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Overview
Quantifying and modeling information present in a 
correlation matrix

- Filtering the most stable information of the correlation matrix;

- Hierarchical trees and correlation based trees from 
  correlation matrices;

-Evaluating the statistical robustness of a filtered matrix and
 with a correlation based tree with a bootstrap approach;

- Modeling hierarchies;

- Quantitatively comparing filtered correlation matrices 

24/3/09 SNS - Pisa
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Financial markets as complex systems

A financial market can be considered as a 
`model’ complex system. 

In a financial market there are many heterogeneous 
agents interacting to perform the collective task of 
finding the best price for financial assets.
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A basic paradigm: Arbitrage opportunity

One of the main paradigms used for the modeling of
a financial market is the absence of 
arbitrage opportunity.

An arbitrage opportunity is present in a market when 
an economic agent can devise a trading strategy which 
is able to provide her or him a financial gain 
continuously and without risk. 
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An example

St. Louis Miami

At a given time 1 kg of wheat costs 1.30 USD in St. Louis and 1.45 
USD in Miami.

The cost of transporting and storing 1 kg of wheat from St. Louis to 
Miami is 0.05 USD

By buying 10,000 kg in St. Louis and selling them immediately 
after in Miami it is possible to make a risk-free profit

10000 (1.45-1.30-0.05)=1000  USD

If this action is repeated this implies that the price in St. Louis 
increases (where the demand increases) and in Miami decreases 
(where the supply
increases).
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Financial assets are unpredictable

The absence of arbitrage 
opportunities implies that 
the price dynamics of a 
financial asset must be 
unpredictable.

In an efficient market, the continuous exploiting of an 
arbitrage opportunity implies its disappearance
after a (usually) short time period. 
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Cross-correlation between stock returns are well-known 

They may be quantified  
by the correlation 
coefficient ρij Ln

 P
(t)
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Cross Correlation
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Pearson’s correlation coefficient: 
€ 

ri(t) ≡ lnPi(t) − lnPi(t − τ)

Correlation Matrix 

€ 

C = ρij( )

N data series of length T

€ 

ri(t j ),     j =1,...,T;   i =1,...,N

Example: 
Log-return of stock price

Other correlation estimators:

-Fourier estimator
-Maximum Likelihood
  correlation estimator
-…

24/3/09 SNS - Pisa



OCS

10

Statistical reliability �
of cross correlation coefficients

N T data ~ N 2 correlation coefficients:

It is therefore important to device methods to

- Filter statistically reliable information;

-  Quantitatively assess the stability of the filtered
   information;

- Model the filtered information. 

Statistical uncertainty is unavoidably associated with the
estimation of the correlation coefficient obtained from a 
finite number of records. 
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How to analyze the complexity of a 
correlation matrix?

Clustering  e.g. Hierarchical Clustering
     Super Paramagnetic Clustering
     Maximum Likelihood Clustering
     Sorting Point Into Neighbors

Correlation Based e.g. Minimum Spanning Tree (MST)
Networks                       Average Linkage Minimum Spanning Tree
                            Planar Maximally Filtered Graph (PMFG)
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Hierarchical clustering

1 0.413 0.518 0.543 0.529 0.341 0.271 0.231 0.412 0.294

1 0.471 0.537 0.617 0.552 0.298 0.475 0.373 0.270

1 0.547 0.591 0.400 0.258 0.349 0.370 0.276

1 0.664 0.422 0.347 0.351 0.414 0.269

1 0.533 0.344 0.462 0.440 0.318

1 0.305 0.582 0.355 0.245

1 0.193 0.533 0.592

1 0.258 0.166

1 0.590

1

By starting from a correlation matrix (which is
a similarity measure)

AIG IBM BAC AXP MER TXN SLB MOT RD OXY

AIG

IBM

BAC

AXP

MER

TXN

SLB

MOT

RD

OXY

AXP MER 0.664
IBM MER 0.617
SLB OXY 0.592
BAC MER 0.591
RD OXY 0.590
TXN MOT 0.582
IBM TXN 0.552
AIG AXP 0.543
MER RD 0.440
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Hierarchical clustering

1 0.543 0.543 0.543 0.543 0.543 0.440 0.543 0.440 0.440

1 0.591 0.617 0.617 0.552 0.440 0.552 0.440 0.440

1 0.591 0.591 0.552 0.440 0.552 0.440 0.440

1 0.664 0.552 0.440 0.552 0.440 0.440

1 0.552 0.440 0.552 0.440 0.440

1 0.440 0.582 0.440 0.440

1 0.440 0.590 0.592

1 0.440 0.440

1 0.590

1

One may obtain a simplified matrix by using classical 
clustering methods such us the single linkage clustering

AIG IBM BAC AXP MER TXN SLB MOT RD OXY

AIG

IBM

BAC

AXP

MER

TXN

SLB

MOT

RD

OXY

C<
SL
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OCS

14

Hierarchical clustering
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By starting from a correlation matrix (which is
a similarity measure)
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AIG

IBM

BAC

AXP

MER

TXN

SLB

MOT

RD

OXY
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Hierarchical clustering

1 0.501 0.501 0.501 0.501 0.412 0.308 0.412 0.308 0.308

1 0.536 0.577 0.577 0.412 0.308 0.412 0.308 0.308

1 0.536 0.536 0.412 0.308 0.412 0.308 0.308

1 0.664 0.412 0.308 0.412 0.308 0.308

1 0.412 0.308 0.412 0.308 0.308

1 0.308 0.582 0.308 0.308

1 0.308 0.562 0.591

1 0.308 0.308

1 0.562

1

Or, for example, the average linkage clustering

AIG IBM BAC AXP MER TXN SLB MOT RD OXY

AIG

IBM

BAC

AXP

MER

TXN

SLB

MOT

RD

OXY

C<
AL
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Hierarchical clustering output in a typical case

€ 

N =100 (NYSE) daily returns 1995 -1998

€ 

C< = (ρij
< )

ρij
< = ραk

where

€ 

αk
is the first

node where
elements 

i and j merge
together

Average Linkage Cluster Analysis 
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Filtered matrix

€ 

C<  from ALCA

€ 

C

€ 

N = 300 (NYSE); daily returns 2001- 2003
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When one uses  
the stock order  
of the hierarchical  
tree the  
correlation matrix  
assumes a better  
readability  

technology 

oil 

financial 

utilities 

basic 
materials 

The complete matrix is richer of information

n=100 stocks NYSE
(1995-1998)

SNS - Pisa
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Correlation based networks

€ 

C =

1 0.13 0.90 0.81
0.13 1 0.57 0.34
0.90 0.57 1 0.71
0.81 0.34 0.71 1

 

 

 
 
 
 

 

 

 
 
 
 

→ S =

1 3 0.90
1 4 081
3 4 0.71
2 3 0.57
2 4 0.34
1 2 0.13

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

Correlation Matrix (C)
Sorted List of Links (S)

( i, j, ρij ) 
i

j
wij=ρij
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Correlation based tree(s)

For the single 
linkage clustering 
procedure the 
correlation based 
tree is the minimum 
spanning tree

24/3/09 SNS - Pisa

Correlation based trees and 
hierarchical trees do not 
carry the same amount of 
information.
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A typical minimum spanning tree

€ 

N =100 (NYSE)
daily returns 
1995 -1998
T =1011

24/3/09 SNS - Pisa
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Minimum spanning tree and Planar �
maximally filtered graph

Define a similarity measure between the elements of the system 

Construct the list  S by ordering similarities in decreasing order  

Starting from the first
 element of  S,

add the corresponding link
if and only if

the graph is still a Forest or a Tree 

Starting from the first 
element of  S,

add the corresponding link
if and only if

the graph is still Planar (g=0) 

Minimum Spannig Tree  
MST 

Planar Maximally 
Filtered Graph  

PMFG 

M. Tumminello, T. Di Matteo, T. Aste and R.N.M., PNAS USA 102, 10421 (2005)

R.N.M., Eur. Phys. J. B 11, 193. (1999).

24/3/09 SNS - Pisa
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The Planar Maximally Filtered Graph

The Planar Maximally Filtered Graph is

• a topologically planar graph;

• connecting all elements of the graph by keeping the 
  shortest links and allowing at least 3 links for each 
  element;

• topologically embedded in a surface of genus 0;

• a graph allowing loops.

SNS - Pisa
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Graph Genus 

The genus of a graph is the minimum number of handles 
that must be added to the plane to embed the graph 
without any crossings.

A planar graph therefore has graph genus 0. 

The complete graph  has genus: 

SNS - Pisa
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Number of elements and properties

N = number of vertices (different elements)

M = number of links 

  M = N-1. 
  absence of loops.

  M = 3 (N-2) corresponding to complete  
triangulations on the sphere.

  Graph with a genus 0 embedding.

PMFG:

MST: 

SNS - Pisa
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Hierarchical structure

We have proved that the Minimum Spanning Tree is 
always included into the Planar Maximally Filtered
Graph or  in any graph embedded in a surface of genus g
and selected with a constructing algorithm similar to the
one used for minimum spanning tree and planar 
maximally filtered graph.

The hierarchical tree of the graphs obtained with this
constructing algorithm are the same as the one of the 
minimum spanning tree (they are characterized by the 
same clusters).

SNS - Pisa
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 The Planar Maximally Filtered Graph

€ 

N =100 (NYSE)
daily returns 
1995 -1998
T =1011

M. Tumminello, T. Di Matteo, T. Aste and R.N. M., PNAS USA 102, 10421 (2005)

24/3/09 SNS - Pisa
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It is still much less than the complete network!!!!

SNS - Pisa
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But more than the minimum spanning tree

SNS - Pisa
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Loops are present in the PMFG

When g=0, the topological constraints allows the observation of
cliques of 3 and 4 vertices.

BAC

JPM MER

MOB

XON

CHV ARC

SNS - Pisa
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Focusing on the technology cluster

SNS - Pisa
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How to assess the stability of the information 
filtered out?

24/3/09 SNS - Pisa
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A validation based on bootstrap

1.567 0.789 0.842 … -0.234

0.113 1.123 -0.002 … 0.198

1.065 -1.962 0.567 … 1.785

0.113 1.123 -0.002 … 0.198

0.479 -1.828 -2.041 … -0.193

… … … … …

0.479 -1.828 -2.041 … -0.193

0.113 1.123 -0.002 … 0.198

1.567 0.789 0.842 … -0.234

1.065 -1.962 0.567 … 1.785

1.112 0.998 -0.424 … 2.735

-0.211 0.312 -0217 … 0.587

… … … … …

0.479 -1.828 -2.041 … -0.193

Data Set Pseudo-replicate Data Set

t1

t2

t3

t4

t5

…
T

e1 e2 e3 … en e1 e2 e3 … en

M surrogated data matrices are constructed, e.g. M=1000.

24/3/09 SNS - Pisa
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Bootstrap value of nodes of hierarchical trees

ALCA bootstrap value distribution 

24/3/09 SNS - Pisa
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Statistical reliability of the minimum 
spanning tree

€ 

N = 300 (NYSE)
daily returns 
2001- 2003
T = 748

M. Tumminello, C. Coronnello, S. Miccichè, F. Lillo and R.N.M., Int. J. Bifurcation Chaos 17, 
2319-2329 (2007). 
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Bootstrap vs correlation

€ 

N = 300 (NYSE)
daily returns 
2001- 2003
T = 748

For Gaussian series:

€ 

σρ =
1− ρ2

T − 3

24/3/09 SNS - Pisa
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The Hierarchically Nested Factor Model (HNFM)

A factor is associated to each node 

€ 

xi(t) = γαh
f (αh )(t)

αh ∈G(i)
∑ + 1− γαh

2

αh ∈G( i)
∑ εi(t)

αh-th factor Idiosyncratic term

€ 

γαh
= ραh

− ρg(αh )
; γα1 = ρα1

€ 

G(i) = Pedigree of element i,  
           e.g. G(9) = α1,α3,α9{ }
g(αh ) = Parent of node αh,  
             e.g. g(α7) =α2

  

€ 

xi ⋅ x j = γαh

2

αh ∈G( i)G( j )
∑ = ραk

= ρij
<

€ 

e.g. x1 ⋅ x4 = γα2

2 + γα1

2 = ρα2
− ρα1

+ ρα1
= ρα2

€ 

C< = (ρij
< )

37

M. Tumminello, F. Lillo, R.N. Mantegna, Hierarchically nested factor model from multivariate data, 
EPL 78 (3), Art. No. 30006 (2007).

24/3/09 SNS - Pisa
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A simple hierarchically nested model

C =

24/3/09 SNS - Pisa
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Spectral Analysis

€ 

λ± =
1
2
2 + q+ ± (q−

2 + 4 n1 n2 ρM
2)1/ 2[ ]

2 large eigenvalues

2 corresponding 
eigenvectors

€ 

q± = (n1 −1)ρ1 ± (n2 −1)ρ2   and    y = q− /(4 n1 n2 ρM
2)1/ 2

  

€ 

where  u± =1/ 2n1 1+ y 2
 y 1+ y 2[ ] ,   v ± = ±1/ 2n2 1+ y 2 ± y 1+ y 2[ ],

24/3/09 SNS - Pisa
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A problem of the HC method: HNFM by hierarchical clustering 
always detects n-1 factor�
A solution: Evaluation of node statistical uncertainty and node 
reduction

3 nodes (factors) 99 nodes (factors)

The HNFM allows to simulate the system. We use hierarchical
clustering to investigate the simulations so that we can 
estimate the ability of hierarchical clustering to detect a 
hierarchically nested system. 

4024/3/09 SNS - Pisa
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Self-consistent node-factor reduction

•   Select a bootstrap value threshold bt .

•   For each node       : 

   If                       then  merge the 

   node       with his first ancestor 

    αq (in the path to the

   root) such that                    .

•   How to chose bt ?
In a self-consistent way!

€ 

b(αk ) < bt

€ 

b(αq ) ≥ bt

€ 

αk

€ 

αk

HNFM correctly detects the 
model when bt>0.70

4124/3/09 SNS - Pisa
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Daily return of 100 stocks traded at NYSE in the time period
1/1995-12/1998 (T=1011)

23 nodes

19
9

€ 

Sn =  sensitivity;    Sp =  specificity

Node reduction for an empirical system

42

€ 

Sn =
TP

TP + FN

€ 

Sp =
TN

TN + FP
24/3/09 SNS - Pisa
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Interpretation of factors

HNFM associated to the reduced dendrogram with 23 nodes.
Equations for stocks belonging to the Technology and Financial
Sectors.

Technology Factor

Financial Factor

24/3/09 SNS - Pisa
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C< is a correlation matrix

€ 

C< = (ρij
< )

ρij
< = ραk

€ 

αkwhere       is the first node where elements i 
and  j merge together.

€ 

If ρij
< ≥ 0 ∀ i, j then C< is positive definite.

€ 

Indeed C< is the correlation  matrix 
of  a  suitable  factor  model  named 
Hierarchically Nested Factor Model.

M. Tumminello, F. Lillo and R.N.M., EPL 78, 30006 (2007). 
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Filtered correlation matrices 

We consider two filtered correlation matrices,                        ,
obtained by applying the Average Linkage Cluster Analysis and 
the Single Linkage Cluster Analysis to the empirical correlation 
matrix respectively.

For comparison we also consider filtered correlation matrices 
obtained with Random Matrix Theory (RMT) and shrinkage
technique.

€ 

CALCA
<  and CSLCA

<

The filtered matrix obtained with the shrinkage technique is
defined as

CSHR(α)= α T + (1-α) C

24/3/09 SNS - Pisa
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How to quantify the amount of information filtered from the
correlation matrix?

How to quantify the stability of the filtered information?

24/3/09 SNS - Pisa
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Kullback-Leibler distance

For multivariate Gaussian distributed random variables we have[1]:

,       where p and q are pdf’s.

Minimizing the Kullback-Leibler distance is equivalent to
maximize the likelihood in the maximum likelihood factor 
analysis.
[1]M. Tumminello, F. Lillo and R.N.M., PRE 76, 031123 (2007). 

24/3/09 SNS - Pisa
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Expectation values

€ 

where Σ is the true correlation matrix of the system while  S1 and S2

are sample matrices of Σ from two independent realizations of length T.

24/3/09 SNS - Pisa

The three expectation values are independent from Σ, 
i.e they do not depend from the underlying model
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Kullback vs Frobenius

• The expectation values of Frobenius distance are model 
  dependent, e.g. for a system of n=2 Gaussian random variables 
  with correlation coefficient ρ it is

€ 

E F Σ,S( )[ ] = E tr Σ−S( ) Σ−S( )T[ ] 
  

 
  

=
2
π T

1− ρ2( )

   where Σ is the model correlation matrix of the system while 
   S is a sample correlation matrix obtained from a realization 
   of length T. 
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Kullback-Leibler distance

The Kullback-Leibler distance can also be analytically calculated 
random variables following a multivariate Student’s t-distribution1:

€ 

If  µ
n

<<1 then :

1G. Biroli, J.-P. Bouchaud, M. Potters, Acta Phys. Pol. B 38, 4009 (2007), 
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Gaussian vs Student
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€ 

KG Σ1,Σ2( ) =
1
2
log

Σ2
Σ1

 

 
 

 

 
 + tr Σ2

−1Σ1( ) − n
 

 
 
 

 

 
 
 

€ 

KS Σ1,Σ2( ) =
1
2
log

Σ2
Σ1

 

 
 

 

 
 + n log

tr Σ2
−1Σ1( )
n

 

 
 
 

 

 
 
 

 
 
 

  

 
 
 

  

€ 

If Σ1 ≅ Σ2 ⇒  KG Σ1,Σ2( ) ≅KS Σ1,Σ2( )
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Comparison of filtering procedures
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Σ

S1

S2
F1 F2

T

K
(Σ,S

1 )=f(n,T)

K(S2, F2)

K
(S

1,  F
1 )

K(F1, F2)

S1 and S2 are sample 
correlation matrices 
estimated from inde-
pendent realizations/
bootstrap-replicas of 
the system. 

F1 and F2 are matrices 
filtered from S1 and S2
respectively.

Σ is the true 
correlation matrix of 
the system.
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Comparison of filtered correlation matrices 
(block model)

Block diagonal model
with 12 factors.

N=100, 
T=748.

Gaussian random 
Variables.

M. Tumminello, F. Lillo and R.N.M., Acta Physica Polonica B 38, 4009-4026 (2007).

24/3/09 SNS - Pisa
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HNFM 
with 23 factors.

N=100, 
T=748.

Gaussian random 
variables.

Comparison of filtered correlation matrices 
(HNFM model)

24/3/09 SNS - Pisa
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Comparison of filtered correlation matrices 
(empirical data)

€ 

N = 300 (NYSE)
daily returns 
2001- 2003
T = 748

24/3/09 SNS - Pisa
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Another empirical system[1,2]

Inventory variation of market members trading 
an asset at the Spanish Stock Market 

[2] Lillo F, Moro E, Vaglica G, R.N.M., NEW JOURNAL OF PHYSICS 10, 043019 (2008)  

[1] Vaglica G, Lillo F, Moro E, R.N.M., PHYSICAL REVIEW E 77, 036110 (2008) 
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vi t( ) ≡ εi s( )
s= t

t+τ

∑ pi s( )Vi s( )

57 

  Inventory variation =  the value (i.e. price times volume) 
of an asset exchanged as a buyer minus the value exchanged as a 
seller in a given time interval.

price volumesign
+1 for buys
-1 for sells

In this talk, we investigate the τ = 1 trading day

Investigated variable

24/3/09 SNS - Pisa
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Inventory variation 
correlation matrix 
obtained by sorting 
the market members 
in the rows and 
columns according 
to their correlation 
of inventory 
variation with price 
return

BBVA 2003

R

T

U

24/3/09 SNS - Pisa
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The hierarchical tree

24/3/09 SNS - Pisa
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The best filtering procedure we find is 
the one from principal component analysis

24/3/09 SNS - Pisa
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 The empirical findings on the daily data suggest the following 
agent (market member) based model

price return idiosyncratic noise

γi >0 trending market members (ex: momentum 
 strategies);
γi <0  reversing market members (ex: contrarians’ 
 strategies);
γi ≈0  uncategorized market members.

see also, Lillo and R.N.M., Phys. Rev. E 72, 016219 (2005)

Empirical data are compatible with a one-factor 
model of inventory variation dynamics

24/3/09 SNS - Pisa
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Conclusions
We describe the structure of an empirical correlation matrix by 
using hierarchical trees and correlation based networks. 

We estimate the statistical reliability of links in hierarchical 
trees and correlation based networks by using a bootstrap 
based approach. 

We show how to model hierarchies detected by hierarchical 
clustering in terms of a factor model, i.e. the hierarchically 
nested factor model.

We use the Kullback-Leibler distance in order to compare 
different techniques used to filter the most stable information 
of  correlation matrices. 
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OCS website: http://ocs.unipa.it 

Thank you!
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