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Overview

Quantifying and modeling information present in a 

correlation matrix


- Filtering the most stable information of the correlation matrix;


- Hierarchical trees and correlation based trees from 

  correlation matrices;


-Evaluating the statistical robustness of a filtered matrix and

 with a correlation based tree with a bootstrap approach;


- Modeling hierarchies;


- Quantitatively comparing filtered correlation matrices 
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Financial markets as complex systems


A financial market can be considered as a 

`model’ complex system. 


In a financial market there are many heterogeneous 

agents interacting to perform the collective task of 

finding the best price for financial assets.




OCS


24/3/09
 SNS - Pisa 5


A basic paradigm: Arbitrage opportunity


One of the main paradigms used for the modeling of

a financial market is the absence of 

arbitrage opportunity.


An arbitrage opportunity is present in a market when 

an economic agent can devise a trading strategy which 

is able to provide her or him a financial gain 

continuously and without risk. 
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An example


St. Louis
 Miami


At a given time 1 kg of wheat costs 1.30 USD in St. Louis and 1.45 
USD in Miami.


The cost of transporting and storing 1 kg of wheat from St. Louis to 
Miami is 0.05 USD


By buying 10,000 kg in St. Louis and selling them immediately 
after in Miami it is possible to make a risk-free profit


10000 (1.45-1.30-0.05)=1000  USD


If this action is repeated this implies that the price in St. Louis 
increases (where the demand increases) and in Miami decreases 
(where the supply

increases).
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Financial assets are unpredictable


The absence of arbitrage 

opportunities implies that 

the price dynamics of a 

financial asset must be 

unpredictable.


In an efficient market, the continuous exploiting of an 

arbitrage opportunity implies its disappearance

after a (usually) short time period. 
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Cross-correlation between stock returns are well-known 

They may be quantified  
by the correlation 
coefficient ρij Ln

 P
(t)
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Cross Correlation
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Pearson’s correlation coefficient: 
€ 

ri(t) ≡ lnPi(t) − lnPi(t − τ)

Correlation Matrix 

€ 

C = ρij( )

N data series of length T


€ 

ri(t j ),     j =1,...,T;   i =1,...,N

Example: 

Log-return of stock price


Other correlation estimators:


-Fourier estimator

-Maximum Likelihood

  correlation estimator

-…
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Statistical reliability �
of cross correlation coefficients


N T data
 ~ N 2 correlation coefficients:


It is therefore important to device methods to


- Filter statistically reliable information;


-  Quantitatively assess the stability of the filtered

   information;


- Model the filtered information. 


Statistical uncertainty is unavoidably associated with the

estimation of the correlation coefficient obtained from a 

finite number of records. 
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How to analyze the complexity of a 
correlation matrix?


Clustering  e.g. Hierarchical Clustering


 
    Super Paramagnetic Clustering


 
    Maximum Likelihood Clustering


 
    Sorting Point Into Neighbors


Correlation Based e.g. Minimum Spanning Tree (MST)

Networks                       Average Linkage Minimum Spanning Tree


                            Planar Maximally Filtered Graph (PMFG)
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Hierarchical clustering
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By starting from a correlation matrix (which is

a similarity measure)
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Hierarchical clustering
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One may obtain a simplified matrix by using classical 

clustering methods such us the single linkage clustering
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Hierarchical clustering
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By starting from a correlation matrix (which is

a similarity measure)
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Hierarchical clustering
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Or, for example, the average linkage clustering
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Hierarchical clustering output in a typical case


€ 

N =100 (NYSE) daily returns 1995 -1998

€ 

C< = (ρij
< )

ρij
< = ραk

where


€ 

αk
is the first


node where

elements 


i and j merge

together


Average Linkage Cluster Analysis 
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Filtered matrix


€ 

C<  from ALCA

€ 

C

€ 

N = 300 (NYSE); daily returns 2001- 2003

24/3/09
 SNS - Pisa




OCS


24/3/09
 18


When one uses  
the stock order  
of the hierarchical  
tree the  
correlation matrix  
assumes a better  
readability  

technology 

oil 

financial 

utilities 

basic 
materials 

The complete matrix is richer of information


n=100 stocks NYSE

(1995-1998)
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Correlation based networks


€ 

C =

1 0.13 0.90 0.81
0.13 1 0.57 0.34
0.90 0.57 1 0.71
0.81 0.34 0.71 1

 

 

 
 
 
 

 

 

 
 
 
 

→ S =

1 3 0.90
1 4 081
3 4 0.71
2 3 0.57
2 4 0.34
1 2 0.13

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

Correlation Matrix (C)

Sorted List of Links (S)


( i, j, ρij ) 

i


j

wij=ρij
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Correlation based tree(s)


For the single 

linkage clustering 

procedure the 

correlation based 

tree is the minimum 

spanning tree


24/3/09
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Correlation based trees and 

hierarchical trees do not 

carry the same amount of 

information.
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A typical minimum spanning tree


€ 

N =100 (NYSE)
daily returns 
1995 -1998
T =1011
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Minimum spanning tree and Planar �
maximally filtered graph


Define a similarity measure between the elements of the system 

Construct the list  S by ordering similarities in decreasing order  

Starting from the first

 element of  S,


add the corresponding link

if and only if


the graph is still a Forest or a Tree 

Starting from the first 

element of  S,


add the corresponding link

if and only if


the graph is still Planar (g=0) 

Minimum Spannig Tree  
MST 

Planar Maximally 
Filtered Graph  

PMFG 

M. Tumminello, T. Di Matteo, T. Aste and R.N.M., PNAS USA 102, 10421 (2005)


R.N.M., Eur. Phys. J. B 11, 193. (1999).
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The Planar Maximally Filtered Graph


The Planar Maximally Filtered Graph is


• a topologically planar graph;


• connecting all elements of the graph by keeping the 

  shortest links and allowing at least 3 links for each 

  element;


• topologically embedded in a surface of genus 0;


• a graph allowing loops.


SNS - Pisa
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Graph Genus 


The genus of a graph is the minimum number of handles 

that must be added to the plane to embed the graph 

without any crossings.


A planar graph therefore has graph genus 0. 


The complete graph  has genus: 
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Number of elements and properties


N = number of vertices (different elements)


M = number of links 


  M = N-1. 

  absence of loops.


  M = 3 (N-2) corresponding to complete  
triangulations on the sphere.


  Graph with a genus 0 embedding.


PMFG:


MST:
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Hierarchical structure


We have proved that the Minimum Spanning Tree is 

always included into the Planar Maximally Filtered

Graph or  in any graph embedded in a surface of genus g

and selected with a constructing algorithm similar to the

one used for minimum spanning tree and planar 
maximally filtered graph.


The hierarchical tree of the graphs obtained with this

constructing algorithm are the same as the one of the 

minimum spanning tree (they are characterized by the 

same clusters).
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 The Planar Maximally Filtered Graph


€ 

N =100 (NYSE)
daily returns 
1995 -1998
T =1011

M. Tumminello, T. Di Matteo, T. Aste and R.N. M., PNAS USA 102, 10421 (2005)
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It is still much less than the complete network!!!!


SNS - Pisa
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But more than the minimum spanning tree


SNS - Pisa




OCS


24/3/09
 30


Loops are present in the PMFG


When g=0, the topological constraints allows the observation of

cliques of 3 and 4 vertices.


BAC


JPM
 MER


MOB


XON


CHV
 ARC


SNS - Pisa




OCS


24/3/09
 31


Focusing on the technology cluster
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How to assess the stability of the information 

filtered out?
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A validation based on bootstrap


1.567
 0.789
 0.842
 … -0.234


0.113
 1.123
 -0.002
 … 0.198


1.065
 -1.962
 0.567
 … 1.785


0.113
 1.123
 -0.002
 … 0.198


0.479
 -1.828
 -2.041
 … -0.193


…
 …
 …
 … …


0.479
 -1.828
 -2.041
 … -0.193


0.113
 1.123
 -0.002
 … 0.198


1.567
 0.789
 0.842
 … -0.234


1.065
 -1.962
 0.567
 … 1.785


1.112
 0.998
 -0.424
 … 2.735


-0.211
 0.312
 -0217
 … 0.587


…
 …
 …
 … …


0.479
 -1.828
 -2.041
 … -0.193


Data Set
 Pseudo-replicate Data Set


t1


t2


t3


t4


t5


…

T


e1
 e2
 e3
 … en
 e1
 e2
 e3
 … en


M surrogated data matrices are constructed, e.g. M=1000.


24/3/09
 SNS - Pisa




OCS


34


Bootstrap value of nodes of hierarchical trees


ALCA
 bootstrap value distribution 
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Statistical reliability of the minimum 
spanning tree


€ 

N = 300 (NYSE)
daily returns 
2001- 2003
T = 748

M. Tumminello, C. Coronnello, S. Miccichè, F. Lillo and R.N.M., Int. J. Bifurcation Chaos 17, 
2319-2329 (2007). 
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Bootstrap vs correlation


€ 

N = 300 (NYSE)
daily returns 
2001- 2003
T = 748

For Gaussian series:


€ 

σρ =
1− ρ2

T − 3
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The Hierarchically Nested Factor Model (HNFM)


A factor is associated to each node 


€ 

xi(t) = γαh
f (αh )(t)

αh ∈G(i)
∑ + 1− γαh

2

αh ∈G( i)
∑ εi(t)

αh-th factor
 Idiosyncratic term


€ 

γαh
= ραh

− ρg(αh )
; γα1 = ρα1

€ 

G(i) = Pedigree of element i,  
           e.g. G(9) = α1,α3,α9{ }
g(αh ) = Parent of node αh,  
             e.g. g(α7) =α2

  

€ 

xi ⋅ x j = γαh

2

αh ∈G( i)G( j )
∑ = ραk

= ρij
<

€ 

e.g. x1 ⋅ x4 = γα2

2 + γα1

2 = ρα2
− ρα1

+ ρα1
= ρα2

€ 

C< = (ρij
< )
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M. Tumminello, F. Lillo, R.N. Mantegna, Hierarchically nested factor model from multivariate data, 

EPL 78 (3), Art. No. 30006 (2007).
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A simple hierarchically nested model


C =
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Spectral Analysis


€ 

λ± =
1
2
2 + q+ ± (q−

2 + 4 n1 n2 ρM
2)1/ 2[ ]

2 large eigenvalues


2 corresponding 

eigenvectors


€ 

q± = (n1 −1)ρ1 ± (n2 −1)ρ2   and    y = q− /(4 n1 n2 ρM
2)1/ 2

  

€ 

where  u± =1/ 2n1 1+ y 2
 y 1+ y 2[ ] ,   v ± = ±1/ 2n2 1+ y 2 ± y 1+ y 2[ ],

24/3/09
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A problem of the HC method: HNFM by hierarchical clustering 
always detects n-1 factor�
A solution: Evaluation of node statistical uncertainty and node 
reduction


3 nodes (factors)
 99 nodes (factors)


The HNFM allows to simulate the system. We use hierarchical

clustering to investigate the simulations so that we can 

estimate the ability of hierarchical clustering to detect a 

hierarchically nested system. 
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Self-consistent node-factor reduction


•   Select a bootstrap value threshold bt .


•   For each node       : 


   If                       then  merge the 


   node       with his first ancestor 


    αq (in the path to the


   root) such that                    .


•   How to chose bt ?

In a self-consistent way!


€ 

b(αk ) < bt

€ 

b(αq ) ≥ bt

€ 

αk

€ 

αk

HNFM correctly detects the 

model when bt>0.70
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Daily return of 100 stocks traded at NYSE in the time period

1/1995-12/1998 (T=1011)


23 nodes


19

9


€ 

Sn =  sensitivity;    Sp =  specificity

Node reduction for an empirical system
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€ 

Sn =
TP

TP + FN

€ 

Sp =
TN

TN + FP
24/3/09
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Interpretation of factors


HNFM associated to the reduced dendrogram with 23 nodes.

Equations for stocks belonging to the Technology and Financial

Sectors.


Technology Factor


Financial Factor
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C< is a correlation matrix


€ 

C< = (ρij
< )

ρij
< = ραk

€ 

αkwhere       is the first node where elements i 

and  j merge together.


€ 

If ρij
< ≥ 0 ∀ i, j then C< is positive definite.

€ 

Indeed C< is the correlation  matrix 
of  a  suitable  factor  model  named 
Hierarchically Nested Factor Model.

M. Tumminello, F. Lillo and R.N.M., EPL 78, 30006 (2007). 


24/3/09
 SNS - Pisa




OCS


45


Filtered correlation matrices 


We consider two filtered correlation matrices,                        ,

obtained by applying the Average Linkage Cluster Analysis and 
the Single Linkage Cluster Analysis to the empirical correlation 
matrix respectively.


For comparison we also consider filtered correlation matrices 

obtained with Random Matrix Theory (RMT) and shrinkage

technique.


€ 

CALCA
<  and CSLCA

<

The filtered matrix obtained with the shrinkage technique is

defined as


CSHR(α)= α T + (1-α) C
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How to quantify the amount of information filtered from the

correlation matrix?


How to quantify the stability of the filtered information?
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Kullback-Leibler distance


For multivariate Gaussian distributed random variables we have[1]:


,       where p and q are pdf’s.


Minimizing the Kullback-Leibler distance is equivalent to

maximize the likelihood in the maximum likelihood factor 

analysis.

[1]M. Tumminello, F. Lillo and R.N.M., PRE 76, 031123 (2007). 
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Expectation values


€ 

where Σ is the true correlation matrix of the system while  S1 and S2

are sample matrices of Σ from two independent realizations of length T.

24/3/09
 SNS - Pisa


The three expectation values are independent from Σ, 

i.e they do not depend from the underlying model
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Kullback vs Frobenius


• The expectation values of Frobenius distance are model 

  dependent, e.g. for a system of n=2 Gaussian random variables 

  with correlation coefficient ρ it is


€ 

E F Σ,S( )[ ] = E tr Σ−S( ) Σ−S( )T[ ] 
  

 
  

=
2
π T

1− ρ2( )

   where Σ is the model correlation matrix of the system while 

   S is a sample correlation matrix obtained from a realization 

   of length T. 
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Kullback-Leibler distance


The Kullback-Leibler distance can also be analytically calculated 
random variables following a multivariate Student’s t-distribution1:


€ 

If  µ
n

<<1 then :

1G. Biroli, J.-P. Bouchaud, M. Potters, Acta Phys. Pol. B 38, 4009 (2007), 
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Gaussian vs Student
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€ 

KG Σ1,Σ2( ) =
1
2
log

Σ2
Σ1

 

 
 

 

 
 + tr Σ2

−1Σ1( ) − n
 

 
 
 

 

 
 
 

€ 

KS Σ1,Σ2( ) =
1
2
log

Σ2
Σ1

 

 
 

 

 
 + n log

tr Σ2
−1Σ1( )
n

 

 
 
 

 

 
 
 

 
 
 

  

 
 
 

  

€ 

If Σ1 ≅ Σ2 ⇒  KG Σ1,Σ2( ) ≅KS Σ1,Σ2( )



OCS

Comparison of filtering procedures


24/3/09
 SNS - Pisa
 52


Σ


S1


S2

F1
 F2


T


K
(Σ,S

1 )=f(n,T)


K(S2, F2)


K
(S

1,  F
1 )


K(F1, F2)


S1 and S2 are sample 
correlation matrices 
estimated from inde-

pendent realizations/
bootstrap-replicas of 
the system. 


F1 and F2 are matrices 
filtered from S1 and S2

respectively.


Σ is the true 
correlation matrix of 
the system.




OCS


53


Comparison of filtered correlation matrices 
(block model)


Block diagonal model

with 12 factors.


N=100, 

T=748.


Gaussian random 

Variables.


M. Tumminello, F. Lillo and R.N.M., Acta Physica Polonica B 38, 4009-4026 (2007).
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HNFM 

with 23 factors.


N=100, 

T=748.


Gaussian random 

variables.


Comparison of filtered correlation matrices 
(HNFM model)
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Comparison of filtered correlation matrices 
(empirical data)


€ 

N = 300 (NYSE)
daily returns 
2001- 2003
T = 748
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Another empirical system[1,2]


Inventory variation of market members trading 

an asset at the Spanish Stock Market 


[2] Lillo F, Moro E, Vaglica G, R.N.M., NEW JOURNAL OF PHYSICS 10, 043019 (2008)  


[1] Vaglica G, Lillo F, Moro E, R.N.M., PHYSICAL REVIEW E 77, 036110 (2008) 
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vi t( ) ≡ εi s( )
s= t

t+τ

∑ pi s( )Vi s( )

57 

  Inventory variation =  the value (i.e. price times volume) 
of an asset exchanged as a buyer minus the value exchanged as a 
seller in a given time interval.


price
 volume
sign

+1 for buys

-1 for sells


In this talk, we investigate the τ = 1 trading day


Investigated variable
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Inventory variation 
correlation matrix 

obtained by sorting 
the market members 
in the rows and 
columns according 
to their correlation 
of inventory 
variation with price 
return


BBVA 2003


R


T


U
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The hierarchical tree
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The best filtering procedure we find is 

the one from principal component analysis
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 The empirical findings on the daily data suggest the following 
agent (market member) based model


price return
 idiosyncratic noise


γi >0
 trending market members (ex: momentum 

 strategies);

γi <0 
 reversing market members (ex: contrarians’ 

 strategies);

γi ≈0 
 uncategorized market members.


see also, Lillo and R.N.M., Phys. Rev. E 72, 016219 (2005)


Empirical data are compatible with a one-factor 

model of inventory variation dynamics


24/3/09
 SNS - Pisa




OCS


62


Conclusions

We describe the structure of an empirical correlation matrix by 
using hierarchical trees and correlation based networks. 


We estimate the statistical reliability of links in hierarchical 
trees and correlation based networks by using a bootstrap 
based approach. 


We show how to model hierarchies detected by hierarchical 
clustering in terms of a factor model, i.e. the hierarchically 
nested factor model.


We use the Kullback-Leibler distance in order to compare 
different techniques used to filter the most stable information 
of  correlation matrices. 
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OCS website: http://ocs.unipa.it 

Thank you!
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