
Pisa. April 2009. PLAN OF THE TALK

The talk is limited to Analysis and Prediction of Macroeconomic Time Series.

Part I. Standard techniques (small-dimensional). ARMA and VAR models

Stationary processes.

Wold representation theorem.

ARMA models.

Vector processes. VAR models.

Spectral density, filters, principal components.

Part II. Factor models (large-dimensional).

Dynamic approach.

Static approach.

Work in progress.
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I. Stationary processes.

Second-order, discrete-time stationary processes:

E(xt) = µ, E[(xt − µ)(xt−k − µ)] = γk

Both moments are independent of t.

In order to apply the theory of stationary processes it assumed that macroeconomic

time series become stationary by suitable transformations, e.g.

xt = a + bt + Ct, xt − xt−1 = k + Ht
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I. Stationary processes.

Examples:

ut is a white noise if µ = 0 and γk = 0 for k 6= 0.

Moving averages of a white noise: xt =
∑∞

h=−∞ akut−k, under
∑

a2
h < ∞.

Linearly deterministic processes, e.g. xt = A, where A is a stochastic variable.
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I. Stationary processes. Wold representation theorem

The best linear prediction of xt, based on its past values, with respect to the mean

square criterion is the projection of xt on the space spanned by its past values:

xt = Proj(xt | xt−1, xt−2, . . .) + ut,

which, under reasonable assumption can be written as

xt = [a1xt−1 + a2ut−2 + · · · ] + ut.

The process ut is called the innovation of xt and is a white noise.
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I. Stationary processes.

Again the projection:

xt = [a1xt−1 + a2ut−2 + · · · ] + ut.

Wold representation:

xt = [ut+b1ut−1+b2ut−2+· · · ]+dt, dt ⊥ us, dt = Proj(dt | dt−1, dt−2, . . .)

the first being the linearly non-deterministic component, the second deterministic.

It is assumed that dt is zero for macroeconomic time series, so that we restrict our

analysis to

xt = ut + b1ut−1 + b2ut−2 + · · ·
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I. Stationary processes.

The most popular model in this class is the ARMA (AutoRegressiveMovingAver-

age):

xt − α1xt−1 − · · · − αpxt−p = ut + β1ut−1 + · · · + βqut−q

also written as

(1 − α1L − · · · − αpL
p)xt = (1 + β1L + · · · + βqL

q)ut

or

α(L)xp = β(L)ut

xt is a moving average

xt = α(L)−1β(L)ut = ut + δ1ut−1 + δ2ut−2 + · · ·
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I. Stationary processes.

xt is a moving average

xt = α(L)−1β(L)ut = ut + δ1ut−1 + δ2ut−2 + · · ·

The coefficients δk decline geometrically.

Incidentally, the process

zt = ut + 2−1ut−1 + 3−1ut−2 + · · ·

is not an ARMA.
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I. Stationary processes.

Inverting β(L) we get

β(L)−1α(L)xt = ut

that is

xt = [A1xt−1 + A2xt−2 + · · · ] + ut

or

x̂t = A1xt−1 + A2xt−2 + · · ·

which is the prediction equation.
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I. Stationary processes.

The second basic theorem is the spectral representation theorem

xt = lim
n→∞

n
∑

k=0
Ake

iθkt

with θk ∈ [−π π]. Moreover

var(Ak) = f x(θk)(θk+1 − θk)

where

f x(θ) =
1

2π

∞
∑

k=−∞
γx

ke−ikθ,

the Fourier transform of {γx
k}. Of course

γx
h =

∫ π

−π
eihθf x(θ)dθ
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I. Stationary processes.

Again:

xt = lim
n→∞

n
∑

k=0
Ake

iθkt

with θk ∈ [−π π]. Moreover

var(Ak) = f x(θk)(θk+1 − θk)

Interpretation of the spectral density.
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I. Stationary processes.

Linear filtering:

yt = b(L)xt =
[

∑

bkL
k

]

xt =
∑

bkxt−k.

Then

f y(θ) = |b(e−iθ|2f x(θ)

This is the basis for construction of filters in the frequency domain. The most

famous is the band-pass filter

b(θ) =















1 if |θ| ≤ θ∗

0 if |θ| > θ∗

Take the Fourier expansion of b

b(θ) =
∞
∑

k=−∞
bke

−ikθ, bh =
1

2π

∫ π

−π
eihθb(θ)dθ =

1

2π

∫ θ∗

−θ∗
eihθdθ
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I. Stationary processes.

Take the Fourier expansion of b

b(θ) =
∞
∑

k=−∞
bke

−ikθ, bh =
1

2π

∫ π

−π
eihθb(θ)dθ =

1

2π

∫ θ∗

−θ∗
eihθdθ

The band pass filter is then obtained as

∑

bkL
k
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I. Stationary processes.

Extension to n-dimensional processes xt = (x1t x2t · · · xnt).

Definition. Autocovariances are n × n matrices Γk.

White noise: Γk = 0 if k 6= 0.

Moving averages:
∑

akut−k.

Wold Theorem.

ARMA modeling.

VAR modeling:

x1t = b11,1x1,t−1 + b11,2x1,t−2 + · · · + b11,px1,t−p + · · · + b1n,1xn,t−1 + b1n,2xn,t−2 + · · · + b1n,pxn,t−p + u1t
...

xnt = bn1,1x1,t−1 + bn1,2x1,t−2 + · · · + bn1,px1,t−p + · · · + bnn,1xn,t−1 + bnn,2xn,t−2 + · · · + bnn,pxn,t−p + unt
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I. Stationary processes.

Spectral density:

f x(θ) =
1

2π

∞
∑

k=−∞
Γx

ke
−ikθ,

the Fourier transform of {Γx
k}. Of course

Γx
h =

∫ π

−π
eihθf x(θ)dθ

If B(L) is a m × n matrix filter

yt = B(L)xt,

then

f y(θ) = B(e−iθ)f x(θ)B′(eiθ)
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I. Stationary processes.

An interesting prediction problem. Back to the band-pass filter

yt = b(L)xt,

where xt is for example the industrial production index.

Since the filter b(L) is infinite and symmetric, yt is less and less accurate when

we approach the end of the sample. But we may be desperately interested in the

end-of-sample values of yt: what is happening to the economy, meaning what is

happening to medium-long run component of the economy? We do not care for

short-run oscillations. This is of course a prediction problem. It can be solved either

by an ARMA model for xt, or by predicting xt by means of other macroeconomic

variables. These variables should be leading with respect to xt, so that they proxy

future values of xt. Etc.
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II. The Dynamic Factor Model

This part is based upon:

Forni, M., D. Giannone, M. Lippi and L. Reichlin \Opening the Black Box: Structural

Factor Models vs Structural VAR's, Mimeo, 2006.

Forni, M., M. Hallin, M. Lippi and L. Reichlin \The Generalized Dynamic Factor

Model: One-Sided Estimation and Forecasting", JASA, 2005.

Forni, M., M. Hallin, M. Lippi and L. Reichlin \The Generalized Dynamic Factor

Model: Consistency and Rates" , Journal of Econometrics, 2004, 119, 231-

255.
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The talk is based upon

Forni M., M. Hallin, M. Lippi and L. Reichlin \Coincident and Leading Indicators for

the EURO Area" , The Economic Journal, 2001, 111 (471).

Forni M. and M. Lippi\The Generalized Dynamic Factor Model: Representation

Theory", Econometric Theory, 2001, 17.

Forni M., M. Hallin, M. Lippi and L. Reichlin \The Generalized Dynamic Factor

Model: Identification and Estimation", Review of Economics and Statistics,

2000, 82(4).

Forni, M. and L. Reichlin, \Let's get real: a factor analytic approach to disaggre-

gated business cycle dynamics", Review of Economic Studies, 1998.

Forni, M. and M. Lippi, Aggregation and the Microfoundations of Dynamic Macroe-

conomics, Oxford University Press, 1997.
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II. The Dynamic Factor Model

xit = χit + ξit = bi(L)ut + ξit

= bi1(L)u1t + bi2(L)u2t + · · · + biq(L)uqt + ξit.

{ for i = 1, 2, . . . , n; typically n is huge; consistency results are obtained for T ,

the number of observations for each series, and n, tending to infinity

{ q is very small as compared to n in empirical applications

{ χit are the common components; ujt the common shocks; the vector ut is an

orthonormal white noise

{ ξit are the idiosyncratic components; ξit ⊥ ujτ for all i, j, t, τ

{ the filters bij(L) are square summable

{ the vectors χχχnt = (χ1t · · · χnt) and ξξξnt = (ξ1t · · · ξnt) are stationary
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Common components

χit = bi1(L)u1t + bi2(L)u2t + · · · + biq(L)uqt

We assume that the common components are pervasive. This will be formalized

in an assumption. For the moment, suppose for example that

χit = biut.

Then pervasiveness means that

∞
∑

i=1
b2
i = ∞.
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Common components. Technical Assumption

Let ΣχΣχΣχ
n(θ) be the spectral density of χχχnt and

λ
χ
1n(θ) λ

χ
2n(θ) · · · λχ

nn(θ)

its eigenvalues in decreasing order of magnitude. Then

λ
χ
1n(θ) λ

χ
2n(θ) · · · λχ

qn(θ)

diverge as n → ∞ for almost all θ ∈ [−π π].

(Note however that all the eigenvalues

λ
χ
q+1,n(θ) λ

χ
q+2,n(θ) · · · λχ

nn(θ)

vanish for all θ)

In the example χit = biut we have λ1n =
∑n

i=1 b2
i .
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Idiosyncratic components

Strictly idiosyncratic

ξit ⊥ ξjτ for all i, j, i 6= j, t, τ .

We do not need so much. Let ΣΣΣξ
n(θ) be the spectral density of ξξξnt. We assume

that λ
ξ
1n(θ) < Λ for all n.

Local correlations among idiosyncratic variables are allowed.
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Estimation. Example (all you need to know to understand everything)

Assume the elementary example

xit = biut + ξit.

Take the average
1

n

n
∑

i=1
xit =





1

n

n
∑

i=1
bi



 ut +
1

n

n
∑

i=1
ξit

The variances are

var
1

n

n
∑

i=1
xit ≤





1

n

n
∑

i=1
bi





2

σ2
u +

1

n2
n max

i
varξit = b

2
nσ

2
u +

1

n
M

Thus the average of the x's converges in mean square to ut.
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Example (continued)

Back to

var
1

n

n
∑

i=1
xit ≤





1

n

n
∑

i=1
bi





2

σ2
u +

1

n2
n max

i
varξit = b

2
nσ

2
u +

1

n
M

What if

bn → 0

This problem is solved using principal components of the x's
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Assumptions so far are:

1. The first q eigenvalues of ΣΣΣχ
n(θ) diverge

2. The first eigenvalue of ΣΣΣξ
n(θ) is bounded

Note that 1 and 2 refer to unobservable variables. The following assumption refers

directly to the x's

A. The first q eigenvalues of ΣΣΣx
n(θ) diverge, whereas the (q + 1)-th is bounded.
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A. The first q eigenvalues of ΣΣΣx
n(θ) diverge, whereas the (q + 1)-th is bounded.

Theorem

If Assumption A holds then xit has a factor structure with q common shocks. The

converse also holds.

Thus the spectral density of the x's is sufficient to reveal all about the factor

structure.

Moreover, The common components χit are identified. Not the shocks of course.
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Estimation

Principal components in the frequency domain and their corresponding filters

p1n(θ), p2n(θ), . . . , pqn(θ)

Inverse Fourier transforms

p
1n

(L), p
2n

(L), . . . , p
qn

(L)

As n → ∞,

p
jn

(L)xnt

converges to the space spanned by ut.
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Estimation (continued)

The common components are estimated by projecting the x's on the principal

components

χ̂
(n)
it = proj(xit|space spanned by p

jn
(L)xnτ , for j = 1, . . . , q, τ ∈ Z)

The following is the implicit estimate of the spectral density matrix of the common

components:

Σ̂ΣΣ
χ

n(θ) = λx
1n(θ)p′

1n(θ)p1n(θ)+λx
2n(θ)p′

2n(θ)p2n(θ)+· · ·+λx
qn(θ)p′

qn(θ)pqn(θ)
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Main problem with frequency domain approach

Some more detail on the eigenvectors and their Fourier series

p1n(θ) =
∞
∑

k=−∞
a1n,ke

−ikθ, a1n,k =
1

2π

∫ π

−π
eikθp1n(θ)dθ

p
1n

(L) =
∞
∑

k=−∞
a1n,kL

k

In general the filter p
1n

(L) is two sided. The estimates are very good within the

sample, but not suited for forecasting.

28



The static method

Rewrite the model

xnt = bn(L)ut + ξξξnt.

Suppose that

bn(L) = b0n + b1nL + · · · + bsnL
s,

the matrix bnj being nested in bmj for m > n. A finite moving average.

Then, defining

ft = (u′
t u′

t−1 · · · u′
s)

′, Bn = (b0n b1n · · ·bsn),

the model can be written in static form

xnt = Bnft + ξξξnt

More in general, the static method applies when the space spanned by the variables

χit is finite dimensional.
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The static method (continued)

xnt = Bnft + ξξξnt

It is important to distinguish between the static method and the static model.

If the model is static then ft is a white noise. Otherwise the spectral density of ft

is not trivial.
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The static method. Estimation.

Estimation based on the static method employs the principal components of the

x's in the time domain. More precisely, consider the first r eigenvalues and cor-

responding eigenvectors of the variance-covariance matrix of the x's, where r is

the dimension of ft.

P1n, P2n, . . . , Prn

The principal components

Pjnxnt

for j = 1, . . . , r, converge to the space spanned by the factors ft.
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The static method. Estimation.

Moreover, the common components are estimated as

χ
(n)
it = proj(xit|space spanned by Pjnxnt, for j = 1, 2, . . . , r)

and the estimated variance-covariance matrix of the common components is

Γ̂ΓΓ
χ

n = µx
1nP

′
1nP1n + µx

2nP
′
2nP2n + · · · + µx

rnP
′
rnPrn
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The static method (continued)

Example

xit = bi0ut + bi1ut−1 + ξit, q = 1, r = 2

In this case, the dynamic method employs the first eigenvector of the spectral

density. The static method employs the first two eigenvectors of the variance-

covariance matrix.
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Literature

Static method

Stock, J.H. and M.W. Watson (2002a). Forecasting using principal components

from a large number of predictors, Journal of the American Statistical

Association 97, 1167-79.

Stock, J.H. and M.W. Watson (2002b). Macroeconomic forecasting using diffusion

indexes. Journal of Business and Economic Statistics 20, 147-162.

Kapetanios, G. and M. Marcellino (2005). A Comparison of Estimation Methods

for Dynamic Factor Models of Large Dimension, Mimeo.

Determining the number of factors

Bai, J. and S. Ng (2002). Determining the number of factors in approximate factor

models. Econometrica 70, 191-221.

Hallin, M. and R. Liska (2006) Dynamic factor Analysis: The number of Factors

and Related Issues, ULB Working Paper.
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The two-step method

Forni, M., M. Hallin, M. Lippi and L. Reichlin \The Generalized Dynamic Factor

Model: One-Sided Estimation and Forecasting", JASA, 2005.

Same finite-dimension assumptions as above. Consider again the static projection

χ
(n)
it = proj(xit|space spanned by Pjnxnt, for j = 1, 2, . . . , r)

We need the covariances between xit and the estimated factors Pjnxnt. These

are trivially obtained from the covariance matrix of the x's.

The two-step method employs the covariances of the common components that

result from Σ̂ΣΣ
χ

n(θ), i.e. the spectral density matrix of the common components.
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The two-step method (continued)

Back to the dynamic method:

Σ̂ΣΣ
χ

n(θ) = λx
1n(θ)p′

1n(θ)p1n(θ)+λx
n2(θ)p′

2n(θ)p2n(θ)+· · ·+λx
qn(θ)p′

qn(θ)pqn(θ)

The covariances of the common components result from

Γ̂ΓΓ
χ

n,k =
∫ π

−π
eikθΣ̂ΣΣ

χ

n(θ)dθ.

The covariances of the idiosyncratic components result as differences Γ̂ΓΓ
ξ

n,k =

Γ̂ΓΓ
x

n,k − Γ̂ΓΓ
χ

n,k.

Now construct generalized principal components

Q1n, Q2n, . . . , Qrn

where Qkn is obtained as the solution of

max
a

aΓ̂ΓΓ
χ

na
′
subject to aΓ̂ΓΓ

ξ

na
′ = 1 and aΓ̂ΓΓ

ξ

nQhn = 0 for h < k
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The two-step method (continued)

Once the generalized principal components are obtained we can project

χ
(n)
it = proj(xit|space spanned by Qjnxnt, for j = 1, 2, . . . , r)

This projection can be computes by replacing the covariances between the x's

with the estimated covariance between the χ's, which proves to be a consideable

advantage.

Forecast, both with the static and the two-step method is obtained by projecting

xi,t+h on the space spanned by the static factors at time t.
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Dynamic vs static method

Specify the example

x1t = ut + ξ1t

x2t = ut−1 + ξ2t
...

With dynamic method we use the filter

(1 F 1 F · · · )

With the static method we use the two averages

(1 0 1 0 · · · ) (0 1 0 1 · · · )

Different efficiency.
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Dynamic vs static method (continued)

The static method can be applied to models that are more complicated than the

moving average. However, we should keep in mind that a model as simple as

xit =
1

1 − αiL
ut + ξit

cannot be put in static form. This motivates an attempt to determine a one-sided

representation of the common components in the general case. This will be the

last part of the talk.
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Forecast. Empirical results using the static and the two-step method.

Boivin, J. ans S. Ng (2005) Understanding and Comparing Factor-Based Forecasts,

International Journal of Central Banking (forthcoming)

D'Agostino, A. and D. Giannone (2005) Comparing alternative predictors based on

large-panel dynamic factor models, ECARES, ULB, Working Paper.

Reijer, A. den (2005) Forecasting Dutch GDP using Large Scale Factor Models,

De Nederlandsche Bank, Research Division.
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One-sided representation in the general case.

We start with a consistent estimate of the spectral density matrix of the common

components

Σ̂ΣΣ
χ

n(θ)

This is not a parametric estimation. We can have it for each point in [−π π].

Suppose you want to obtain the Wold representation. You may think of factorizing

the spectral density following Wiener and Masani, but that method is confined to

non-singular spectral densities, whereas our case is one of extreme singularity: a

big dimension n with a small rank q.

Or, you may think of using the rational-spectrum factorization technique. But you

should first fit a rational spectrum to Σ̂ΣΣ
χ

n(θ).
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One-sided representation

Alternatively, you may think of approaching the problem by estimating a VAR

χχχnt = A1χχχn,t−1 + A2χχχn,t−2 + · · · + wt

All the covariances nedeed to compute the projection can be obtained from Σ̂ΣΣ
χ

n.

However, we must insist that χχχnt is a highly singular vector, so that the projection

above is typically not unique. For example, let

χit = ut for i odd, = ut−1 for i even

(we have already seen this example). In this case

χ1t = ut

χ2t = χ1,t−1

χ3t = ut

χ4t = χ1,t−1 but also = χ3,t−1
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One-sided representation. A natural assumption

We need a method to select one among all the autoregressive representations.

Some considerations preliminary to the introducion of an assumption. Suppose for

the moment that q = 1. Consider the projection

χχχnt = proj(χχχnt|χχχn,t−1, χχχn,t−2, . . . ) + wnt, wnt = (c1 c2 · · · cn)′ut

The Wold representation of χχχnt is

χχχnt = bn(L)ut

with ut identified up to a constant multiplicative term. Consider the rational-spectrum

case

χ1t =
α1(L)
β1(L)

ut

χ2t =
α2(L)
β2(L)

ut

...
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One-sided representation. Assumption

(continued) Consider the rational-spectrum case

χ1t =
α1(L)
β1(L)

ut

χ2t =
α2(L)
β2(L)

ut

...

If α1(L) and α2(L) have no root in common within the unit disk, then ut is fun-

damental for the vector (χ1t χ2t). This is tantamount to saying that if we take the

projection

χjt = proj(χjt|χ1,t−1, χ2,t−1, χ1,t−2, χ2,t−2, . . . ) + zjt, for j = 1, 2

we have zjt = djut, that is

The space spanned by past values ofχ1t and χ2t coincides with the space spanned

by past values of all the χ's.
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Assumption F. The space spanned by past values of χit and χjt, any i 6= j,

coincides with the space spanned by past values of all the χ's.

The typical example is the MA(1) model

χjt = bj0ut + bj1ut−1,

under reasonable heterogeneity of the couples (bj0 bj1).

Note that we are not assuming fundamentalness of any single-component repre-

sentation

χjt = bj0ut + bj1ut−1 + · · ·

We only require that as soon as the number of the selected χ's exceeds the

dimension q, which is 1 for the moment, the heterogeneity of the coefficients allows

recovering ut by means of present and past of the selected χ's.
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One-sided representation. We obtain a piecewise VAR:











































c11(L) c12(L) 0 0 · · · 0

c21(L) c22(L) 0 0 · · · 0

0 0 c33(L) c34(L) · · · 0

0 0 c43(L) c44(L) · · · 0
...

0 0 · · · · · · cn−1,n−1(L) cn−1,n(L)

0 0 · · · · · · cn,n−1(L) cnn(L)







































































χ1t

χ2t

χ3t
...

χnt





























=





























w1t

w2t

w3t
...

wnt





























with wit = ciut.

Obviously the autoregressive representation above is not unique.

However, the resulting moving average representation is unique, up to a multiplica-

tive constant. Denoting the autoregressive representation by Cnχχχnt = c′nut,

χχχnt = c′nut+Cnc
′
nut−1+C2

nc
′
nut−2+· · · = D0nut+D1nut−1+D2nut−2+· · ·
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One-sided Representation

Summing up, under Assumption F:

1. Estimation of the spectral density Σ̂ΣΣ
χ

n.

2. Fitting 2-dimensional VAR'sto the couples (1,2), (3,4), etc., so obtainingCnχχχnt =

c′nut, and therefore

χχχnt = c′nut+Cnc
′
nut−1+C2

nc
′
nut−2+· · · = D0nut+D1nut−1+D2nut−2+· · ·

3. Note that the χ's are not observed, so the fitting above means fitting Cn and

cn using the covariances of the χ's obtained from the estimated Σ̂ΣΣ
χ

n. We do not

estimate ut here.
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One-sided Representation

4. Lastly, since χχχnt = xnt − ξξξnt, we have

Cnxnt = c′nut + Cnξξξnt.

An estimate of ut is obtained by

cnCnxnt = (cnc
′
n)ut + cnCnξξξnt.

48



One-sided Representation. Generalization to the case q > 1

Assumption F. The space spanned by past values of χi1,t, χi2,t, . . . , χiq+1,t

coincides with the space spanned by past values of all the χ's.

The motivation goes as above. If

χχχnt = Bn(L)c′nut,

where cn is q × n, is the Wold representation of χχχnt, then considering the vector

At, which contain, say, the first q + 1 of the χ's, the vector ut is not fundamental

for At only if the (q + 1) × q matrix

(bij(L))
i=1,...,q+1;j=1,...,q

has rank less than q somewhere within the unit disk. This means that all the q× q

subamatrices should be singular for at the same z and |z| < 1.
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One-sided Representation. Generalization to the case q > 1

Generalizing the remaining steps is fairly obvious.

1. Estimation of Σ̂ΣΣ
χ

n.

2. Fitting (q + 1)-dimensional VAR's to the (q + 1)-tuples (1, 2, . . . , q + 1),

etc., thus obtaining Cnχχχnt = c′nut, and therefore

χχχnt = c′nut+Cnc
′
nut−1+C2

nc
′
nut−2+· · · = D0nut+D1nut−1+D2nut−2+· · ·

3. As above.

4. Lastly, since χχχnt = xnt − ξξξnt, we have

Cnxnt = c′nut + Cnξξξnt.

An estimate of ut is obtained by

cnCnxnt = (cnc
′
n)ut + cnCnξξξnt.
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One-sided Representation.

The procedure described above has been applied to simulated data.

-q = 1, 2.

-Rational case, low order.

-The estimates of the common component are worse than those obtained using the

dynamic method (two-sided filters), but better than those obtained with the static

method.
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