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Motivation
The goal is to study the asymptotic behaviour of orbits from a statistical

point of view: of particular interest are deterministic systems whose distribu-
tions of orbits after a long period of time are the same as the ones obtained for
random systems.

Setting
X phase space (endowed with some σ-algebra A)
T : X → X the time evolution.
µ probability measure on (X,A) which is invariant, i.e.

µ(T−1(A)) = µ(A) for every A ⊆ X

or equivalently
∫
X

fdµ =
∫
X

f ◦ Tdµ ∀f ∈ L1(X, dµ)

The quadruple (X,A, µ, T ) is called a measurable dynamical system.

Examples

- In mechanics, the phase space of N moving particles is

X = {(r1, v1, . . . , rN , vN )} ∼= R6N

where each ri is a vector representing the position and of the i-th particle
and vi is a vector representing the velocity of the i-th particle. The time
evolution is given by solving the differential equation of motion. In Hamil-
tonian mechanics, a classical invariant measure is the Liouville measure.

- Rotation on the circle : X = S1 = R/Z,

T : x 7→ x+ α mod 1

represents the rotation of angle 2πα; Lebesgue measure is invariant.

- Doubling map: X = S1 = R/Z,

T : x 7→ 2x mod 1

Lebesgue measure is again an invariant measure.
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Observables
An observable is a function f : X → R. Typically, one considers only

observables which belong to L1(X, dµ).
Examples: kinetic energy of a particle, pressure of a gas, price of a stock.

Birkhoff’s ergodic theorem
Given a measurable dynamical system (X,A, µ, T ), for every f ∈ L1(X, dµ),

the limit

f(x) := lim
n→∞

1
n

n−1∑
i=0

f(T i(x))

exists for almost all x ∈ X with respect to the measure µ.
The function f(x) is called Birkhoff average (or time average) of the observ-

able f along the (forward) orbit of x. If f = χA, one has the frequency of visit
of the event A

lim
n→∞

1
n

n−1∑
i=0

χA(T i(x)) =
#{1 ≤ i ≤ n : T i(x) ∈ A}

n

Applications, backtesting and Bertrand Russell’s turkey
In applications, the main way to infer the probability of an event A is to

compute its frequency of visit by looking at historical data, i.e. observing a
single orbit for some finite number of steps N , and compute

µ(A) ∼=
#{1 ≤ i ≤ N : T i(x) ∈ A}

N

The reliability of such backtesting approach can be affected by the following
issues:

1. The time average does not necessarily converge to the measure of A for
ALL orbits, hence we could be considering an orbit which is not typical
enough.

2. The approximation is made by considering a finite number N of steps,
which may or may not be enough to predict the asymptotic behaviour.

To address the first issue we will need to define the concept of ergodicity ;
the second issue will be discussed in lecture 5.

Definition. A measurable dynamical system (X,A, µ, T ) is ergodic if for every
f ∈ L1(X, dµ), the Birkhoff average is constant a.e. with respect to the measure
µ, i.e.

lim
n→∞

1
n

n−1∑
i=0

f(T i(x)) =
∫
X

fdµ

Proposition. For a measurable dynamical system, the following properties are
equivalent:

1. Ergodicity.

2. Every event A ∈ A which is T -invariant (i.e. such that T−1(A) = A) has
either µ(A) = 0 or µ(A) = 1.
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3. Every observable f ∈ L1(X, dµ) which is T -invariant (i.e. such that f ◦
T = f a.e.) is constant a.e. with respect to µ.

4. For every pair of events A,B ∈ A,

lim
n→∞

1
n

n−1∑
i=0

µ(T−i(A) ∩B) = µ(A)µ(B)

Example: rotation on the circle Let us consider the rotation on the circle
of angle 2πα

x 7→ x+ α mod 1

If α is rational, every point is periodic of the same period. On the other hand,
when α is irrational, every orbit is dense (i.e. it passes arbitrarily close to any
point of the circle). For what α is the system ergodic?

Suppose α = 1
2 and compute some Birkhoff averages:

- The time average of the observable f = χ[0,1/2) is always 1/2.

- If f = χ[0,1/2], the time average is

f(x) =
{

1/2 for x 6= 0, 1/2
1 for x = 0 or x = 1/2

In this case the time average is still constant for ALMOST ALL orbits
(since the set {0, 1/2} has zero measure), so this does not violate the
definition of ergodicity.

- If f = χ[0,1/4) + χ[1/2,3/4), then the time average is

f(x) =
{

1 for x ∈ [0, 1/4) ∪ [1/2, 3/4)
0 for x ∈ [1/4, 1/2) ∪ [3/4, 1)

Since we have found SOME observable such that the time average is not
constant almost everywhere, then the system is NOT ergodic.

A similar argument works for every α ∈ Q. For irrational α we can prove the
system to be ergodic: we have to check that every f ∈ L1(X, dµ) such that
f ◦ T = f is constant almost everywhere. In order to do so, we can exploit
the fact that measurable functions on the circle can be thought of as periodic
functions on the real line, hence one can write the Fourier expansion of f

f(x) =
∑
k∈Z

ake
2πikx

so
f ◦ T = f(x+ α) =

∑
k∈Z

ake
2πik(x+α) =

∑
k∈Z

ake
2πikαe2πikx

If f ◦ T = f almost everywhere, by comparing the coefficients of the Fourier
series

ak = ake
2πiα ∀k ∈ Z
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Since α /∈ Q, one can divide by e2πiα− 1 6= 0 and get ak = 0 ∀k ∈ Z \ {0} which
amounts to saying that f is constant a.e.

Mixing and correlation functions
Given an observable f , one can consider the sequence of random variables

on (X,A, µ)
Fi := f ◦ T i

Since µ is T -invariant, all these variables are identically distributed, but in
general will not be independent. Mixing systems are precisely systems where
these variables become less and less correlated as time goes by. Formally,

Definition. A measurable dynamical system is (strongly) mixing if for every
pair of events A,B ∈ A

lim
n→∞

µ(T−n(A) ∩B)→ µ(A)µ(B)

This is the same as saying that the correlation function of every pair of
observables φ, ψ ∈ L1(X, dµ) goes to zero as n→∞, i.e.

lim
n→∞

∫
X

φ(ψ ◦ Tn)dµ−
∫
X

φdµ

∫
X

ψdµ = 0

Example
Arnold’s cat is the linear map of the two-dimensional torus

T : R2/Z2 7→ R2/Z2

(x, y) 7→ (2x+ y, x+ y) mod Z2

Remark. Strong mixing ⇒ ergodicity.
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