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Common Dissatisfaction

Lack of relation between theoretical and empirical investigations. . .

Economics consists of theoretical laws which
nobody has verified

and of empirical laws which
nobody can explain.
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The Main Bulding block: Economic Distribution Laws

Economic distributions as steady-state equilibrium:

certain economic distributions are stable over time

we are aware of a continuing movement of the elements which
make up the population in question

This suggests the idea of steady-state equilibrium: “a state of
macroscopic equilibrium maintained by a large number of transitions
in opposite directions” (Feller, 1957)
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An Example

Let us consider two “economic” populations

HUMAN BEINGS FIRMS

total population total number of firms

age-structure size distribution

expected birth and death rates expected gains/losses or ruin plus entry
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The log-normal hypothesis
The Pareto hypothesis

Log-normal behaviour

Let Si the size of firm i and let si = log(Si) its log,

fs(x) = Prob {x < s < x + dx} /dx =
1√

2π σ2
exp(−(x− µ)2

2σ2 ).

Then the log-density has a parabolic behaviour

log(fs(x)) ∼ −(x− x̄)2

Growth rates are uncorrelated with size, their distribution is the same
for small and large firms

fg,s(x, y) = fg(x) fs(y) .
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COMPUSTAT aggregate size distribution
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ISTAT aggregate binned growth rates density
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Kapteyn and Gibrat

Firm size distribution conforms approximately to normality once
plotted on a log scale, how this distribution arises?

Kapteyn and Gibrat started from independence of growth rates on
size. They proposed the Law of Proportionate Effect: equal
proportionate increments have the same chance of occurring in a
given time-interval whatever size happens the firm to have reached.

At a given time t growth is proportional to size

St − St−1 = ηt St−1 ηt independent St−1

In log the relation is additive

st − st−1 = εt ε ∼ i.i.d.(µ, σ2)
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The Law of Proportionate Effect

Law’s strong version: increments are independent and identically
distributed, εt ∼ i.i.d.(µ, σ2).

Law’s weak version: εt follow a stationary (possibly correlated)
process.

Intertemporal iteration leads to an integrated process

s(t + T) = s(t) + ε(t) + ε(t) + . . .+ ε(T − 1) .

Laws’s strong version is analogous to a geometric Brownian motion,
i.e. a diffusion in logs.

Central limit theorem: both strong and (almost) weak Law’s give

lim
t→+∞

ST normal (T µ,T σ2) .



Introduction
Firms size dynamics

An Empirically Based Model of Firm Growth

The log-normal hypothesis
The Pareto hypothesis

The Law of Proportionate Effect

Law’s strong version: increments are independent and identically
distributed, εt ∼ i.i.d.(µ, σ2).

Law’s weak version: εt follow a stationary (possibly correlated)
process.

Intertemporal iteration leads to an integrated process

s(t + T) = s(t) + ε(t) + ε(t) + . . .+ ε(T − 1) .

Laws’s strong version is analogous to a geometric Brownian motion,
i.e. a diffusion in logs.

Central limit theorem: both strong and (almost) weak Law’s give

lim
t→+∞

ST normal (T µ,T σ2) .



Introduction
Firms size dynamics

An Empirically Based Model of Firm Growth

The log-normal hypothesis
The Pareto hypothesis

The Law of Proportionate Effect

Law’s strong version: increments are independent and identically
distributed, εt ∼ i.i.d.(µ, σ2).

Law’s weak version: εt follow a stationary (possibly correlated)
process.

Intertemporal iteration leads to an integrated process

s(t + T) = s(t) + ε(t) + ε(t) + . . .+ ε(T − 1) .

Laws’s strong version is analogous to a geometric Brownian motion,
i.e. a diffusion in logs.

Central limit theorem: both strong and (almost) weak Law’s give

lim
t→+∞

ST normal (T µ,T σ2) .



Introduction
Firms size dynamics

An Empirically Based Model of Firm Growth

The log-normal hypothesis
The Pareto hypothesis

The Law of Proportionate Effect

Law’s strong version: increments are independent and identically
distributed, εt ∼ i.i.d.(µ, σ2).

Law’s weak version: εt follow a stationary (possibly correlated)
process.

Intertemporal iteration leads to an integrated process

s(t + T) = s(t) + ε(t) + ε(t) + . . .+ ε(T − 1) .

Laws’s strong version is analogous to a geometric Brownian motion,
i.e. a diffusion in logs.

Central limit theorem: both strong and (almost) weak Law’s give

lim
t→+∞

ST normal (T µ,T σ2) .



Introduction
Firms size dynamics

An Empirically Based Model of Firm Growth

The log-normal hypothesis
The Pareto hypothesis

The Law of Proportionate Effect

Law’s strong version: increments are independent and identically
distributed, εt ∼ i.i.d.(µ, σ2).

Law’s weak version: εt follow a stationary (possibly correlated)
process.

Intertemporal iteration leads to an integrated process

s(t + T) = s(t) + ε(t) + ε(t) + . . .+ ε(T − 1) .

Laws’s strong version is analogous to a geometric Brownian motion,
i.e. a diffusion in logs.

Central limit theorem: both strong and (almost) weak Law’s give

lim
t→+∞

ST normal (T µ,T σ2) .



Introduction
Firms size dynamics

An Empirically Based Model of Firm Growth

The log-normal hypothesis
The Pareto hypothesis

Weakness of the Gibrat’s Model

At this point two main weaknesses of the “unrestricted” Gibrat’s
model deserve to be highlighted

theoretically, the variance of size tσ2 explodes for t→∞

empirically, we do not observe any increase in the dispersion of
the size distribution

To cope with this drawback it is necessary to introduce a stability
condition to offset the tendency to diffusion. the type of condition
chosen and its interpretation become the distinctive feature of various
theories emanating from the Gibrat’s model.
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Enter Kalecki

Kalecki started from the observation that the variance of the size of all
business firms remains constant over time

1
N

∑
(st + gt)2 =

1
N

∑
(st)2 ,

⇓

2
∑

st gt = −
∑

g2
t . (1)

To assure stability of size-distribution, the random increment should
be negatively correlated with size.

He assumed a linear relation between gt and Xt

gt = −αst + zt , (2)

and proved that the distribution of St is a Normal.
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Behaviour of the upper tail

Let si the size of firm i and let si = log(Si) its log,

Fs(x) = Prob {s ≤ x} = fraction of firms with log(size) ≤ x .

On a log-log scale
log (1− Fs(x)) ∼ −ax

Pareto (Type I) behaviour

1− FS(x)Prob {S > x} =∼ (
S
S0

)−a
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Fortune 500, year 2006
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Estimated power Law

sample size 5% 10% 30%
â 1.74 1.39 1.13
Ŝ0/104 0.68 0.41 0.26

Estimates depend on sample cut-off. They are constrained between 1
and 2.
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The Theoretical Framework

The Islands Model

The market consists of a number of independent submarkets
(islands)

Each market is large enough to support exactly one plant

There exists a set of preexisting business opportunities or
equivalently there’s a constant arrival of new opportunities

These opportunities are independent each other

Firm’s size is measured by the number of opportunities it has
taken up
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Herbert Simon

Herbert Simon is the father of the so-called Empirically Based
Industrial Dynamics.
Gibrat’s RW generates the Log-Normal distribution if all the elements
in the population starts the “walk” at the same time.

Is that plausible? Simon considers a different stochastic process in
which new entrants are an integral part of the process itself.

Economic theory has little to say about the distribution of firm sizes:
1 static cost theory (constant or U-shaped cost curves) provides no

predictions
2 Bain(1956) suggests that above some critical minimum cost

curve for the firm shows virtually constant return to scale
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Simon’s model: assumptions

1 There is a minimum size, Sm, of firms in an industry
2 Size has no effect upon the expected percentage growth of a firm

empirically observed
implied by another empirical fact: constant returns to scale above
a certain minimal threshold (Bain).

3 New firms are being born in the smallest size-class at a constant
rate

Under these assumptions the steady-state distribution of the process
is:

f (S) = ρB(S, ρ+ 1) Yule distribution (3)

and
lim

S→∞
f (S) = ρΓ(ρ+ 1)S−(ρ+1) Pareto tail (4)

Remark: the entry process is crucial!
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Simon’s model: Empirical Validation

The Yule distribution (but also the Log-Normal) generally fits the
data quite well

The observed frequencies are Pareto in the upper tail: Yule
distribution is OK not the Log-Normal

Gibrat’s Law seems verified by data. The story is not simple:
1 Weak and strong Gibrat’s law

2 Sectoral disaggregation
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Simon’s model: Implications for Economic Policy

Concentration ratio: when one fits a distribution function to observed
data on the basis of a theoretical model it is reasonable to ground his
measure of concentration on the parameters of the distribution
function.

In the Simon model there is only one parameter ρ

ρ =
1

1− GN
G

GN is the share of growth of new firms: the same equilibrium
distribution can be obtained with various degrees of mixing, i.e. with
various amounts of firm mobility among size classes.
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Simon Revisited

Critique on the robustness of any empirical regularity on size
distribution: “All families of distributions tried so far fail to describe
at least some industry well”(Schmalansee, 1989)

John Sutton considers the theoretical framework developed by Simon
reversing the question: can we put any restrictions on the shape of the
size distribution?

Rejection of the Gibrat’s Law in favour of a weaker hypothesis: the
probability that the next market opportunity is taken by any currently
active firm is non-decreasing in the size of that firm.

Under these assumption a lower bound to concentration is derived and
used to empirically validate the model.
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Firms Size

We consider Sij(t) is the size of firm i in sector j at time t. We define
the normalized (log) size

sij(t) = log(Sij(t))− < log(Sij(t)) >i (5)

Main results on empirical firms size densities

1 Heterogeneity of shapes across sectors
2 Bimodality and no log-normality
3 Separation core-fringe
4 Paretian upper-tails?
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Firms Growth Rates

We build firms growth rates as the first difference of Sij

gij(t) = sij(t)− sij(t − 1) (6)

Main results on empirical growth rates densities

1 shape is stable over time
2 display similar shapes across sectors
3 look similar to the Laplace
4 present similar width(?)
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The Subbotin Distribution

fS(x) =
1

2ab1/bΓ(1/b + 1)
e−

1
b | x−µ

a |
b

(7)

Mikhail Fyodorovich Subbotin (1883-1966)
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ML Estimation Procedure

We consider:

− log(LS(x; a, b, µ)) =

n log
(

2b1/b a Γ(1 + 1/b)
)

+ (bab)−1
n∑

i=1

|xi − µ|b (8)

and we minimize it with respect to the parameters using a multi-step
procedure.

These ML estimators are asymptotically consistent in all the
parameter space, asymptotically normal for b > 1 and asymptotically
efficient for b > 2.
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Estimates on Italian Sectors

Parameter b Parameter a

Ateco code Sector Coef. Std Err. Coef. Std Err.

151 Production, processing and preserving of meat 0.83 0.05 0.089 0.004

155 Dairy products 0.91 0.07 0.080 0.004

158 Production of other foodstuffs (brad, sugar, etc...) 0.89 0.05 0.097 0.004

159 Production of beverages (alcoholic and not) 0.88 0.06 0.108 0.006

171 Preparation and spinning of textiles 1.19 0.07 0.142 0.005

172 Textiles weaving 1.12 0.06 0.122 0.004

173 Finishing of textiles 1.11 0.06 0.107 0.004

175 Carpets, rugs and other textiles 1.02 0.08 0.118 0.006

177 Knitted and crocheted articles 0.97 0.05 0.124 0.005

182 Wearing apparel 0.92 0.03 0.120 0.003

191 Tanning and dressing of leather 1.12 0.09 0.140 0.007

193 Footwear 1.12 0.05 0.150 0.004

202 Production of plywood and panels 0.98 0.09 0.104 0.007

203 Wood products for construction 0.94 0.08 0.105 0.007

205 Production of other wood products (cork, straw, etc...) 1.31 0.13 0.106 0.006
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Estimates on US Sectors

Parameter b Parameter a

Ateco code Sector Coef. Std Err. Coef. Std Err.

20 Food and kindred products 0.9888 0.0010 0.7039 0.0005

23 Apparel and other textile products 1.0819 0.0027 0.7664 0.0013

26 Paper and allied products 1.0999 0.0024 0.7663 0.0011

27 Printing and publishing 0.9621 0.0015 0.7115 0.0008

28 Chemicals and allied products 1.0164 0.0004 0.7562 0.0002

29 Petroleum and coal products 1.1841 0.0043 0.8370 0.0019

30 Rubber and miscellaneous plastics products 0.9487 0.0018 0.7148 0.0010

32 Stone, clay, glass, and concrete products 1.1023 0.0039 0.7720 0.0018

33 Primary metal industries 1.1254 0.0015 0.7870 0.0007

34 Fabricated metal products 0.9081 0.0013 0.6639 0.0007

35 Industrial machinery and equipment 0.9466 0.0003 0.6761 0.0002

36 Electrical and electronic equipment 0.8989 0.0003 0.6303 0.0001

37 Transportation equipment 1.0033 0.0011 0.7107 0.0005

38 Instruments and related products 0.9722 0.0004 0.6980 0.0002

39 Miscellaneous manufacturing industries 1.0232 0.0022 0.7447 0.0011
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The Theoretical Framework

Observed growth as the cumulative effect of diverse “events”

g(t; T) = s(t + T)− s(t) = ε1(t) + ε2(t) + . . . =
G(t;T)∑

j=1

εj(t)

The Gibrat Tradition: εj are r.v. independent from size s (strong
form: εj are i.i.d.) Limitation: No interaction among firms

The “Islands” Models: Simon introduces Finite number of M
opportunities progressively captured by N firms. G(t; T)
becomes a r.v. Limitation: Equipartition of opportunities among
firms→ Gaussian growth rates
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The Model

Multi-step simulation model

Business Events→Micro-Shocks→ Growth

Self-reinforcing effect in events assignment. Idea of “competition
among objects whose market success...[is] cumulative or
self-reinforcing” (B.W. Arthur)

Discrete time stochastic growth process; at each round a two steps
procedure is implemented:

determine the number of events captured by a firm, G(t; T)
disclose εj j = {1, . . . ,G(t; T)}, i.e. the effect of these events
on firm size
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STEP 1 - The Assignment of Business Events

1 Consider an urn with N different balls, each representing a firm

2

Draw a ball and replace
with TWO of the same kind.
(Here the first draw from an
urn with two types of ball)

A B

A A B A BB

Draw A Draw B

3 Repeat this procedure M times

RESULT: partition of M events on N firms.
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STEP 2 - The Generation of Shocks

From the previous assignment procedure

mi(t) = # of opportunity given to firm i at time t

A very simple relation between “opportunities” and growth:

si(t + T)− si(t) =
mi(t)+1∑

j=1

εj(t) (9)

ε are i.i.d. with a common distribution f (ε).

Run the simulation and collect statistics.
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Simulation Results

Growth rates densities for N = 100 and different values of M.
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Simulation Results - Cont’d

We define D = |Fmodel(x; M,N)− FL(x)| the absolute deviation
between the empirical growth rates distribution (as approximated by
the Laplace) and the distribution predicted by the model. Here D as a
function of the number of firms N and the average number of
micro-shocks per firm M/N.
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Why does the Model work?

The unconditional growth rates distribution implied by this model is
given by

M∑
h=0

P(h; N,M)︸ ︷︷ ︸
Events Distribution

F(x; v0)F(h+1)︸ ︷︷ ︸
Distribution of the sum of h micro-shocks

.

In the assignment procedure above P follows a Bose-Einstein

P(h; N,M) =
P(X)

P(X|m1 = h)
=

(N+M−h−2
N−2

)(N+M−1
N−1

)
while follows a Binomial in the Simon tradition.
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F(x; v0)F(h+1)︸ ︷︷ ︸
Distribution of the sum of h micro-shocks

.

In the assignment procedure above P follows a Bose-Einstein

P(h; N,M) =
P(X)

P(X|m1 = h)
=

(N+M−h−2
N−2

)(N+M−1
N−1

)
while follows a Binomial in the Simon tradition.
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Occupancy Statistics
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Bose-Einstein and binomial with N = 100 and M = 10, 000.
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“Large Industry” Limit

Theorem
Suppose that the micro-shocks distribution possesses the second
central moment σ2

ε <∞. Under the Polya opportunities assignment
procedure the firms growth rates distribution converges in the limit for
N,M →∞ to a Laplace distribution with parameter

√
v/2, i.e.

lim
M,N→∞

fmodel = fL(x;
√

v/2) =
1√
2v

e−
√

2/v |x|

where v = σ2
εM/N.
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Concluding Remarks on the Model

A new stylized fact has been presented

We show its robustness under disaggregation

Our original explanation is based on a general mechanism of
short-horizon “dynamic increasing returns” in a competitive
environment

We provide a “Large Industry” Limit Theorem

Simulations show that “Large” is not so large
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Stochastic processes for dummies

Random Walk: consider discrete equally spaces time-intervals, an
object wanders on an infinite straight line taking at each time a step
leftward or rightward with probability p and 1− p respectively.

The RW considered by Kapteyn and Gibrat is slightly more
complicated:

it in logs, whence the term geometric

the size of the step taken is itself a random variable.
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Stochastic processes for dummies 2

If time-intervals are independent random variables, the resulting
process is said a (marked) Poisson process

Prob {s2, t + T|s1, t} = f{s2 − s1; T} .

If the process happens in continuous time, it can be described using
the notion of Wiener process by the Ito equation

dst = µ dt + σ2dW .
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The Databases

FORTUNE 500 Annual ranking of America’s largest public
corporations as measured by their gross revenue compiled by Fortune
magazine.

COMPUSTAT U.S. publicly traded firms in the Manufacturing
Industry (SIC code ranges between 2000-3999) in the time window
1982-2001. We have 1025 firms in 15 different two digit sectors.

MICRO.1 Developed by the Italian Statistical Office(ISTAT). More
than 8000 firms with 20 or more employees in 97 sectors (3-digit
ATECO) in the time window 1989-1996. We use 55 sectors with
> 44 firms.
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Empirically based Industrial Dynamics

The Law Finding Process (i.e. “Retroduction”)

1 Looking for facts

2 Finding simple generalizations that describe the facts to some
degree of approximation

3 Finding Limiting conditions under which the deviations of facts
from generalization might be expected to decrease

4 Explaining why the generalization “should” fit the facts

5 The explanatory theories generally make predictions that go
beyond the simple generalizations and hence suggest new
empirical tests.



Introduction
Firms size dynamics

An Empirically Based Model of Firm Growth

The distribution of growth rates
A model of growth based on self-reinforcing mechanisms

Empirically based Industrial Dynamics

The Law Finding Process (i.e. “Retroduction”)

1 Looking for facts

2 Finding simple generalizations that describe the facts to some
degree of approximation

3 Finding Limiting conditions under which the deviations of facts
from generalization might be expected to decrease

4 Explaining why the generalization “should” fit the facts

5 The explanatory theories generally make predictions that go
beyond the simple generalizations and hence suggest new
empirical tests.



Introduction
Firms size dynamics

An Empirically Based Model of Firm Growth

The distribution of growth rates
A model of growth based on self-reinforcing mechanisms

Empirically based Industrial Dynamics

The Law Finding Process (i.e. “Retroduction”)

1 Looking for facts

2 Finding simple generalizations that describe the facts to some
degree of approximation

3 Finding Limiting conditions under which the deviations of facts
from generalization might be expected to decrease

4 Explaining why the generalization “should” fit the facts

5 The explanatory theories generally make predictions that go
beyond the simple generalizations and hence suggest new
empirical tests.



Introduction
Firms size dynamics

An Empirically Based Model of Firm Growth

The distribution of growth rates
A model of growth based on self-reinforcing mechanisms

Empirically based Industrial Dynamics

The Law Finding Process (i.e. “Retroduction”)

1 Looking for facts

2 Finding simple generalizations that describe the facts to some
degree of approximation

3 Finding Limiting conditions under which the deviations of facts
from generalization might be expected to decrease

4 Explaining why the generalization “should” fit the facts

5 The explanatory theories generally make predictions that go
beyond the simple generalizations and hence suggest new
empirical tests.



Introduction
Firms size dynamics

An Empirically Based Model of Firm Growth

The distribution of growth rates
A model of growth based on self-reinforcing mechanisms

Empirically based Industrial Dynamics

The Law Finding Process (i.e. “Retroduction”)

1 Looking for facts

2 Finding simple generalizations that describe the facts to some
degree of approximation

3 Finding Limiting conditions under which the deviations of facts
from generalization might be expected to decrease

4 Explaining why the generalization “should” fit the facts

5 The explanatory theories generally make predictions that go
beyond the simple generalizations and hence suggest new
empirical tests.


	Introduction
	Firms size dynamics
	The log-normal hypothesis
	The Pareto hypothesis

	An Empirically Based Model of Firm Growth
	The distribution of growth rates
	A model of growth based on self-reinforcing mechanisms


