the root criterion. In [16] it was also conjectured, on the basis of numerical evidence, 
that I log p(w)  + ZB(w)l is a bounded continuous function. Recently, Davie [14] proved 
that 1 Iogp(w) + ZB(w)l c 100 using an improvement of Brjuno’s counting lemma, but 
continuity is still an open question. 

On the other hand, for the standard map the situation is more difficult also numerically, 
since the root criterion fails to relax to the radius of convergence at reasonable orders. 
On the analytical side, Davie [14] proved that logp(w) +2B(w) is bounded above, thus 
establishing that Bjuno’s condition is necessary for the Lindstedt series to converge. This 
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result, together with the ones announced in [19, IO], proves the first of the conjectures made 
in [16], i.e. that Brjuno's condition is necessary and suflcienf also in the standard map case. 
Moreover, Fomi [20] proved the necessity of violating Brjuno's condition for the analytic 
destruction of invariant curves of twist maps. It is also interesting to note that Brjuno's 
condition guarantees the convergence of an approximate renormalization scheme [21], and 
that (7) would explain the so-called 'modular smoothing' technique [22,23] as shown in 
WI. 

We calculate p(w)  close to a resonance by means of Pad6 approximants: the coefficients 
U, of the expansion (3) are computed and we locate the singularity nearest to the origin 
by calculating some high order Pad6 approximants and determining the zeros of the 
denominators. 

The interpolation (7) of the radius of convergence by Brjuno's function implies a scaling 
property as the rotation number tends to a resonance. In fact, let on be a sequence of 
noble numbers which tends to p / q  as n + CO; to be definite, we may take e.g. on to 
be Of the form [ai, az, . . . , ak, n, 1-1, whith [ai, az, . . . , ak, 001 = p / q .  Then, by (5) and 
elementary properties of the continued fraction expansion (see [6] for details), we have that 
exp(-B(o,)) tends to 0 as l/n'lq for n + CO; on the other hand Io, - p /q l  - O(l/n), 
so that 

In this work 'we evaluate the scaling exponent for the radius of convergence as w tends 
to a resonance both through real, diophantine numbers and through a path in the complex 
o plane. In all cases we obtain a strong numerical evidence for the scaling law: 

P ( f + 1 1 )  - 1111: 
independently on the way 11 tends to 0. 

In figure 1 we show the plot of p(o) versus Imo for R e o  equal to 0, 1/2, 1/3, 1/5, 
2/5 (so that 11 tends to 0 through purely imaginary values, i.e. w tends to the resonance 
through a vertical snaight line in the complex plane). In figures 2 and 3 we show the plot 
of p ( o )  versus lql for p / q  = 1/3 and for q + 0 through curves tangent to the real axis 
at ihe origin: respectively a parabola and a curve with an infinite order of confacf with the 
real axis, namely Im Am = 10-i~(ReAo)'. In figure 4 we show instead the plot of p(w) as 
o tends to a resonance through real, diophantine U'S: the cases shown correspond to the 
sequences on = [n, I"] + 0, o = [2, n, I"] + 1/2 and o = [n"] + 0. For these real 
sequences, we also compare with Brjuno's function: figure 5 shows the plot of p(o) versus 
exp(-B(o)). Values of Am of the order of 10W5 have been reached. 

Tables 1 and 2 summarize the numerical data. In tab!e 1 we show the results of the 
least squares fit to the scaling law p ( o )  = e(o)lo - m,#/q as o -+ 00 through real and 
complex sequences (data corresponding to figures 14). The values of ,C? obtained by the 
fit all agree with fi  = 2 within 2% and the limit value e ( ~ )  does not seem to depend 
(within the accuracy of the fit) on the choice of the sequence converging to 00, suggesting 
the continuity of the function e(@). In table 2 we show the result of the least squares fit to 
the scaling law p(w) = C(o)e-oE("') as o --f q, through real sequences (figure 5). Again 
we find @ = 2 and evidence for the continuity of C(w). Note that, for these real sequences, 
using ,$ = p = 2 and the functional equation (5), one can show that e = C and this is 
verified by our numerical data. 
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Figure 1. Plot of p@/q + iAm) versus Am, with p / q  = 0/1.1/2,1/3.1/5.2/5. 

Figure2 Plot of p(l/3+Am) versus Amas Am tends to0alongthe curve Im(Am) = Re(Ao)*. 

Figure 3. Plot of p(1/3 + Am) versus Am as Am tends to 0 along the w e  Im(Am) = 
,~-liRc(amI'. 

3. Resonances 011 and l/2 

We note that not only the radius of convergence of the Lindstedt series scales as o + p / q ,  
but the locations of al l  the poles and zeros of the Pad6 approximants scales as well, with the 
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Fimre 4. Plot of p ( o n )  versus om -e,, with 0, = In. la., [2, n ,  Im], [n"]. 

Figure 5. Plot of ~ ( 0 . )  versus exp(-B(o,)), with 
on = In. lm, [Z, n. lmI. [n"l. 

'"L ,,,,,,,( , , . , , , , , ,  j 
104 

104 1 0 2  10'' 

same exponent and with a remarkable accuracy. This suggests that by rescaling E it may 
be possible to obtain a 'scaling limit' for U. In particular, we conjecture that the following 
limit exists: 

d p ' q ) ( e ,  E )  = lim u(e, E V " ~ ,  27rp/q + q)  (9) 
9+0 

and is independent on the way q + 0 from e.g. the upper complex half plane. 
In the case of the first two resonances ( p / q  = 0/1 and p / q  = 1/2), we can prove 

that this limit exists and actually compute it; we state this result in the following two 
propositions. Note that our propositions prove that ,6 = 2 is necessaryfor the validity of 
(7). We begin with the elementary case of the resonance (O/l). 
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Table 1. 

q, f i  e(@)' Comments 

0 2.01 34.9 (a) 
1R 2.04 26.3 (a) 
1/3 2.03 14.0 (a) 
115 2.00 5.9 (a) 
U5 2.02 7.43 (a) 

1/3 2.00 13.5 (b) (c) 
1/3 2.00 13.4 (d) (e) 

0 2.00 323 (0 
1R 2.00 23.0 (9) 
0 2.00 32.4 (h) 

(a) o tends to og through a vertical straight line in the wmplex plane. 
@) o tends to q, through an arc of parabola 
(c) The three rightmost data pints have been removed since too far from the asymptotic regime. 
(d) o tends to og &on& a curve with an infinite order of contact to the real axis. 
(e) The two rightmost data points have been removed since too far from the asymptotic regime. 
(0 m tends to 0 through the Sequence of real, diophantine rotation numbers on = [n. 1-1, 
(9) o tends to 112 through the sequence of real, diophantine rotation numbers o, = [2. n, lm]. 
(h) o tend to 0 through the seqnence of real, diophantine rotation numbers o. = [nm]. 

Table 2. 

W O 6  C(w) Comments 

0 2.00 32.2 (a) 
l/Z 2.00 23.0 @) 
0 2.00 32.4 (c) (d) 

(a) o tends to 0 through the sequence of real, diophdne rotation numbers on = [n. 1-1, 
(b) o tends to IT2 through the sequence of real, diophantine rotation numbers W. = [2. n. lm]. 
(c) o tends to 0 through the sequence of real, diophantine rotation numbers o. = [nm]. 
(d) The rightmost data p i n t  has been removed since too far from the asymptotic regime. 

Proposition 1. Let X, be the space of 2r-periodicjiinctions f (0) analytic and bounded 
in a neighbourhood of the complex strip: 

S, = { e  E CIllmOl <a} 

with the nom: 

where & are the Fourier coefjcients o f f ,  and let C, be the closed complex cone defined by: 

Cy = { q  E Cl lmq  > 0, [Reql < yZmq} y > 0. 

Then i f q  E Cy the limit: 

u(o/l)(o, E )  = lim u(e, Eq2, 
"-to 
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exists in 11 . 11. norm, uniformly with respect to E E D, = [ E  E C.11~1 < r ] ,  where: 

r = -e*- 1 1 
16 1+y" 

The function d0/')(e, E )  is then Malytic in S, x 27, and satisfies the differenrial equation: 
uBB ( o m  (e, E )  = E sin(@ + d0/l)(e, E ) )  

with boundary conditions u('/')(O, E )  = d0/')(2z, E )  = 0. 

Proof. Let 

We will first prove that ii,(e, q) has a finite limit as q --f 0, so that the Lindstedt series has 
a finite l i t  order by order in perturbation theory. Then, by taking q E Cy we will prove 
that: 

llin(e, q)IL G r-" 

for some positive constant r which depends on y .  so that the l i t  series actually converges 
to an analytic function in Sa x 9. Finally, we show, by duect calculation, that this limit 
satisfies the given differential equation. 

From the recurrence (4) it is clear that each coefficient iL,k in the Lindstedt series 
contains exactly n factors ('small denominators') of the type: 

Now, if o q tends to zero, each r , (h)  diverges as q-' and the factor q2" in in exactly 
compensates for this, so in has a finite l i t  for q --f 0. We note that ii, contains at least a 
term which does not vanish identically in the limit, and precisely the term proportional to 

Next we have to estimate lliinlle. We use the simple estimates of [6, appendix 21, based 
r,(h) (the so-called 'linear tree' of [9, IO]). 

on the standard majorant series method: in particular, we have: 

Iiu.(e, o)[lCl < 4"e""l1mul-~. 

It then follows immediately that 

uniformly in the cone Cy. 
Finally, from the homologic equation satisfied by U we obtain: 

1 
-D'u(B, E $ ,  q )  = &sin(@ +U(@, &qZ. q) ) .  
rlz I? 

Taking the limit q + 0 (shown to exist above) we obtain the differential equation: 

ug/l)(e,&) = E sin(@ + do/%, E ) )  (10) 

with the boundary conditions d o / I ) ( O ,  E )  = ~(~/ ' ) (2z,  E )  = 0 (note that by symmetry we 
aIso have d0/')(z, E )  = 0). 
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In a similar way we prove the following: 

Proposition 2. Under the same hypothesis of the above proposition, the limit: 

exists and satisfies the differential equation: 

uBB (1/2) (e ,&)= - - l i ~ , s l n 2 ( e + ~ ( ' / 2 ) ( e , ~ ) )  1 2 .  

with boundary conditions u(~ / ' ) (O ,  E )  = ~ ( ' / ~ ) ( 2 a ,  E )  = 0. 

Proof. The proof follows the same lines as the preceding one. In the case of the resonance 
(1/2), as q tends to zero, only those rx+rl(h)  with even h diverge (always as v-~) ;  therefore 
we have to know how many divergent small denominators there are actually in each U,@): 
we will prove that this number is Ln/2J. To this end, we first recall that the Fourier 
expansion in 0 of U,(@ contains only frequencies of the same parity of n; then we use 
induction on n and equation (4) to prove our statement above. In fact, clearly ul(0) does 
not contain any divergent small denominator, and u2@) contains exactly one such small 
denominator (r,,+?(2)). Next, we have that the sum 

u., (e) . . . unh (e) 
",+ ...+ "l=n 

in (4) contains 

Lnl/ZJ + . + Lnh/Zj < Ln/2J 

divergent small denominators, and therefore D:u,+l (e) as well. Now, the expression: 

contains only frequencies in its Fourier expansion in 8 of the same parity as n + 1, for every 
h in the range 1 . . . n, and therefore the operator 0;' acting on it will produce a divergent 
small denominator only if n + 1 is even. Summarizing, if n + 1 is even it will contain 
Ln/ZJ + 1 = (n + 1)/2 = L(n + 1)/2j divergent small denominators, while if n + 1 is odd it 
will contain Ln/2J = L(n + 1)/2j such factors, and the inductive statement is proved. We 
have therefore shown that u.@, 2n(1/2 + q) diverges at worst as q -zLn/21 and each q"u. 
has a finite limit. 

For what matters the convergence of the limit series, we note that the null space of 
the operator 0: is the space of 2n-periodic functions f (e), i.e. functions whose Fourier 
expansion contains only even frequencies. Now, take q in the cone C, and let f be a 
n-periodic function in X,. Then: 

for some positive constant C I .  On the other hand, if f E X, contains only odd frequencies 
in its Fourier expansion, it is easy to see that: 

llD;:Jlla 6 czllf l lm.  
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We will prove, by induction on n, that: 

This implies that &I (qE)"u.(B, n + q )  converges uniformly in 11 in the cone Cy;  this also 
implies that the limit is a n-periodic function (since all odd order terms contain an extra q 
factor uncompensated by the small denominators). 

In fact, (1 1) holds for n = 1 and 2 by direct calculation of U ,  and UZ. Next, we consider 
separately the cases of n even and n odd and using the fact that a term of a given order in 
E contains only frequencies in B of the same parity as the order we obtain: 

If we now take c3 = ea max(c1, cz) and count the factors 1/1 Im vi2, by using standard 
majorant series estimates we obtain (1 1). It immediately follows that 

IlvnunIIa < r-" 

uniformly in the cone Cy, where r = (l/4c3)(1+ yZ)'/'. 
Finally, we determine the differential equation satisfied by the l i t  u(""(B, E). This 

case is handled by twice iterating the map and reducing the resonance (1/2) to a resonance 
( l j l )  which is the same as (O/l). Specifically, we use the formula: 

D&f(Q) = D:+,[f(e  + (n + v)) + 2f(@ + f(@ - (n + q))l (12) 

valid for 2n periodic functions f and easily proved by direct calculations. Applying (12) 
to U ( @ ,  811, n + 7) with 11 E Cy and using: 

D:+,u(B, EV, K + 11) = e11 sin@ + u(8, E V ,  K + 11)) (13) 

we obtain: 

D&u(B, 87, II + 11) D:+,(u+ + 2 ~ 0  + U - )  

= q[sin(B + (n + 11) + U + )  + 2sin(B + UO) +sit@ - (x + 11) + U - ) ]  

= -2~q(A)  (14) 

where: 

) (A) = sin( rl +U+ - U0 )cos (8+ tl+ U+ + U 0  

) -sin (11 + U ; - " - )  cos (8 + -11 +;+U- 
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and we used the shorthand 

A Berreni and S Marmi 

U* = U(@ rt (H + v ) , E v , ~  + V I  

Uo = U@, Er/ ,  H 4- V ) .  

Now, the fact that d1/*) is n-periodic implies that: 

u+-uo u o - U -  + O  -- 
2 ' 2  

as q + 0, so: 

U+ - 2uo +U- = cos(e + uc1/2)(e, E ) )  s i  
11-d V 

= +Esin2(6 + U ( ' / ~ ) ( O ,  E ) )  

where in the last step we used again the homologic equation (13). 
Dividing (14) by 4q2, and taking the limit q + 0 we obtain the differential equation: 

(15) (1/2) 1 2 .  uoo (e, E )  = - i i ~  sm2(0 + ~ ( l / ~ ) ( e ,  E ) )  

with the boundary conditions U ( ' ~ ~ ) ( O , E )  = u ( ' / ' ) ( ~ H , E )  = 0 (and again we also have 
U ( 1 / 2 ) ( H ,  E )  = 0). 0 

4. Complex analytic structure at resonances 

We now solve these differential equations, compute the singularities in the complex 0 and 
E planes and compare the result with the numerical result from Pad6 approximants. 

We note that both can be put in the same form: 

x"(t) = h sinx(t) (16) 

with the boundary conditions x ( 0 )  = 0, x ( Z H )  = 2z, by letting: 

x(r) = e +d0/ ' ) (0 ,  E )  t = 0, = E 

and: 

E2 ~ ( t )  = 2(0 + U ( ~ / ~ ) ( O ,  E ) )  t = 26, A = 
16 
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Equation (16) is the pendulum equation; qualitative analysis shows easily that a unique 
solution with the given boundary conditions exists for all real values of A. This solution, 
as is well known (see e.g. [24]), c m  be written in term of Jacobian elliptic functions: 

where K(k) is the quarter-period function: 

The value of the modulus k is fixed by the boundary conditions to satisfy: 

kK(k) = n& 

and therefore is uniquely determined by A (see e.g. [25,26] for details and a background 
on elliptic functions). 

The singularities of the solution of (17) in the complex t plane are immediately 
found in fact, the function am(u,k) has branch points of infinite order at the points 
U = iK'f2nK +2miK', m, n E Z, where K' = K(k') and k', the complementary modulus, 
satisfies k2 + k" = 1; the singularities closest to the real t axis for the function x ( f )  are 
therefore: 

K' 
i i r -  + R .  K 

Using the standard notation: 

we see that the singularities are at 8 = &rr + z or, in the plane of the complex variable 
eie, at -4.  -1/q. 

For the function uC0/')(8, E )  this means that the analyticity strip in the complex 8 plane 
is limited by two branch points at 8 = z(1 f t), while for u(*'')(8, E )  we have four branch 
points at B = (1 f t.)z/2 and 8 = (3 f r)x/Z (taking into account the &-periodicity in 8). 

The analytic structure in A for x ( t )  is harder to derive. We write the Fourier expansion 
of x ( t )  (from the Fourier expansion of the Jacobi amplitude function am(u, k)): 

This series converges for t E W when 141 < 1 (that is when Imr z 0), and depends 
analytically on q inside the unit circle (depends analytically on t in the upper complex half 
plane). On the other hand, x ( t ) )  depends on A through the dependence of q (and r )  on A, 
therefore it will have singularities in A for those values of 1 which are singular for &I). 
We cannot make explicit the dependence of q on A, but the inverse is easy to derive; in 
fact, from the theory of elliptic and theta functions we have that: 
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where &(z, q) is a theta function (we use the conventions of [25] for naming the theta 
functions, and we refer to this reference as well as to [26] for a background on theta 
functions); but in OUT case kK = n f i  so that: 

1 
h = -&o, q) = 4q qn'+n 

4 ("YO 7 
The singularities of q ( A )  will occur at the critical values of @O, q)/4. We do not have an 
exact result for those values so we resort to estimates. 

Let f ( q )  be the function defined in (19): 

This series converges for 141 < 1. We will show that the critical points closest to the origin 
are q = zki@ with l i l  < 1/2, and calculate numerically this value. We will also show that 
in the disk Dllz = (141 < 1/21 there are no other critical values of f (4). 

In fact, we have: 

f'(q) = ( Fq"'+")3(F(zn+ l)zq82+"). 
"=O n=O 

We will show that the first factor does not vanish inside Dmle and that the second factor 
has exactly two zeros inside the same disk. 

We have: 

in D1/2 so that the first factor does not vanish. 

unit circle) is dominated by the term n = 1 in DID: 
Next, we see that the series in the second factor (which converges absolutely inside the 

In fact 19q21 = 9/4 so it is enough to show that e.g. I Cz2(2n + 1)2qn'+nI < 1 to prove 
(20). Letting 141 = 1/2 we have: 

for 141 = 112 and using the Rouchd theorem we conclude that this factor has exactly two 
zeros in D I ~ .  These zeros must be either both real or both purely imaginary: in fact, if 
they had both non-vanishing real and imaginary parts, there would be four zeros in 'D1/2 

(because f has real Taylor coefficients and because it is an even function). Since for real 
values of q the series has positive terms it cannot vanish, so they must be purely imaginary. 
Numerics gives @ = 0.328 107 and therefore a critical value for lambda A, = 4~0.827 524i. 
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This value of A corresponds to a branch point singularity for x ( t )  as a function of A, and 
its location in the complex plane does not depend on t ,  except for the trivial cases in which 
t is a multiple of x .  

We can now locate in the complex 0 and 8 planes the singularities of dol1) and U('/') 
and compare with the results from Pad6 approximants for u(0, E ,  o) with o zz 0, H. 

For the singularity in the complex 0 plane are at Re0 =~ x ,  that is on the 
real, negative axis in the e$ plane. The exact position of the singularity depends on E. 

We generate the coefficients of the Lindstedt series very close to the resonance (0/1) and 
compute the Pad6 approximants on the plane of the complex variable 5 = e'' at a value of 
E given by (19) and compare the result from Pad6 approximants calculations for o close 
to a resonance with the exact result at the resonance. For example, we take q = 0.1 and 
q = which gives a value of E zz 16.4326 x IO-'; computing poles and zeros of 
the Pad6 approximant in [18/18] (we kept the order very low so to avoid any potential 
problem with the accuracy of the calculations) we found a singularity at 5 -10.1828, 
that is with an error of less than 2% on the theoretical value 5' = -l/q = -10; in figure 6 
we plotted the poles and the zeros of the above-mentioned Pad6 approximant, removing 
the ghost pole-zero pairs detected by computing the residue of each pole; note the line of 
poles alternating with zeros, typical of branch points (we also removed the reciprocal poles 
generated by the singularity at 5 = -4). 

100 

+ mics 
50 f zeros 

Fwre 6. Plot of the poles and zeros of the Pad6 approximant [18/18] in the complex < =e* 
plane; F = 16.4326 x and o = iIO-'. 

For what matters the singularities in the complex E pIane, we conjecture that the 
singularity closer to the origin is the one generated by the critical value A, computed 
above. We cannot rule out in full mathematical rigour the existence of other critical values 
of A smaller than Ac, but a numerical survey of the complex q plane in (19) suggests 
that our conjecture is indeed correct. We obtain, at w = 10-3i, a pair of singularities at 
E = f32.6693 x while the Pad6 approximant [30/301 gives f32.9 x 10-6i with a 
numerically negligible real part (with an error of less than 1%). In figure 7 we show the 
poles and zeros of this Pad6 approximant: again, note the line of alternating poles and zeros, 
suggesting a branch point as the singularity at the edge of the line. 

For u ( ' / ~ ) ,  the singularities in the complex c plane are at 5 = & i d ,  fi/&, using Pad6 
approximants, taking 4 = 0.1 and w = 1/2 + i x we find a value for the singularity 
outside the unit disk the values 5 zz fi3.264 with a negligible real part from the approximant 
[18/18], to be compared with the analytically computed value of Itim zz ii3.162, so 
that the numerically computed value is within an error of about 3.3% from the analytical 
one computed at the resonance. For what matters the singulades in the complex E plane, 
the calculations carried out so far give four branch points at E = 4 f i G .  Am: from the 
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0.0002 

0.0001 

0 

-0.0001 

Figure 7. plot of the poles and zems of the Pad6 
appmximant [30/301 in the complex E plane; 8 = 1 ... 

-0.0002 -0.0001 0 , 0,0001 0.0002 and o = ilO-'. 

Pad& approximant [30/30] computed at o = 1/2 + i10-4 we find (cf figure 6 of 111) four 
lines of altemating poles and zeros, radially in the directions of the four fourth roots of - 1, 
with the closest poles at I E ~  zz 0.00231, to be compared with the value of 181 -,0.00229 
coming from the analytic calculations: the error is again less than 1%. The same structure 
of poles and zeros for the Pad6 approximants as in the case of the resonance 0/1 shows up, 
again confirming the idea that the picture we have for the rescaled conjugating function at 
the resonance holds for o close to it, in the scaling regime. 

We are not able, as yet, to compute u(P/q) for resonances higher than (1/2); the 
combinatorics we used to show the compensation of the small denominators at each order in 
the Lindstedt series when we rescale E with IAolz/q, in fact, works only for the resonance 
(1/2). The numerical results of section 2, though, suggest that the same picture holds, 
leading us to conjecture the following: 

Conjecture. For each rational number r E Qn(O,l], which we write in form of irreducible 
fraction as p /q .  the following limit: 

&)(e, E) = lim u(e, eq2/q, 2zr  + 0) 
q-0 

Imp0 

exists and defines an analyticfunction of (0, E). Moreover, there is a comtant C, such that 
u(')(0, E) satisfies the differential equation: 

&e,&) = c , ~ q s i n q ( e + u ( ~ ) ( e , ~ ) )  

with boundary conditions u(')(O, E) = u(')(27c, E )  = 0, whose solution in term of Jacobi's 
amplitude function is: 

with the value of the modulus k given by the equation: 

k K ( k ) = n ( q )  CrE4 ' I2 . 

We examine now the consequences of this conjecture. First, we see that it predicts 2q 
branch points in the complex 0 plane, in pairs with the same real p a  and opposite imaginary 
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parts, and the real parts are given by r(2k + l ) / q ,  k = 0, . . . , q - 1. Next, we see that it 
predicts 2q branch points in the complex E plane, whose location is at points proportional 
to the 2qth roots of -1. This qualitative picture fully explains the phenomenology observed 
in 111, i.e. what do singularities matter in the complex E plane; singularities in the complex 
0 plane near resonances have been studied extensively, from the numerical point of view, 
io [27], and our conjecture above fully explains their observations. 

The exact positions of the singularities depend on the value of the costant C,, which can 
be computed, assuming the validity of our conjectnre, from the 4th order of the perturbation 
theory for the Lindstedt series for U close to the resonance p / q .  Since the third order of 
the perturbation theory is quite easy to compute by hands, we can derive at once the value 
of the constant C1/3 and therefore check the agreement between the results from Pad6 
approximants and the results derived from our conjecture; we obtain C1/3 = -1/24. If 
we take q = 0.1 and q = lo4, we have E % 22.7866 x for this value of q,  the 
branch points outside the unit circle are at a distance from the origin in the ( plane equal 
to % 2.15, while the Pad6 approximant [30/30] gives 2.19: the agreement is within 
2%. In the complex E plane our conjecture predicts, for w = 1/3 + i10-4, a radius of 
convergence of the Lindstedt series equal to 0.0287, while the Pad6 approximant [30/30] 
gives a value of 0.0291: the agreement is within less than 1.5%. 

5. Conelmions 

We want to state here some comments about previous work and some problems which 
deserves further study, both analytical and numerical. 

In 161 it was conjectured that there exists a value of p E I& such that (7) is verified 
with a bounded, continuous C(w). Numerical evidence using Greene’s residue criterion was 
given supporting the conjecture. To compute in this way the radius of convergence when the 
rotation number is close enough to a resonance, where the important cancellations between 
logp(w) and B(w) occur, is extremely difficult. Therefore the question of determining the 
correct value of p was left open. 

Con!rary to the case of Greene’s residues criterion, the computational effort involved in 
estimating p(w) by means of Pad6 approximants does not depend crucially on the arithmetic 
properties of w. In particular, it is possible to compute the radius of convergence for 
rotation numbers very close to a resonance (whithin a distance of the order of 104-10-5, 
to be compared with lo-*. which is the minimum distance from a resonance for which the 
Greene’s method is still possible, see [6]). Moreover, we can let w tend to a resonance also 
from the upper complex half plane, where the Lindstedt series (3) depends analytically on 
0. As a result with our method we are able to plunge deeply into the asymptotic regime 
and the conjeclure, with a value of /3 equal to 2, is confirmed. We also note that, when 
the rotation number is complex and close to a resonance, the behaviour of the series is 
no longer dominated by small denominators, which are compensated by the scaling factor 
multiplying E in order to keep the radius of convergence fixed. 

We also want to stress that the method of Pad6 approximants provides reasonably 
accurate quantitative predictions for the critical radius and for some critical exponents: in 
the cases where it was possible to compare with exact results, the errors have been of about 
a few percent, sometimes less than 1%, even using low-order Pad6 approximants and VAX 
double-precision (G-floating) arithmetic (that is about 13 digits). A similar quarttitative 
agreement of the results obtained by Pad6 approximants and results obtained by other 
methods, traditionally considered more accurate, has been found in [28,11]. 
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Note also that there are general theorems on the convergence of Pad6 approximants 
to functions with branch points [29]. In particular one can prove [30] the convergence 
in capacity of diagonal (i.e. [ N / N ] ,  as the 0ne.s we used) Pad6 approximants to functions 
with an even number of branch points of square mot type on the Mittag-Leftler star (i.e. 
the complex plane minus the union of lines emanating from the branch points and going 
radially to infinity). 

In the case of the semi-standard map most of the calculations are simpler and we are 
actually able to prove that the conjugating function u(0, E ,  CO) has a limit when o + p / q  
and E is suitably rescaled for alI resonances p / q .  Further work on this topic is in progress 
[311. 

To compute such a limit and to derive its analyticity properties is a first step toward a 
perturbative renormalization approach to the problem of the break-up of invariant curves 
for area-preserving maps of the cylinder. In fact, the renormalization group picture of 
the transition to chaos in Hamiltonian systems [32,33] is usually non-perturbative and 
based on a dynamics in :phase space, with the renormalization group acting as a flow on 
a space of Hamiltonians. This leaves open many questions which are best formulated in 
the language of perturbation theory, in particular questions related to analyticity properties 
of invariant tori and conjugating transformations. As in quantum field theory the non- 
perturbative renormalization group themy is complemented by renormalized perturbation 
theory, we believe that an approach to renormalization in Hamiltonian system based on 
perturbation theory could explain many numerically observed phenomena and clarify the 
analytic properties of invariant toli. We refer to 1341 for further details and references (and 
for some attempts to generalize these results to other maps). 
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