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Why factor models?

� Factor models decompose the behaviour of an economic
variable into a component driven by unobservable factors
common to all the variables, and a variable speci�c
(idiosyncratic component)

� Idea of few common forces driving all economic variables is
appealing, e.g. RBC, DSGE literature

� Can handle large datasets -> econometric models based on
large information set

� Relatively easy implementation, often good results in practice,
in particular for forecasting
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Main basic results

� Small factor models can be handled by the Kalman �lter
� Large factor models more problematic, in particular with
persistent factors and cross-correlated errors (otherwise results
in statistical literature)

� The past 10 years have seen major developments: consistent
estimation methods for large N, procedures for selection of
number of factors, etc. see e.g. review in Bai and Ng (2008)

� Several possible applications in �nance (term structure of
interest rate, models for exchange rates, etc) and in
economics (reduced form models of the economy, forecasting,
shock propagation, etc.)
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What is new?

� Estimation of large parametric factor models
� Structural factor models
� Factor augmented Error Correction Models
� Mixed frequency data and ragged edges
� Time-varying models
� Factor GMM estimation

� Block structure
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What will we see?

� Summary of basic results (Bai, Ng (2008))
� Estimation of large parametric factor models (Kapetanios,
Marcellino (2009))

� Time-varying models, Structural FAVAR (Banerjee, Marcellino,
Masten (2008), Eickmeier, Lemke, Marcellino (2009))



Introduction A summary of the basic results Parametric estimation

State space formulation

Xt = Λft + ξt , t = 1, . . . ,T
ft = Aft�1 + ut

where:

- Xt is the N � 1 vector of stationary variables
- ft is r � 1 vector of unobservable factors; Λ, N � r matrix of
loadings

- ξt is the N � 1 vector of idiosyncratic shocks
- ξt and ut are multivariate, mutually uncorrelated, standard
orthogonal white noise sequences;

- jλmax(A)j < 1, jλmin(A)j > 0.
If N is small, r small, limited dynamics -> use the Kalman Filter
(e.g. Stock and Watson 1989)
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The FHLR approach

� The FHLR factor model is

Xt = B(L)ut + ξt ,

where:

- Xt is the N � 1 vector of stationary variables
- ut is the q � 1 vector of i.i.d. orthonormal common shocks
- B(L) = I + B1L+ B2L2 + ...+ BpLp (B(L) = Λ(I � AL)�1
in previous example)

- ξt is the N � 1 vector of idiosyncratic shocks, can be mildly
correlated
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The FHLR approach - DPCA

� Estimation procedure (q known):
- Estimate the spectral density matrix of xt as

ΣT (θh) =
M

∑
k=�M

ΓTk ωk e
�ikθh ,

θh = 2πh/(2M + 1), h = 0, ..., 2M,

- Calculate the �rst q eigenvectors of ΣT (θh), pTj (θh),
j = 1, ..., q, for h = 0, ..., 2M.
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The FHLR approach - DPCA

- De�ne pTj (L) as

pTj (L) =
M

∑
k=�M

pTj ,kL
k ,

pTj ,k =
1

2M + 1

2M

∑
h=0

pTj (θh)e
ikθh , k = �M, ...,M.

- pTj (L)xt , j = 1, .., q, are the �rst q dynamic principal
components of xt (DPCA).

- Regress xt on present, past, and future pTj (L)xt . Fitted value
is the estimated common component of xt , bχt .
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The FHLR approach - Choice of q

� Informal methods:
- Estimate recursively the spectral density matrix of a subset of
xt , increasing the number of variables at each step; calculate
the dynamic eigenvalues for a grid of frequencies, λxθ ; choose q
so that when the number of variables increases the average
over frequencies of the �rst q dynamic eigenvalues diverges,
while the average of the q + 1th does not.

- For the whole xt there should be a big gap between the
variance of xt explained by the �rst q dynamic principal
components and that explained by the q + 1th component.

� Formal methods:
- Information criteria: Hallin Liska (2007, JASA); Amengual and
Watson (JBES)
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The SW approach - PCA
� The Stock and Watson (1998, 2002a,b) factor model is

Xt = ΛFt + ξt ,

where:

- Ft , r � 1, common factors, can be correlated over time
- Λ, N � r , loadings
- ξt , N � 1, idiosyncratic disturbances, can be mildly
cross-correlated

� If p in FHLR is �nite, Ft = (u1t , ..., u1t�p , ..., uqt , ..., uqt�p),
and r = p � q

� Under mild regularity conditions, the (space spanned by the)
factors can be consistently estimated by the �rst r static
principal components of X (PCA).

� Choice of r : fraction of explained variance, information
criteria, testing (Kapetanios 2009, JBES)
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Properties of PCA
� Need both N and T to grow large, and not too much
correlation and heteroskedasticity in idiosyncratic errors.
Consider

xit = λi ft + eit . (1)

Then

1
N

N

∑
i=1
xit = x t =

 
1
N

N

∑
i=1

λi

!
ft +

1
N

N

∑
i=1
eit

lim
N!∞

x t = λft

and x t is consistent for (the space spanned) by ft . Can get
factor loadings by OLS regression of xit on x t , and

lim
T!∞

bλi = λi

λ

So if both N and T diverge bλix t ! λi ft .
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Properties of PCA

� PCA are weighted rather than simple averages, where weights
depend on λi and var(eit ).

� Under general conditions, PCA and estimated loadings have
asymptotic Normal distributions

� If N grows faster than T (such that T 1/2/N goes to zero),
the estimated factors can be treated as true factors when used
in second-step regressions (e.g. for forecasting, factor
augmented VARs, etc.). Namely, there are no generated
regressor problems.

� The asymptotic distribution of factor based forecasts is also
Normal, under general conditions, and its variance depends on
the variance of the loadings and on that of the factors, so you
need both N and T large to get a precise forecast.
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Properties of PCA

� If the factor structure is weak (�rst factor explains little
percentage of overall variance), PCA is no longer consistent
(Onatski (2006)).

� If there is an interest in forecasting a speci�c variable with a
large set of regressors, the latter can be pre-selected based on
their correlation with the target (Boivin and Ng (2006)). Note
that pre-selection also strengthens the factor structure, so less
problems of weak factors.

� If the relationship between the target variable and the
regressors is non-linear, it could be linearized by a kind of
Taylor expansion. In practice, factors could be extracted also
from cross-products of regressors, and/or cross-product of
factors can be used as regressors (Bai and Ng (2008)).
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Properties of PCA

� Statistical procedures to see whether factors correspond to
speci�c macro/�nance variables (Bai and Ng (2006)).

� Similar results when (some) factors are I(1). Methods to
construct factor based panel unit root and cointegration tests
(Bai and Ng (2004, 06))

� PCA can be used for IV/GMM estimation (Bai Ng (2006),
Kapetanios Marcellino (2006)).
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Parametric estimation - quasi MLE

� Kalman �lter produces (quasi-) ML estimators of the factors,
but considered not feasible for large N. No longer true: Doz,
Giannone, Reichlin (2007).

� Model has the form

Xt = ΛFt + ξt , (2)

Ψ(L)Ft = Bηt , (3)

where q-dimensional vector ηt contains the orthogonal
dynamic shocks driving the r factors Ft , and the matrix B is
(r � q)-dimensional.

� For given r and q, estimation proceeds in the following steps:
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Parametric estimation - quasi MLE

1. Estimate bFt by PCA and bΛ by regressing Xt on bFt . The
covariance of bξt = Xt � bΛbFt , denoted as bΣξ, is also
estimated.

2. Estimate a VAR(p) on the factors bFt , yielding bΨ(L) and the
residual covariance of bςt = bΨ(L)bFt , denoted as bΣς.

3. To estimate B, given the number of dynamic shocks q, apply
an eigenvalue decomposition of bΣς. Let M be the (r � q)
matrix of the eigenvectors corresponding to the q largest
eigenvalues, and let the (q � q)-dimensional matrix P contain
the largest eigenvalues on the main diagonal and zero
otherwise. Then, bB = M � P�1/2.

4. The Kalman �lter or smoother then yield new estimates of the
factors, and the procedure can be iterated.
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Parametric estimation - SSS

� Model in Kapetanios and Marcellino (2009):

xnt = Cft +Dut , t = 1, . . . ,T (4)

ft = Aft�1 + But�1

(4) can be written as

X ft = OKX pt + EE ft (5)

where X ft = (x
0
nt , x

0
nt+1, x

0
nt+2, . . .)0, X pt = (x 0nt�1, x

0
nt�2, . . .)0,

E ft = (u
0
t , u

0
t+1, . . .)0, O = [C 0,A0C 0, (A2)0C 0, . . .]0, K =

[B̄, (A� B̄C )B̄, (A� B̄C )2B̄, . . .], B̄ = BD�1.
� Note that (i) X ft = Oft + EE ft and (ii) ft = KX pt . Best linear
predictor of future X is OKX pt . The state is KX pt at time t.
We want an estimator for K.
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Parametric estimation - SSS

� The model X ft = OKX pt + EE ft involves in�nite dimensional
vectors. In practice, use X fs ,t = (x

0
nt , x

0
nt+1,

x 0nt+2, . . . , x 0nt+s�1)
0 and X pp,t = (x

0
nt�1, x

0
nt�2, . . . , x 0nt�p)0.

Then, regress X fs ,t on X
p
p,t , and apply a singular value

decomposition to Γ̂f F̂ Γ̂p , where F = OK and Γ̂f , and Γ̂p are
the sample covariances of X fs ,t and X

p
p,t respectively. These

weights are used to determine the importance of certain
directions in F̂ . Then, the estimate of K is given by

K̂ = Ŝ1/2
m V̂m Γ̂p

�1

where ÛŜV̂ represents the singular value decomposition of
Γ̂f F̂ Γ̂p , Ŝ contains the singular values of Γ̂f F̂ Γ̂p in decreasing
order, Ŝm denotes the matrix containing the �rst m columns
of Ŝ and V̂m denotes the heading m�m submatrix of V̂ .

� The SSS factor estimates are K̂X pt .
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Parametric estimation - SSS

� p must increase at a rate greater than ln(T )α, for some
α > 1, but Np at a rate lower than T 1/3. N is �xed for the
moment. A range of α between 1.05 and 1.5 provides a
satisfactory performance.

� s is required to satisfy sN > m. As N is large this restriction
is not binding, s = 1 is enough.

� Having estimated all the parameters of the model, we can
compute smoothed estimates of the factors. Yet, the starting
point is the SSS estimate of the factors, and the smoother
does not improve.
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Parametric estimation - SSS, T asymptotics

� If we de�ne f̂t = K̂X pt , then f̂t converges to (the space
spanned by) ft . The speed of convergence is between T 1/2

and T 1/3 because p grows. Note that consistency is possible
because ft depends on vt�1. If ft depends on vt , f̂t converges
to Aft�1.

� The asymptotic distribution of
p
T �(vec(f̂ )� vec(Hm f ))

with f = (f1, . . . , fT )0.is N(0,Vf ).
� Once estimates of the factors are available, estimates of the
other parameters (including the factor loadings) can be
obtained by OLS. Bauer (1998) proves

p
T consistency and

asymptotic normality.
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Parametric estimation - SSS, T and N asymptotics

� If Np is o(T 1/3), p is O(T 1/r ), r > 3, then when N and T
diverge f̂t = K̂X pt converges to (the space spanned by) ft .
The speed of convergence is (T/Np)1/2. The intuition is that
the estimator of F = OK in X fs ,t = FX pp,t + EE ft remains
consistent if Np = o(T 1/3).

� With a proper standardization, f̂t remains asymptotically
normal

� We provide information criteria for consistent estimation of
number of factors, similar to Bai and Ng (2002( but with
di¤erent penalty function.
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Factor estimation methods - MC Comparison
� Comparison of PCA, DPCA, MLE and SSS. We use the DGP

xt = Cft + εt , t = 1, . . . ,T
A(L)ft = B(L)ut (6)

where A(L) = I � A1(L)� . . .� Ap(L),
B(L) = I + B1(L) + . . .+ Bq(L), with (N,T ) = (50,50),
(50,100), (100,50), (100,100), (50,500), (100,500) and
(200,50). MLE for (50,50) only, due to computational burden.

� Experiments di¤er for the number of factors (one or several),
the A and B matrices, the choice of s (s = m or s = 1), the
factor loadings (static or dynamic), the choice of the number
of factors (true number or misspeci�ed), the properties of the
idiosyncratic errors (uncorrelated or serially correlated), and
the way the C matrix is generated (standard normal or
uniform with non-zero mean). Five groups of experiments,
each is replicated 500 times.
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Factor estimation methods - MC Comparison

� First set of experiments: a single VARMA factor with di¤erent
speci�cations:

1 a1 = 0.2, b1 = 0.4;
2 a1 = 0.7, b1 = 0.2;
3 a1 = 0.3, a2 = 0.1, b1 = 0.15, b2 = 0.15;
4 a1 = 0.5, a2 = 0.3, b1 = 0.2, b2 = 0.2;
5 a1 = 0.2, b1 = �0.4;
6 a1 = 0.7, b1 = �0.2;
7 a1 = 0.3, a2 = 0.1, b1 = �0.15, b2 = �0.15;
8 a1 = 0.5, a2 = 0.3, b1 = �0.2, b2 = �0.2.
9 As 1 but C = C0 + C1L.
10 As 1 but one factor assumed instead of p + q
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Factor estimation methods - MC Comparison

� Second group of experiments: as in 1-10 but with each
idiosyncratic error being an AR(1) process with coe¢ cient 0.2
(exp. 11-20). Experiments with cross correlation yield similar
ranking of methods.

� Third group of experiments: 3 dimensional VAR(1) for the
factors with diagonal matrix with elements equal to 0.5 (exp.
21).

� Fourth group of experiments: as 1-21 but the C matrix is
U(0,1) rather than N(0,1).

� Fifth group of experiments: as 1-21 but using s = 1 instead of
s = m.
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Factor estimation methods - MC Comparison

� We compute the correlation between true and estimated
common component. We have also computed the spectral
coherency for selected frequencies. We also report the
rejection probabilities of an LM(4) test for no correlation in
the idiosyncratic component. The values are averages over all
series and over all replications.

� Detailed results are in paper: for exp. 1-21, groups 1-3, see
Tables 1-7; for exp. 1-21, group 4, see Table 8 for (N=50,
T=50); for exp. 1-21, group 5, see Tables 9-11.
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Factor estimation methods - MC Comparison, N=T=50

� Single ARMA factor (exp. 1-8): looking at correlations, SSS
clearly outperforms PCA and DPCA. Gains wrt PCA rather
limited, 5-10%, but systematic. Larger gains wrt DPCA,
about 20%. Little evidence of correlation of idiosyncratic
component , but rejection probabilities of LM(4) test
systematically larger for DPCA.

� Serially correlated idiosyncratic errors (exp. 11-18): no major
changes. Low rejection rate of LM(4) test due to low power
for T = 50.

� Dynamic e¤ect of factor (exp. 9 and 19): serious deterioration
of SSS, a drop of about 25% in the correlation values. DPCA
improves but it is still beaten by PCA.. Choice of s matters:
for s = 1 SSS becomes comparable with PCA (Table 9).
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Factor estimation methods - MC Comparison, N=T=50

� Misspeci�ed number of factors (exp. 10 and 20): no major
changes, actually slight increase in correlation. Due to
reduced estimation uncertainty.

� Three autoregressive factors: (exp. 21): gap PCA-DPCA
shrinks, higher correlation values than for one single factor.
SSS deteriorates substantially, but improves and becomes
comparable to PCA when s = 1 (Table 11).

� Full MLE gives very similar and only very slightly better
results than PCA, and is dominated clearly by SSS.
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Factor estimation methods - MC Comparison, other results
� Larger temporal dimension (N=50, T=100,500). Correlation
between true and estimated common component increases
monotonically for all the three methods, ranking of methods
across experiments not a¤ected. Performance of LM tests for
serial correlation gets closer and closer to the theoretical one.
(Tab 2,3)

� Larger cross-sectional dimension (N=100, 200, T=50). SSS is
not a¤ected (important, N > T ), PCA and DPCA improve
systematically, but SSS still yields the highest correlation in all
cases, except exp. 9, 19, 21. (Tab 4,7).

� Larger temporal and cross-sectional dimension
(N=100,T=100 or N=100,T=500). The performance of all
methods improves, more so for PCA and DPCA that bene�t
more for the larger value of N. SSS is in general the best in
terms of correlation(Tab 5,6).

� Uniform loading matrix. No major changes (Tab 8)
� Choice of s. PCA and SSS perform very similarly (Tab 9-11).
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Factor estimation methods - MC Comparison, summary

� DPCA shows consistently lower correlation between true and
estimated common components than SSS and PCA. It shows,
in general, more evidence of serial correlation of idiosyncratic
components, although not to any signi�cant extent.

� SSS beats PCA, but gains are rather small, in the range
5-10%, and require a careful choice of s.

� SSS beats MLE, which is only sligthly better than PCA.
� All methods perform very well in recovering the common
components.



 

Factor forecasts under structural breaks 

 

 

 

 

Based on work with Banerjee and Masten 

 

 



Motivation 

• Factor models useful for forecasting macro variables, large 

literature showing this. Alternative methods available, several 

comparative studies, e.g. Eickmeier Ziegler (2007).  

• Fewer results for the large N small T case, even though factor 

models should be efficient also in this case, and even with N>T. 

Interesting applications include New EU member countries and the 

Euro area. 

• Additional problem for the New EU member countries and the 

Euro area is parameter instability 



What we will see 

 

• Forecasting performance of diffusion index-based methods in 

short samples with structural change, based on: 

o Detailed simulation study: DGPs with different types of 

structural change, relative forecasting performance of factor 

models and traditional time series methods. 

o In the paper also empirical applications for the Euro area and 

Slovenia: relatively short samples of data and structural changes 

are likely. 



 

Main findings 

 

o Coherence b/w the empirical and simulation results.  

o Relatively good performance of factor-based forecasts in short 

samples with structural change. 

 



 

Monte Carlo Experiments 

• Purpose: Understand the sensitivity of the performance of 

factor- and non-factor methods to: 

o T and N 

o various features likely to characterize the data in practice: 

degree of persistence of the factors and the presence of structural 

change 

o The data are generated by a dynamic factor model that allows for 

autoregressive factors, auto- and cross-correlation in idiosyncratic 

errors and time-varying parameters 



 

DGP 

•  ittitit efx += 'λ   

•  rtttttt IAufAf α=+= − ,1   

•  ( ) ( ) ( ) ααααηαα =−+−++= − 0011 ,)1(11 dTIdTd Bttt  

•  ( )




>∀
≤∀=

B

B
B Tt

Tt
TI

,1

,0
   



=

α
α

varyingtime,1

breaking,0
d  

•  ititit Tc ζλλ )/(1 += −  

•  ( ) ( ) titiitit bvbvvbeaL ,1,1
211 −+ +++=−  

•  ttt fy ει += −1'  



 

•  ft and tλ  are 1×r , r=1, …, 5 

•   ite , itv , and tε  are i.i.d. N(0,1), while itζ  and tu  are i.i.d. N(0,Ir). tu  

is independent of ite , itv , tε  and itζ  

• Factor persistence α : 

o stable and fixed  (d = 0 and TB = T,  { }7.0,5.0,3.0=α ) 

o continuously time-varying persistence (d = 1, { }7.0,5.0,3.0=α ) 

o discrete break in persistence of factors (d = 0 and TB = T/2,  

4.01 =α  when 3.00 =α  and 4.01 −=α  when 7.00 =α  -> persistence from 

0.3 to 0.7 and viceversa) 



 

• Case of double variance of factors 

• Time-varying factor loadings ( 5=c ) 

• Cross-correlated idiosyncratic components ( 1,5.0 == ba ) 

• T and N combinations: 

o T = 30, N = 50 relevant for new EU members on quarterly 

frequency 

o T = 50, N = 50 

o T = 50, N = 100  

o T = 150, N = 50 



 

• Models estimated on artificial data: 

o AR(1)-benchmark, AR(3) and AR with BIC selection 

o Factor models: (1) fdi_dgp (not estimated), (2) known factors, 

estimated coefficients, (3) fully estimated, but knowing the 

model’s structure, and (4) lags of factors and y (fdiarlag_bic). 



 

Figure 3: Time-varying lambda - h = 1 
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Summary of Monte Carlo results 

(a) Continuous changes in factor persistence do not seem to 

matter, even in short samples. 

(b) Discrete changes do matter but the impact on relative 

performance of factor methods leads either to improvement or 

deterioration, depending upon the value of the (starting) 

persistence parameter, the direction of the change and the 

magnitude of the T and N dimensions. 

(c) Time varying factor loadings are important except when T and 

N are large (in line with SW 2002) – empirically relevant (Figure 3) 



 

(d) Ranking of the impact of the different kinds of stability is (c) 

to (b) to (a) 

(e) Factor models outperform AR models in the majority of cases, 

even in short samples subject to changes 

(f) Relative performance of factor models deteriorates fast with 

number of factors in the DGP (especially when selection is BIC 

based)  

(g) As expected, the variance of the idiosyncratic component of 

the target variable is important. (Figure 4) 

(h) Similar results for h=4 



 

 

Which models could handle instability in short samples? 

 

- ARTV (tend to overperform STAR, NN and MS) 

- Stock and Watson’s P/T model with Stochastic Volatility 

- Koopman and Marcellino, generalizations of ARTV 

- Factor models with TV-parameters 

- BVAR (De Mol, Giannone and Reichlin (2006)) and BRRR (Carriero, 

Kapetanios and Marcellino (2007)) 

 



Classical time-varying FAVAR models 
Estimation, forecasting and structural analysis

Based on work with Eickmeier and Lemke



Scope

• Develop a classical, Kalman filter-based approach to estimate
FAVARs with time-varying parameters

• Allow for time variation in the loadings, factor dynamics and 
conditional variance-covariance matrix

• Application to large US dataset, 1972-2007
– forecasting
– monetary transmission



Related literature
• Constant parameter FAVAR (Bernanke et al. 2005) exploiting

large set of variables and has proved useful for
– forecasting (e.g. Stock and Watson 2002a, 2002b, 2006, Eickmeier 

and Ziegler 2008)
– structural analyses (e.g. Boivin et al. 2009, Kose et al. 2003, 2008, 

Beck et al. forthcoming, Eickmeier and Hofmann 2009)

• VARs allowing for smooth time variation in parameters
– e.g. Cogley and Sargent 2005, Sims and Zha 2006

• Time-varying parameter (TV-) Bayesian FAVARs
– monetary policy (MP) applications (Baumeister et al. 2009, Korobilis

2009)
– internat. business cycle and inflation comovements (Del Negro and 

Otrok 2008, Liu and Mumtaz 2009, Mumtaz and Surico 2008)  



Summary of results

• Method
– Fast and numerically stable 
– Results not prior-dependent
– Flexible accounting for various sources of time variation

• Estimation results
– Minor changes in factor dynamics
– Discernible variation in volatility
– Marked changes in factor loadings for some variables



Summary of results (cont.)

• Forecasting
– Overall good performance, also after 1995
– TV-FAVAR forecasts more accurate than constant-parameter 

counterparts
– Forecast superiority especially for inflation and financial variables

• Structural analysis
– Overall plausible IRFs to MP shocks
– Smaller size of shocks over time, in particular after 1985
– Weaker price and output responses over time to MP shocks
– Stronger reaction of consumption and investment during recessions



Outline

1. Model and estimation approach

2. Data and evidence on time-variation in the parameters

3. Forecasting 

4. Structural analysis

5. Conclusion



1. Model and estimation approach



Loadings

• Observables as functions of factors and idiosyncratic
components

• Assume regularity conditions as in Stock/Watson (1998, 2002)

• F = latent factors (later one observable, FFR)

• Independent random walks for time-varying loadings: 
smoothness conditions

xi,t   i,t
′ Ft  ei,t, i  1,… ,N



Factor dynamics

• Dynamics of factors, triangular Pt

• Time variation in contemporaneous relations and 
autoregressive dynamics

• Again, independent  random walks for parameters

PtFt  K1,tFt−1 …Kp,tFt−p  ut,



Shock volatility

• Time-varying volatility of FAVAR innovations.

• Additional latent  volatility factor? → Nonlinear state space
model.

• Here: specify time-varying vola as exponential-affine function
of past factors.

• Estimate c and b parameters by ML

• Alternatives: tv vola as function of exogenous variables, other
functional forms

Sgg,t  expcg  bg
′ Ft−1, g  1,… ,G



Estimation of factors

• Estimate G factors by principal components (PC) as justified
by Stock and Watson (1998, 2002, 2008) 

• Treat them as known (Stock and Watson 2002, 2008, Bai and 
Ng 2002)



Estimation of tv parameters

• Time-varying loadings
– estimate (by ML) random-walk innovation variances of time-varying

parameters, equation by equation
– Kalman smoother to back out parameter paths

• Time-varying VAR parameters
– also estimate VAR equations individually (exploit conditional

independence!) 
– get ML estimates of random-walk variances of time-varying K and P

parameters and of tv vola parameters
– Kalman smoother to back out parameter paths, impose non-

explosiveness condition for VAR
– VAR order for Ft set to 2



Comparison with previous (Bayesian) TV-FAVARs

• Our classical approach does not rely on simulation-based
inference → fast and computationally less burdensome

• Outcome not dependent on prior distribution.

• Relatively flexible due to two-step approach
– allow for time-variation in both loadings and autoregressive VAR 

parameters (no identification problem)
– shock volatility modelled as a function of the factors (in contrast to 

stochastic volatility - with additional latent factors)
– model straightforward to extend to allow for time-varying volatility

and serial correlation in idiosycratic components



2. Data and evidence on time-
variation in the parameters



US data

• Sample period 1972Q1-2007Q2

• Original (balanced) dataset with 808 quarterly series

• Remove series with a commonality < 0.6 (based on 5 factors) 
→ left with N = 338 series

– 119 real economic activity measures (e.g. GDP and components, industrial
production, labor market variables, expectations)

– 136 price measures (e.g. deflators of GDP and components, CPI, PPI, 
wages, commodity prices)

– 83 monetary and financial indicators (e.g. interest rates, stock prices, money
and credit aggregates, exchange rates)

• Data are seasonally adjusted, stationary, outlier adjusted, demeaned
and standardized



Estimated factors

• First 5 PCs (blue) and factors re-estimated from a cross-section
regression on time-varying loadings (red)



Time-variation of factor innovation volatility



Time-variation of VAR parameters

• Dynamic (K parameters) and contemporaneous (P parameters) 
relations of factors



Time-variation of factor loadings

• Loadings of FFR, GDP growth, CPI inflation



Summary: evidence on parameter variation

• PC estimator appropriate (will extend cross-sectional regression to 
iterative procedure and exploit full system later)

• Substantial time variation in shock variances and loadings

• Limited time variation in dynamic and contemporaneous relations 
of factors



3. Forecasting



Forecasting with the TV-FAVAR

• Goal: predict macro and financial variables

• In-sample (for now) forecasts for
– entire sample
– recessions only
– post-1995 sample (e.g. D‘Agostino et al. 2006)

• Forecast procedure
– add target variable one by one to first 5 PCs
– estimate a TV-VAR on the 6 variables/factors
– carry out iterative forecasts for horizons 1 to 4



Forecast results

• (Relative) RMSEs of forecasts of activity
RMSE(AR) Const. FAVAR/AR TV-FAVAR/const. FAVAR

h all periods recessions after 1995 all periods recessions after 1995 all periods recessions after 1995
ΔGDP

1 0.0077 0.0113 0.0049 0.798 0.620 1.020 1.000 1.274 0.964
2 0.0078 0.0121 0.0048 0.847 0.665 0.972 1.004 1.228 1.039
3 0.0080 0.0131 0.0050 0.917 0.810 1.058 0.986 1.070 0.939
4 0.0080 0.0133 0.0050 0.957 0.847 1.094 0.969 1.027 0.918

ΔConsumption
1 0.0062 0.0106 0.0038 0.815 0.659 0.957 0.993 1.088 0.899
2 0.0063 0.0110 0.0038 0.916 0.834 1.152 0.960 1.037 0.852
3 0.0063 0.0114 0.0039 0.948 0.852 1.110 0.962 1.009 0.866
4 0.0064 0.0115 0.0040 0.945 0.849 1.124 0.953 1.005 0.829

ΔNon-residential investment
1 0.0191 0.0299 0.0122 0.853 0.743 0.977 1.006 1.158 0.952
2 0.0213 0.0347 0.0138 0.841 0.691 1.014 0.982 1.022 0.926
3 0.0225 0.0381 0.0142 0.879 0.768 1.090 0.947 0.990 0.872
4 0.0228 0.0392 0.0149 0.902 0.793 1.116 0.928 0.974 0.849

ΔResidential investment
1 0.0375 0.0613 0.0170 0.747 0.606 1.053 0.951 1.103 0.707
2 0.0438 0.0694 0.0214 0.772 0.779 1.049 0.957 1.024 0.728
3 0.0452 0.0748 0.0229 0.873 0.829 1.128 0.940 1.002 0.719
4 0.0458 0.0768 0.0237 0.873 0.805 1.113 0.952 1.023 0.748



Forecast results

• (Relative) RMSEs of forecasts of inflation measures
RMSE(AR) Const. FAVAR/AR TV-FAVAR/const. FAVAR

h all periods recessions after 1995 all periods recessions after 1995 all periods recessions after 1995
ΔGDP deflator

1 0.0026 0.0032 0.0018 0.829 0.550 1.042 0.921 1.021 0.807
2 0.0032 0.0045 0.0018 0.820 0.606 1.155 0.955 1.023 0.815
3 0.0036 0.0054 0.0019 0.812 0.667 1.176 0.919 0.853 0.782
4 0.0038 0.0062 0.0021 0.814 0.712 1.323 0.892 0.781 0.710

ΔCPI
1 0.0048 0.0067 0.0046 0.787 0.649 0.879 0.954 1.201 0.732
2 0.0054 0.0074 0.0045 0.803 0.760 0.906 1.006 1.170 0.797
3 0.0054 0.0079 0.0040 0.843 0.747 1.043 0.974 1.065 0.808
4 0.0062 0.0098 0.0046 0.824 0.727 1.018 0.941 0.961 0.782

ΔCPI ex food and energy
1 0.0036 0.0074 0.0015 0.723 0.590 1.307 1.165 1.495 0.461
2 0.0043 0.0088 0.0017 0.773 0.687 1.169 1.047 1.191 0.558
3 0.0047 0.0089 0.0020 0.755 0.705 1.037 1.027 1.100 0.579
4 0.0053 0.0104 0.0024 0.727 0.647 0.979 1.011 1.091 0.539

ΔPPI
1 0.0088 0.0131 0.0078 0.825 0.695 0.988 0.893 0.949 0.912
2 0.0096 0.0138 0.0084 0.846 0.834 0.937 0.907 0.917 0.918
3 0.0095 0.0147 0.0082 0.861 0.842 0.951 0.927 0.937 0.922
4 0.0102 0.0165 0.0088 0.860 0.816 0.975 0.919 0.907 0.883



Forecast results

• (Relative) RMSEs of forecasts of mon./fin. variables
RMSE(AR) Const. FAVAR/AR TV-FAVAR/const. FAVAR

h all periods recessions after 1995 all periods recessions after 1995 all periods recessions after 1995
ΔM2

1 0.0064 0.0052 0.0054 0.819 1.052 0.882 0.789 0.864 0.703
2 0.0074 0.0055 0.0059 0.902 1.126 0.992 0.844 0.937 0.805
3 0.0076 0.0061 0.0055 0.914 1.057 1.081 0.912 0.934 0.903
4 0.0079 0.0061 0.0057 0.891 1.049 1.060 0.944 0.916 0.875

ΔC&I loans
1 0.0127 0.0168 0.0109 0.894 0.865 0.910 0.835 0.816 0.716
2 0.0159 0.0227 0.0135 0.878 0.852 0.855 0.813 0.802 0.732
3 0.0169 0.0230 0.0159 0.859 0.886 0.825 0.824 0.813 0.808
4 0.0176 0.0212 0.0173 0.864 0.971 0.824 0.882 0.928 0.836

ΔReal estate loans
1 0.0092 0.0074 0.0126 0.907 0.849 0.892 0.768 0.813 0.750
2 0.0113 0.0098 0.0144 0.893 0.738 0.891 0.750 0.951 0.717
3 0.0116 0.0102 0.0134 0.919 0.771 0.958 0.824 0.985 0.823
4 0.0122 0.0106 0.0137 0.901 0.756 0.932 0.849 1.001 0.845

ΔS&P 500
1 0.0644 0.0862 0.0574 0.952 0.902 1.007 0.961 0.948 0.939
2 0.0653 0.0896 0.0584 0.977 0.982 1.035 0.966 0.935 0.901
3 0.0653 0.0904 0.0594 0.980 0.979 1.028 0.967 0.965 0.896
4 0.0655 0.0906 0.0597 0.985 0.985 1.013 0.965 0.981 0.913

ΔHouse price
1 0.0137 0.0115 0.0133 0.820 0.690 0.899 0.917 0.923 0.861
2 0.0137 0.0116 0.0132 0.885 0.774 0.923 0.983 1.050 0.961
3 0.0144 0.0116 0.0136 0.903 0.757 0.962 0.972 1.038 0.955
4 0.0144 0.0117 0.0137 0.906 0.794 0.964 0.981 1.033 0.960



Summary: Forecasting with the TV-FAVAR

• Const. FAVAR in general beats AR (gains from large information 
set), even some gains for h=1 for stock prices and exchange rates 
(not shown).

• For most variables, gains from FAVAR over AR larger during 
recessions. Pattern due to marked increase in RMSE of AR model.

• Over entire period, TV-FAVAR better than const. FAVAR in most 
cases. Largest gains (10-25%) for inflation measures, C&I and real 
estate loans, FFR, M2. 



Summary: Forecasting with the TV-FAVAR (cont.)

• TV-FAVAR and const. FAVAR comparable during recessions.
Large information set matters more than time variation in 
parameters.

• Relative performance of const. FAVAR deteriorates in 1995-2007, 
RMSE of AR drastically reduced for most variables …

• … but TV-FAVAR often even better, and better than const. 
FAVAR for virtually any variable and horizon. Results for inflation 
particularly good.



4. Structural analysis



Reasons for changing monetary policy transmission

• Long-lasting changes
– modifications in conduct of monetary policy (e.g. Boivin and Giannoni

2002) may have weakened MP transmission
– liberalization and innovation on financial markets may have

weakened or strengthened MP transmission
– globalization (e.g. Boivin and Giannoni 2008) may have weakened

MP transmission

• (Temporary) changes over the business cycle
– due to e.g. menu costs and a convex supply curve monetary policy may

affect activity more strongly in recessions than in expanions (Peersman 
and Smets 2002)



Existing empirical evidence on changes in 
monetary policy transmission

• Despite of many studies, still no consensus on how MP 
transmission has changed over time

• Consensus that volatility of MP shocks has declined since the
early 1980s (e.g. Primiceri 2005, Canova and Gambetti 2009)

• MP found to have greater effects during recessions than during
expansions in the EA (Peersman and Smets 2002) – evidence for
US missing



Monetary policy shock identification

• Following Bernanke et al. (2005): add the FFR as observable in the
factor VAR (after having estimated factors from slow-moving
variables only and having removed FFR from space spanned by
latent factors)

• Structural representation used for estimation implies
recursive/triangular structure of VAR innovations with FFR 
ordered last



Volatility of monetary policy shocks



Impulse responses – constant parameters
• IRFs of FFR, GDP growth, CPI inflation (top), consumption, non-
residential and residential investment growth (bottom)



Impulse responses – time-varying parameters

• IRFs of CPI inflation (left) and GDP growth (right) to a MP shock
which raises the FFR by 100 bp.



Impulse responses – time-varying parameters

• IRFs of GDP and cons. growth (top), non-resid. and resid. inv. 
growth (bottom), for fixed horizons of 2 (blue), 4 (green) and 8 
(red) quarters to a MP shock which raises the FFR by 100 bp.



Summary: Structural analysis

• Smaller MP shock variance after the early 1980s. Small increases
during recessions

• Effects on inflation and – since the mid-1980s for shorter horizons
– also on GDP growth weakened over time

• Stronger effects of MP shocks during recessions than during
expansions on consumption and investment growth, but not on 
GDP growth



5. Conclusion



Conclusion
• Classical approach to estimate a FAVAR with smoothly time-

varying parameters.

• Main findings from our applications
– Substantial time variation in loadings and shock volatility, less time 

variation in dynamic and contemporaneous factor relations
– TV-FAVAR forecasts generally better than const. FAVAR forecasts, 

especially for more recent years and for inflation and financial variables
– Weaker effects of MP on inflation and (since the mid-1980s and for shorter

horizons) on GDP growth; stronger effects of MP shocks on consumption
and investment growth in recessions than in expansions

• Model and estimation approach transferable to other applications
with large datasets, where accounting for possibly time-varying
structure appears relevant
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