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X : a space (measure, topological, manifold)

T : X → X a map
(continuous, measure-preserving, differentiable, . . . ).

To study asymptotic behaviour of T n(x).
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Dynamical Systems

Introduction

Dynamical Systems

X : a space (measure, topological, manifold)

T : X → X a map
(continuous, measure-preserving, differentiable, . . . ).

To study asymptotic behaviour of T n(x).

Assume that there is a measure µ on X which is T -invariant.
(time invariant, stationary).
(µ(E ) = µ(T−1E ) for all measurable E ⊂ X )

measure µ : volume, area, length, probability .....
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An irrational rotation

T : [0, 1) → [0, 1), T (x) = x + θ (mod 1).
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An irrational rotation

T : S1 → S1, T (e2πit) = e2πi(t+θ).
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An irrational rotation

T : S1 → S1, T (e2πit) = e2πi(t+θ).
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x 7→ 2x map

X = [0, 1) with Lebesgue measure,
T : x 7→ 2x (mod 1).
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X = [0, 1) with Lebesgue measure,
T : x 7→ 2x (mod 1).
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Shift spaces

X =
∏∞

n=1 A, A is a finite set.
T : (x1x2x3 . . . ) 7→ (x2x3x4 . . . ) left-shift
µ: an invariant(stationary) measure

Fair coin tossing: (i.i.d. process)
X =

∏∞
n=1{H,T}, e.g., HTHHHTHTTTT · · · ∈ X .

µ(xn = an | xn−1
1 = an−1

1 ) = µ(xn = an) = µ(x1 = an)

for all n ≥ 1, and an
1 ∈ An.

µ is a product measure on AN.

(i.i.d. process ⇒ Chaotic or Random system)
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P: a partition of X .
(x0, x1, x2, . . . ): P name of x if T ix ∈ Pxi

, i = 0, 1, . . . .

P0 P1

P2

X

x

Tx

T 2x

T 3x

P = {P0,P1,P2}. P name of x is 0120 . . . .

(X ,T ) ⇐⇒ ({0, 1, 2}Z , σ), x ↔ 0120 . . .



Waiting times, recurrence times, ergodicity and quasiperiodic dynamics

Dynamical Systems

Introduction

X = [0, 1), T : x 7→ 2x (mod 1).

0 1

(X , µ,T ) is isomorphic to (1
2 , 1

2)-Bernoulli shift (coin tossing).

x = (x1x2x3 . . . )(2), x ↔ x1x2x3 . . .

since xi ∈ 0, 1 if T i−1x ∈ P0,P1 respectively.
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Sequence of the powers of 2

2 2048 2097152 2147483648 2199023255552
4 4096 4194304 4294967296 4398046511104
8 8192 8388608 8589934592 8796093022208

16 16384 16777216 17179869184 17592186044416
32 32768 33554432 34359738368 35184372088832
64 65536 67108864 68719476736 70368744177664

128 131072 134217728 137438953472 140737488355328
256 262144 268435456 274877906944 281474976710656
512 524288 536870912 549755813888 562949953421312

1024 1048576 1073741824 1099511627776 1125899906842624
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Introduction

Sequence of the powers of 2

2 2048 2097152 2147483648 2199023255552
4 4096 4194304 4294967296 4398046511104
8 8192 8388608 8589934592 8796093022208

16 16384 16777216 17179869184 17592186044416
32 32768 33554432 34359738368 35184372088832
64 65536 67108864 68719476736 70368744177664

128 131072 134217728 137438953472 140737488355328
256 262144 268435456 274877906944 281474976710656
512 524288 536870912 549755813888 562949953421312

1024 1048576 1073741824 1099511627776 1125899906842624

Last digits : 2 → 4 → 8 → 6 → . . .
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Sequence of the powers of 2

2 2048 2097152 2147483648 2199023255552
4 4096 4194304 4294967296 4398046511104
8 8192 8388608 8589934592 8796093022208

16 16384 16777216 17179869184 17592186044416
32 32768 33554432 34359738368 35184372088832
64 65536 67108864 68719476736 70368744177664

128 131072 134217728 137438953472 140737488355328
256 262144 268435456 274877906944 281474976710656
512 524288 536870912 549755813888 562949953421312

1024 1048576 1073741824 1099511627776 1125899906842624

Last 2 digits :
04 08 16 32 64 28 56 12 24 48 96 92 84 68 36 72 44 88 76 52
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Sequence of the powers of 2

2 2048 2097152 2147483648 2199023255552
4 4096 4194304 4294967296 4398046511104
8 8192 8388608 8589934592 8796093022208

16 16384 16777216 17179869184 17592186044416
32 32768 33554432 34359738368 35184372088832
64 65536 67108864 68719476736 70368744177664

128 131072 134217728 137438953472 140737488355328
256 262144 268435456 274877906944 281474976710656
512 524288 536870912 549755813888 562949953421312

1024 1048576 1073741824 1099511627776 1125899906842624
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Sequence of the powers of 2

2 2048 2097152 2147483648 2199023255552
4 4096 4194304 4294967296 4398046511104
8 8192 8388608 8589934592 8796093022208

16 16384 16777216 17179869184 17592186044416
32 32768 33554432 34359738368 35184372088832
64 65536 67108864 68719476736 70368744177664

128 131072 134217728 137438953472 140737488355328
256 262144 268435456 274877906944 281474976710656
512 524288 536870912 549755813888 562949953421312

1024 1048576 1073741824 1099511627776 1125899906842624

log xn = log xn−1 + log 2, log10 2 = 0.3010 · · · ≈ 3

10
.
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An irrational rotation

T : [0, 1) → [0, 1), T (x) = x + θ (mod 1).
T : S1 → S1, T (e2πit) = e2πi(t+θ).
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T 4x

T 5x

T 6x

Quasi-periodic : ∃ni s.t. |T ni − id | → 0.
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The Poincaré Recurrence Theorem

X

x

Tx

T 2x

T 3x

T 4x

T 5x

Under suitable assumptions a typical
trajectory of the system comes back
infinitely many times in any neighbor-
hood of its starting point.
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The Poincaré Recurrence Theorem

The Poincaré Recurrence Theorem

X

x

Tx

T 2x

T 3x

T 4x

T 5x

Under suitable assumptions a typical
trajectory of the system comes back
infinitely many times in any neighbor-
hood of its starting point.

How many iterations of an orbit is
necessary to come back within a
distance r from the starting point?

The quantitative recurrence theory in-
vestigates this kind of questions.
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The Poincaré Recurrence Theorem

Define τr (x) to be the first return time of x into the ball B(x , r)
centered in x and with radius r .

τr (x) = min{j ≥ 1 : T j(x) ∈ B(x , r)}.

Questions:

◮ Distribution of τr . Pr(τr (x) > s) ?

◮ Asymptotic limits of
log τr (x)

− log r
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The Poincaré Recurrence Theorem

Define τr (x) to be the first return time of x into the ball B(x , r)
centered in x and with radius r .

τr (x) = min{j ≥ 1 : T j(x) ∈ B(x , r)}.

Questions:

◮ Distribution of τr . Pr(τr (x) > s) ?

◮ Asymptotic limits of
log τr (x)

− log r

Define τr (x , y) to be the hitting time or waiting time of x into the
ball B(y , r) centered in y and with radius r .
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Data compression scheme and the Ornstein-Weiss Theorem

Let X = {0, 1}N and σ be a left-shift map.
Define Rn to be the first return time of the initial n-block, i.e.,

Rn(x) = min{j ≥ 1 : x1 . . . xn = xj+1 . . . xj+n}.

x =

15
︷ ︸︸ ︷

1 0 1 0 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 · · · ⇒ R4(x) = 15.

The convergence of
1

n
log Rn(x) to the entropy h was studied in a

relation with data compression algorithm such as the Lempel-Ziv
compression algorithm.
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Data compression scheme and the Ornstein-Weiss Theorem

Lempel-Ziv data compression algorithm

The Lempel-Ziv data compression algorithm provide a universal
way to coding a sequence without knowledge of source.
Parse a source sequence into shortest words that has not appeared
so far:

1011010100010 · · · ⇒ 1, 0, 11, 01, 010, 00, 10, . . .

For each new word, find a phrase consisting of all but the last bit,
and recode the location of the phrase and the last bit as the
compressed data.

(000, 1) (000, 0) (001, 1) (010, 1) (100, 0) (010, 0) (001, 0)...
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Data compression scheme and the Ornstein-Weiss Theorem

Theorem (Wyner-Ziv(1989), Ornstein and Weiss(1993))

For ergodic processes with entropy h,

lim
n→∞

1

n
log Rn(x) = h almost surely.
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Data compression scheme and the Ornstein-Weiss Theorem

Theorem (Wyner-Ziv(1989), Ornstein and Weiss(1993))

For ergodic processes with entropy h,

lim
n→∞

1

n
log Rn(x) = h almost surely.

The meaning of entropy

◮ Entropy measures the information content or the amount of
randomness.

◮ Entropy measures the maximum compression rate.

◮ Totally random binary sequence has entropy log 2 = 1. It
cannot be compressed further.
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Data compression scheme and the Ornstein-Weiss Theorem

The Shannon-McMillan-Brieman theorem states that

lim
n→∞

−1

n
log Pn(x) = h a.e.,

where Pn(x) is the probability of x1x2 . . . xn.

If the entropy h is positive,

lim
n→∞

log Rn(x)

− log Pn(x)
= 1 a.e.
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Data compression scheme and the Ornstein-Weiss Theorem

For many hyperbolic (chaotic) systems

lim
r→0+

log τr (x)

− log r
= dµ(x),

where dµ is the local dimension of µ at x .
(Saussol, Troubetzkoy and Vaienti (2002), Barreira and Saussol
(2001, 2002), G.H. Choe (2003), C. Kim and D. H. Kim (2004))

What happens, if h = 0, which implies that log Rn and log Pn do
not increases linearly.
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Diophantine approximation

T : x 7→ x + θ (mod 1), an irrational rotation.

|T qx − x | < δ
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Irrational rotations

Diophantine approximation

T : x 7→ x + θ (mod 1), an irrational rotation.

|T qx − x | < δ ⇒ |qθ − ∃p| < δ
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Irrational rotations

Diophantine approximation

T : x 7→ x + θ (mod 1), an irrational rotation.

|T qx − x | < δ ⇒ |qθ − ∃p| < δ ⇒
∣
∣
∣
∣
θ − p

q

∣
∣
∣
∣
<

δ

q
.
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Irrational rotations

Diophantine approximation

T : x 7→ x + θ (mod 1), an irrational rotation.

|T qx − x | < δ ⇒ |qθ − ∃p| < δ ⇒
∣
∣
∣
∣
θ − p

q

∣
∣
∣
∣
<

δ

q
.

Diophantine approximation:

∣
∣
∣
∣
θ − p

q

∣
∣
∣
∣
<

1√
5q2

.
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Irrational rotations

An irrational number θ, 0 < θ < 1, is said to be of type η if

η = sup{β : lim inf
j→∞

jβ‖jθ‖ = 0},

‖ · ‖ is the distance to the nearest integer (‖t‖ = minn∈Z |t − n|).
◮ Note that every irrational number is of type η ≥ 1. The set of

irrational numbers of type 1 (Called Roth type) has measure 1.

◮ A number with bounded partial quotients is of type 1.

◮ There exist numbers of type ∞, called the Liouville numbers.
For example θ =

∑∞
i=1 10−i !.
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Irrational rotations

Let T (x) = x + θ (mod 1) on [0, 1) for an irrational θ of type η,

Theorem (Choe-Seo (2001))

For every x

lim inf
r→0+

log τr (x)

− log r
=

1

η
, lim sup

r→0+

log τr (x)

− log r
= 1.

Theorem (K-Seo (2003))

For almost every y

lim sup
r→0+

log τr (x , y)

− log r
= η, lim inf

r→0+

log τr (x , y)

− log r
= 1.
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Sequences from substitutions

Fibonacci sequence

0 Let σ : A∗ → A∗ be a substitution (A∗ = ∪n≥0A
n)

1 σ(0) = 1, σ(1) = 10, σ(ab) = σ(a)σ(b)

10

101

10110

10110101

1011010110110

. . . . . . . . . . . . . . . . . .

10110101101101011010110110101101011011010110110 . . .
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Sequences from substitutions

Sturmian sequence

◮ Let u = u0u1u2 . . . be an infinite sequence. Let pu(n) be the
complexity function which count the number of different
words of length n occurring in u.
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Sequences from substitutions

Sturmian sequence

◮ Let u = u0u1u2 . . . be an infinite sequence. Let pu(n) be the
complexity function which count the number of different
words of length n occurring in u.

◮ If u is periodic with period T , then pu(n) = T for n ≥ T .
Otherwise pu(n) ≥ n + 1.
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Sequences from substitutions

Sturmian sequence

◮ Let u = u0u1u2 . . . be an infinite sequence. Let pu(n) be the
complexity function which count the number of different
words of length n occurring in u.

◮ If u is periodic with period T , then pu(n) = T for n ≥ T .
Otherwise pu(n) ≥ n + 1.

◮ An infinite sequence u is called Sturmian if pu(n) = n + 1.
Therefore, Sturmian sequences have the lowest complexity.
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Sequences from substitutions

Sturmian sequence

◮ Let u = u0u1u2 . . . be an infinite sequence. Let pu(n) be the
complexity function which count the number of different
words of length n occurring in u.

◮ If u is periodic with period T , then pu(n) = T for n ≥ T .
Otherwise pu(n) ≥ n + 1.

◮ An infinite sequence u is called Sturmian if pu(n) = n + 1.
Therefore, Sturmian sequences have the lowest complexity.

◮ Example: Fibonacci sequence
10110101101101011010110110101101011011010110110 . . .
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Sequences from substitutions

Sturmian sequence

◮ Let u = u0u1u2 . . . be an infinite sequence. Let pu(n) be the
complexity function which count the number of different
words of length n occurring in u.

◮ If u is periodic with period T , then pu(n) = T for n ≥ T .
Otherwise pu(n) ≥ n + 1.

◮ An infinite sequence u is called Sturmian if pu(n) = n + 1.
Therefore, Sturmian sequences have the lowest complexity.

◮ Example: Fibonacci sequence
10110101101101011010110110101101011011010110110 . . .
p(2) = 3
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Sequences from substitutions

Sturmian sequence

◮ Let u = u0u1u2 . . . be an infinite sequence. Let pu(n) be the
complexity function which count the number of different
words of length n occurring in u.

◮ If u is periodic with period T , then pu(n) = T for n ≥ T .
Otherwise pu(n) ≥ n + 1.

◮ An infinite sequence u is called Sturmian if pu(n) = n + 1.
Therefore, Sturmian sequences have the lowest complexity.

◮ Example: Fibonacci sequence
10110101101101011010110110101101011011010110110 . . .
p(3) = 4
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Sequences from substitutions

Sturmian sequence

◮ Let u = u0u1u2 . . . be an infinite sequence. Let pu(n) be the
complexity function which count the number of different
words of length n occurring in u.

◮ If u is periodic with period T , then pu(n) = T for n ≥ T .
Otherwise pu(n) ≥ n + 1.

◮ An infinite sequence u is called Sturmian if pu(n) = n + 1.
Therefore, Sturmian sequences have the lowest complexity.

◮ Example: Fibonacci sequence
10110101101101011010110110101101011011010110110 . . .
p(4) = 5
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Sequences from substitutions

Sturmian sequence (continued)

u = u0u1u2 . . . is Sturmian
if and only if u is an infinite P-naming of an irrational rotation, i.e.,
there is an irrational slope θ and a starting point s ∈ [0, 1) such
that

un =

{

0, if {nθ + s} ∈ [0, 1 − θ),

1, if {nθ + s} ∈ [1 − θ, 1).



Waiting times, recurrence times, ergodicity and quasiperiodic dynamics

Sequences from substitutions

Sturmian sequence (continued)

u = u0u1u2 . . . is Sturmian
if and only if u is an infinite P-naming of an irrational rotation, i.e.,
there is an irrational slope θ and a starting point s ∈ [0, 1) such
that

un =

{

0, if {nθ + s} ∈ [0, 1 − θ),

1, if {nθ + s} ∈ [1 − θ, 1).

Theorem (K-K.K. Park (2007))

lim inf
n→∞

log Rn(u)

log n
=

1

η
, lim sup

n→∞

log Rn(u)

log n
= 1, almost every s.

Moreover, if η > 1, then for every s
log Rn(u)

log n
does not converge.
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Sequences from substitutions

Morse sequence (or Prouhet-Thue-Morse sequence)

σ(1) = 10, σ(0) = 01, σ(ab) = σ(a)σ(b)

0 7→ 01 7→ 0110 7→ 01101001 7→ . . . . . . . . . 7→
01101001100101101001011001101001100101100110 . . .
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Sequences from substitutions

Morse sequence (or Prouhet-Thue-Morse sequence)

σ(1) = 10, σ(0) = 01, σ(ab) = σ(a)σ(b)

0 7→ 01 7→ 0110 7→ 01101001 7→ . . . . . . . . . 7→
01101001100101101001011001101001100101100110 . . .

un is the number of 1’s (mod 2) in the binary expansion of n.
0 = (0)(2), u0 = 0, 1 = (1)(2), u1 = 1,

2 = (10)(2), u2 = 1, 3 = (11)(2), u3 = 0,

4 = (100)(2) , u4 = 1, 5 = (101)(2), u5 = 0, . . .
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Sequences from substitutions

Morse sequence (or Prouhet-Thue-Morse sequence)

σ(1) = 10, σ(0) = 01, σ(ab) = σ(a)σ(b)

0 7→ 01 7→ 0110 7→ 01101001 7→ . . . . . . . . . 7→
01101001100101101001011001101001100101100110 . . .

un is the number of 1’s (mod 2) in the binary expansion of n.
0 = (0)(2), u0 = 0, 1 = (1)(2), u1 = 1,

2 = (10)(2), u2 = 1, 3 = (11)(2), u3 = 0,

4 = (100)(2) , u4 = 1, 5 = (101)(2), u5 = 0, . . .

The complexity of the Morse sequence is

lim sup
pu(n)

n
=

10

3
, lim inf

pu(n)

n
= 3.
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Automatic sequence

◮ u is called k-automatic if it is generated by a k-automaton.
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Sequences from substitutions

Automatic sequence

◮ u is called k-automatic if it is generated by a k-automaton.

◮ An infinite sequence is k-automatic if and only if it is the
image under a coding of a fixed point of a k-uniform
morphism σ.
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Sequences from substitutions

Automatic sequence

◮ u is called k-automatic if it is generated by a k-automaton.

◮ An infinite sequence is k-automatic if and only if it is the
image under a coding of a fixed point of a k-uniform
morphism σ.

◮ The Morse sequence is 2-automatic.
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Sequences from substitutions

Automatic sequence

◮ u is called k-automatic if it is generated by a k-automaton.

◮ An infinite sequence is k-automatic if and only if it is the
image under a coding of a fixed point of a k-uniform
morphism σ.

◮ The Morse sequence is 2-automatic.

Theorem
Let u be a non-eventually periodic k-automatic infinite sequence.
Then we have

lim
n→∞

log Rn(u)

log n
= 1.
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Interval exchange map

An interval exchange map

Generalization of the irrational rotation

0
0

1

1
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Comparing the interval exchange map and the irrational
rotation

torus
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Comparing the interval exchange map and the irrational
rotation

torus

x
Tx



Waiting times, recurrence times, ergodicity and quasiperiodic dynamics

Interval exchange map

Comparing the interval exchange map and the irrational
rotation

torus

x
Tx

genus-2 surface
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Interval exchange map

Comparing the interval exchange map and the irrational
rotation

torus

x
Tx

genus-2 surface
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Interval exchange map

Properties of the interval exchange map

◮ Kean (1975) : If the length data are rationally independent,
then the i.e.m. is minimal (i.e., all orbits are dense)
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Interval exchange map

Properties of the interval exchange map

◮ Kean (1975) : If the length data are rationally independent,
then the i.e.m. is minimal (i.e., all orbits are dense)

◮ Not every i.e.m. is uniquely ergodic,
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Interval exchange map

Properties of the interval exchange map

◮ Kean (1975) : If the length data are rationally independent,
then the i.e.m. is minimal (i.e., all orbits are dense)

◮ Not every i.e.m. is uniquely ergodic,

◮ Veech (1982), Masur (1982) : Almost every i.e.m. is uniquely
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Properties of the interval exchange map

◮ Kean (1975) : If the length data are rationally independent,
then the i.e.m. is minimal (i.e., all orbits are dense)

◮ Not every i.e.m. is uniquely ergodic,

◮ Veech (1982), Masur (1982) : Almost every i.e.m. is uniquely
ergodic.

◮ Marmi, Moussa, Yoccoz (2006) : Almost every i.e.m. is of
“Roth type”.

◮ K, Marmi : For almost every i.e.m.

lim
r→0

log τr (x)

− log r
= 1, lim

log Rn(x)

log n
= 1, a.e.

Another definition of “Roth type” for i.e.m.
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Infinite invariant measure systems

Infinite invariant measure systems

◮ Such systems are used for models of statistically anomalous
phenomena such as intermittency and anomalous diffusion
and they do have interesting statistical behavior.

◮ Many classical theorems of finite measure preserving systems
from ergodic theory can be extended to the infinite measure
preserving case.

◮ The Hopf ratio ergodic theorem: Let T be conservative and
ergodic and f , g ∈ L1 such that

∫
gdµ 6= 0 , then

∑n−1
k=0 f (T k(x))

∑n−1
k=0 g(T k(x))

→
∫

fdµ
∫

gdµ
, a.e.
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Infinite invariant measure systems

Entropy for infinite invariant measure systems

Let T be a conservative, ergodic measure preserving
transformation on a σ-finite space (X ,A, µ). Then the entropy of
T can be defined as

hµ(T ) = µ(Y )hµY
(TY )

where Y ∈ A with 0 < µ(Y ) < ∞ and TY is the induced map of
Y (TY (x) = TRY (x) where

RY (x) = min{n ≥ 1 : T n(x) ∈ Y }

when x ∈ Y ) and µY is the induced measure (µY (E ) = µ(E∩Y )
µ(Y ) )

which is invariant and ergodic under TY .
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The Manneville-Pomeau map

0 1/2 1

T (x) =

{

x + 2z−1xz , 0 ≤ x < 1/2,

2x − 1, 1/2 ≤ x < 1.

have an indifferent “slowly repulsive”
fixed point at the origin. When z ∈
[2,∞) this forces the natural invariant
measure for this map to be infinite and
absolutely continuous with respect to
Lesbegue.

It is not hard to see that P = {[0, 1/2), [1/2, 1)} is a generating
partition and the entropy hµ(T ) is positive and finite.
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Shannon-McMillan-Breiman Theorem

For every f ∈ L1(µ), with
∫

f 6= 0

− log(µ(Pn(x)))

Sn(f , x)
→ hµ(T )

∫
fdµ

a.e. as n → ∞.

Here Sn(f , x) is the partial sums of f along the orbit of x :

Sn(f , x) =
∑

k∈[0,n−1]

f (T k(x)).

(“information content” growing as a sublinear power law as time
increases)
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(X ,T ,A, µ) : a measure preserving system.
Let ξ be a partition of X and A be an atom of ξ.
Let Sn(A, x) be the number of T ix ∈ A for 0 ≤ i ≤ n − 1, i.e.,

Sn(A, x) = Sn(1A, x) =
n−1∑

i=0

1A(T i(x)).

Define
Rn(x) = min{j ≥ 1 | ξn(x) = ξn(T

jx)}
considering a fixed set A ∈ A we also define R̄n(x) by

R̄n(x) = min{Sj(A, x) ≥ 1 | ξn(x) = ξn(T
jx)}.

Note that
R̄n(x) = SRn(x)(A, x).
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Lemma
Let T be a conservative, ergodic measure preserving
transformation (c.e.m.p.t.) on the σ-finite space (X ,B, µ) and let
ξ be a finite generating partition (mod µ). Assume that there is a
subset A which is a union of atoms in ξ with 0 < µ(A) < ∞ and
H(ξA) < ∞. For almost every x ∈ A

lim
n→∞

log R̄n(x)

Sn(A, x)
=

hµ(T )

µ(A)
.

Let ξA be the induced partition on A,

ξA = ∪k≥1{V ∩ {RA = k} : V ∈ A ∩ ξk}.
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Theorem (Galatolo-K-Park (2006))

Let T be a c.e.m.p.t. on the σ-finite space (X ,B, µ) and let ξ ⊂ B
be a finite generating partition (mod µ). Assume that there is a
subset A which is a union of atoms in ξ with 0 < µ(A) < ∞ and
H(ξA) < ∞. Then for any f ∈ L1(µ) with

∫
fdµ 6= 0,

lim sup
n→∞

log Rn(x)

Sn(f , x)
=

hµ(T )

α
∫

fdµ
a.e.,

where

α = sup
0<µ(B)<∞,B∈B

(

sup{β :

∫

B

(RB)βdµ < ∞}
)

.

Moreover, if α = 0, then the limsup goes to infinity.
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Darling-Kac set

A set A is called a Darling-Kac set, if ∃{an} such that

lim
n→∞

1

an

n∑

k=1

T̂ k1A = µ(A), almost uniformly on A.

A function f is slowly varying at ∞ if f (xy)
f (x) → 1 as x → ∞,∀y > 0.

Suppose that T has a Darling-Kac set and an(T ) = nαL(n), where
L(n) is a slowly varying. The Darling-Kac Theorem states

Sn(x)

an(T )
→ Yα, in distribution,

Yα : the normalized Mittag-Leffler distribution of order α.



Waiting times, recurrence times, ergodicity and quasiperiodic dynamics

Recurrence time of infinite invariant measure systems

Manneville-Pomeau map

Theorem (Galatolo-K-Park (2006))

Let T be a c.e.m.p.t. on the σ-finite space (X ,B, µ) and let ξ ⊂ B
be a finite generating partition (mod µ). Assume that there is a
subset A which is a union of atoms in ξ with 0 < µ(A) < ∞ and
H(ξA) < ∞. Suppose that T has a Darling-Kac set and an(T ) is
regularly varying with index α. Then for any f ∈ L1(µ) with
∫

f µ 6= 0,

lim
n→∞

log Rn(x)

Sn(f , x)
=

hµ(T )

α
∫

fdµ
a.e.

Moreover, if α = 0, then the limit goes to infinity.
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A map T : [0, 1] → [0, 1] is a Manneville-Pomeau map (MP map)
with exponent z if it satisfies the following conditions:

◮ there is c ∈ (0, 1) such that, if I0 = [0, c] and I1 = (c , 1], then
T

∣
∣
(0,c)

and T
∣
∣
(c,1)

extend to C 1 diffeomorphisms,

T (I0) = [0, 1], T (I1) = (0, 1] and T (0) = 0;

0 c 1

◮ there is λ > 1 such that T ′ ≥ λ on
I1, whereas T ′ > 1 on (0, c] and
T ′(0) = 1;

◮ the map T has the following
behaviour when x → 0+

T (x) = x + rxz + o(xz)

for some constant r > 0 and z > 1.



Waiting times, recurrence times, ergodicity and quasiperiodic dynamics

Recurrence time of infinite invariant measure systems

Manneville-Pomeau map

◮ When z ≥ 2 these maps have an infinite, absolutely
continuous invariant measure µ with positive density and the
entropy can be calculated as hµ(T ) =

∫

[0,1] log(T ′)dµ.
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◮ When z ≥ 2 these maps have an infinite, absolutely
continuous invariant measure µ with positive density and the
entropy can be calculated as hµ(T ) =

∫

[0,1] log(T ′)dµ.

◮ These maps have DK sets where the first return map is mixing
and hence they satisfy the assumptions of the above section.

◮ If z > 2, we have a behavior of the return time sequence

an(T ) = n1/(z−1)L(n),

where L(n) is a slowly varying function.

◮ Setting Sn(x) =
∑

i≤n 1I1(T
i (x)), we have

lim
n→∞

log Rn(x)

Sn(x)
=

hµ(T )

µ(I1)
(z − 1).
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Theorem (Galatolo-K-Park (2006))

Let (X ,T , ξ) satisfy (1)-(3) and µ be the absolutely continuous
invariant measure then

lim
r→0

log τr (x)

− log r
=

{
1 if z ≤ 2

z − 1 if z > 2

for almost all points x
(recall that τr (x) is the first return time of x in the ball B(x , r)).
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