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C. Carminati and S. Marmi – An Introduction to Dynamical Systems

Preface

The material treated in this book was brought together for introductory courses
taught at the Scuola Normale Superiore since 2001. It is intended to be an
introduction to dynamical systems. There are so many excellent introductions
to dynamical systems that one needs to justify the write–up of these notes. Our
goal here is not at all to be complete but just to introduce some of the main
ideas motivating the study of dynamical systems and their ubiquitous presence in
contemporary mathematics as well as to lead the reader in understanding some of
the main conjectures. These lectures contain many problems (some of which may
challenge the reader) : they should be considered as an essential part of the text.
The proof of many useful and important facts is left as an exercise.

Pisa, January 15, 2009
Carlo Carminati and Stefano Marmi

1



preliminary version ! January 15, 2009

Table of Contents

PART I. Basic concepts

Lecture 1. Dynamical systems and group actions. Orbits. Structural
stability

Lecture 2. Topological and statistical properties of dynamics
Lecture 3. Observables and cohomology
Lecture 4. Entropy and Markov chains
Lecture 5. Quasiperiodic orbits
Lecture 6. Hyperbolic systems

References

Analytical index

List of symbols

2



C. Carminati and S. Marmi – An Introduction to Dynamical Systems

Part I. Basic Concepts

Lecture 1. Dynamical systems and group actions. Orbits.
Structural stability

The most general definition of dynamical system is the action of a group (or a
semigroup) G on some space X, called the phase space. We denote End (X) the
space of maps f : X → X which preserve the structure of X.

Definition 1.1 A (semi–)group G acts on a space X if there exists a map

ϕ : G×X → X such that :

(i) For all g ∈ G the map ϕg : X → X, ϕg(x) = ϕ(g, x), where x ∈ X, belongs

to End (X) ; if G is a Lie group we will also require ϕ to depend smoothly on

g ;

(ii) If e denotes the neutral element of G, ϕe =idX ;

(iii) For all g1, g2 ∈ G, ϕg1g2 = ϕg1 ◦ ϕg2 .

This includes a huge number of possibilities. The two most important examples
correspond to X being a Hausdorff topological space or X being a measure space.
In the first case End (X) is the space of continous maps on X whereas in the
second it is the space of measure–preserving maps on X. Other possibilities are
not only conceivable but actually occur very frequently.

Roughly speaking, the goal of the theory of dynamical systems is to under-
stand most of the dynamics of most systems. As we will see later understanding
what is the meaning of “most” in the previous sentence is already doing some very
important progress.

In looking for the simplest cases we are led to consider actions of N, Z (discrete
time systems) or R,C (continuous time systems) and to ask for the lowest possible
dimension of the ambient space together with the highest possible regularity of
the action. In the first case one has a diffeomorphism f of a smooth compact
manifold X whereas in the continuous time case one considers the flow associated
to a vector field v, i.e. the one–parameter group (ϕt)t∈R ⊂ Diff (X) of solutions
of ẋ = v(x), x(0) = x0 : x(t, x0) = ϕt(x0). We are assuming the vector field
v : X → TX to be complete, which is automatically satisfied if X is compact.
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An important example of higher rank actions is given by the actions of G = Z2

on X : to the canonical basis {(1, 0), (0, 1)} of Z2 one can associate two generators
f, g ∈ G = Diff (X) so f ◦g = g◦f . In this case the study of the action is equivalent
to the study of a pair of commuting diffeomorphisms.

The action of a group on a space X determines an equivalence relation on
the space : two points x1, x2 ∈ X are equivalent if there exists an element
g ∈ G such that x2 = ϕg(x1). Two equivalent points belong to the same orbit
Gx = {ϕg(x) | g ∈ G} and the orbits of the points of X are equivalence classes.
Note that one can regard each orbit also as the image of the map ψx : G → X,
ψx(g) = ϕg(x). A fixed point of the action is an orbit consisting of a single point.

The stabilizer Hx of the action at a point x ∈ X is the set of elements h ∈ G

which leave x fixed ϕh(x) = x. Hx is a closed subgroup of G and ψx induces a
1–1 immersion of G/Hx into M . An action is effective if and only if the global
stabilizer HX := ∩x∈XHx = {e}.

The action of G on X is free if for g ∈ G and x ∈ X, g 6= e implies ϕg(x) 6= x.
Equivalently Hx = {e} for all x. The action is properly discontinuous if each
x ∈ X has a neighborhood U such that U ∩ ϕg(U) = ∅ for all but finitely many
g ∈ G, g 6= e. The action is transitive if given any two points x, y ∈ X there is
g ∈ G such that ϕg(x) = y.

If X is a Hausdorff topological space then the quotient space X/G is a
topological space w.r.t. the topology induced asking that the projection p : X →
X/G is continuous and open (the open subsets of X/G are the projection of the
open subsets of X).

Exercise 1.2 Let X be a manifold and assume that G acts effectively on X.
Show that if the action of G on X is free and properly discontinuous X/G is a
differentiable manifold and the projection is a local diffeomorphism. In this case X

is an (unramified) covering space of X/G with the covering transformation group
G. If the action is not free but it is dicontinuous then X is a ramified covering
of X/G and the ramifying points (in X) are nothing but the points fixed by the
action (i.e. whose stabilizer is not trivial). Show that properly discontinuous
actions always have finite stabilizers at all points.

Exercise 1.3 Consider the actions of Zk on Rl by translations and find necessary
and sufficient conditions for the quotient being a smooth manifold. By definition,
if k = l, when the quotient is smooth then it is a k–dimensional torus.
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The strongest possible notion of equivalence between different actions on the same
space is obtained asking that they are indeed the same action “apart from a global
change of coordinates on the space”.

Definition 1.4 Two actions ϕ, ϕ′ of the same group G on X are conjugate if

there is an isomorphism h : X → X such that ϕgh = hϕ′g for all g ∈ G. If all the

actions sufficiently close to a given one (w.r.t. a sensible topology) are conjugate

to it we say that the given action is rigid.

In the above definition, if X is a topological space then its isomorphisms are just
the homeomorphisms of X so h is required to be a homeomorphism. When X is a
differentiable manifold then one can require h to be a diffeomorphism of X (same
regularity as X). If X is a measure space then its isomorphisms are measure–
preserving maps whose inverse is defined modulo zero–measure sets and it is also
measure–preserving.

1.1 Discrete Dynamical Systems. Conjugation, Symmetries.

When G = Z one has a discrete dynamical system and the space of all possible
dynamical systems on X is just the group G = Iso (X) of isomorphisms of X.
One can also consider actions of the semigroup G = N, i.e. a homomorphism of
G in the semigroup G = End (X) of endomorphisms of X : in this case ϕg is not
necessarily invertible.

Let f be a generator of the action (i.e. f ∈ G and ϕn = fn for all n ∈ G,
where fn denotes the composition of f with itself n times if n > 0, f0 = idX is
the identity, f−n = (f−1)n = f−1 ◦ . . . ◦ f−1). From now on we will omit the
symbol ◦ for the composition of two transformations (unless some confusion may
be possible). The orbit Of (x) of x ∈ X relative to f is the subset {fn(x) | n ∈ G}.
The finite orbits are called periodic orbits or cycles and their points periodic points.
The period m of a periodic point x is the smallest positive integer such that
fm(x) = x. If m = 1 x is a fixed point. Note that all periodic points of f

are fixed points of some iterate of f . A subset Y of X is invariant if f(Y ) = Y .

Definition 1.5 Let f ∈ G. We say that g is equivalent or conjugate to f if there

is a diffeomorphism h of X such that

f ∼ g ⇐⇒ ∃h ∈ G : g = h−1fh .
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Remark 1.6 Sometimes one may compare also dynamical systems defined on two
different phase spaces. If f : X → X, g : Y → Y and h : X → Y is such that
gh = hf then conjugacy corresponds to h being a diffeomorphism. When h is an
embedding we say that f is a subsystem of g. When h is a submersion, f is an
extension of g and g is a factor of f .

If g : Y → Y is surjective but not injective, it is possible to define a
natural extension of g : it is possible to find a space X and an isomorphism
f : X → X such that gh = hf . One way to do this construction is setting
X = {(xk)k∈Z ∈ Y N : f(xk) = xk+1} and defining h the projection on the 0-
th coordinate : h is surjective because g is. There are often other (more direct)
methods to define an extension : see for instance (xxx)

Let X be a compact manifold. If 0 ≤ r ≤ ∞ the space Gr of Cr discrete
dynamical systems on X with the Cr topology is a Baire space (any countable
intersection of open dense sets is dense) and if r < ∞ it is even a Banach manifold.
Similarly, if the parameter space P is also a compact manifold then the space of
Cr families of discrete dynamical systems F : P ×X → X is also a Baire space.
A generic property is a property that is true of dynamical systems belonging to
some Baire set of G (a Baire set is the intersection of a countable number of open
dense sets). When we deal with parametrized families we can also consider a
different notion of typical : a property is Lebesgue typical if it is satisfied for maps
corresponding to a full Lebesgue measure in the parameter space P = Rk.

The set of diffeomorphisms equivalent to f obviously forms an equivalence class,
the orbit of f under the adjoint action of Diff (X) :

[f ] = AdDiff (X)
f = {g ∈ G , ∃h ∈ Diff (X) : g = Adhf = h−1fh} .

In some cases one can achieve a complete classification of the conjugacy classes
[PY] but this is in general a totally unrealistic goal, as the following example
shows.

Example 1.7 Let C{z} denote the ring of convergent power series in one variable.
The germs of analytic diffeomorphisms of C with a fixed point at 0 are the elements
of the group {f ∈ zC{z} , f ′(0) 6= 0}. We say that two such germs f and g are
conjugate if there is another germ h such that fh = hg. Note that if f and g

are conjugate then they have the same derivative λ = f ′(0) at the fixed point
0. If |λ| 6= 1 then a classical result of Poincaré and Koenigs says that λ is the
only conjugacy invariant, i.e. all germs with the same derivative at the fixed point
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are conjugate. When |λ| = 1 the situation changes dramatically. Even in this
apparently very simple context (a local problem in the smallest possible dimension
with the highest possible regularity of the dynamics) a complete classification of
the conjugacy classes of germs is open and perhaps unreasonable as the following
result of Yoccoz [Y1] shows :

Theorem 1.8 There is a generic set of values of λ ∈ S1 for which there exists

a set with the power of the continuum of different conjugacy classes of germs all

with linear part λ and each of which class does not contain an entire function.

The proof of the previous result goes much beyond the scope of this introduction.
We refer to [Y1] for its complete proof.

Exercise 1.9 Prove the Poincaré–Koenigs Theorem. [Hint : note that it is
sufficient to show that if |λ| 6= 1 then all f with f ′(0) = λ are conjugate to
the linear map Rλ(z) = λz. Then one can apply either the contraction principle
to the functional equation f(h(z)) = h(λz) or to prove directly the convergence
of the Taylor expansion of h obtained by recurrence matching powers on the two
sides of the functional equation. The latter is the classical method exposed also
in [Mar2].]

If we drop the requirement in Definition 1.5 that h is a diffeomorphism and we
only ask h to be a homeomorphism then f and g are topologically conjugate :
in Lecture 2 we will study various invariants by topological conjugacy. Usually
differentiable conjugacy is too a fine classification : indeed in order to be
differentiably conjugated two dynamical systems must have the same derivative
at all corresponding cycles. The notion of stability associated to topological
conjugacy is called structural stability and is due to Andronov and Pontrjagin
[AP].

Definition 1.10 The set SS (X) of structurally stable discrete dynamical systems
on X consists of all systems f in G such that there is an open neighborhood N of

f such that if g ∈ N then f and g are topologically conjugate.

Clearly structurally stable dynamical systems form an open subset of G. Its
complement sometimes is also called the bifurcation set.
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Definition 1.11 A diffeomorphism g is a symmetry of f ∈ G if g ∈ Cent (f), i.e.

if Adgf = f .

Exercise 1.12 Assume g ∼ f (i.e. f = h−1gh) and show that
(1) Cent (f) is conjugated to Cent (g), i.e. Cent (f) = h−1Cent (g)h ;
(2) if f(x) = x then g(h(x)) = h(x) and f ′(x) = λ is invariant under conjugation :

g′(h(x)) = λ ;
(3) fZ = {fn , n ∈ Z} ⊂ Cent (f).

1.2 Flows vs. discrete dynamical systems. Cross–sections and sus-
pensions

The relationship between discrete time dynamical systems and continuous time
dynamical systems is very rich. Usually in dynamical systems one prefers to
consider the discrete time case not just because of its great natural appeal but also
because “the same phenomena and problems of the qualitative theory of ordinary
differential equations are present in their simplest form in the diffeomorphism
problem. Having first found theorems in the diffeomorphism case, it is usually
a secondary tas to translate the results back into the differential equations
framework” (Smale, [Sm] p. 747). Moreover many differential equations have
cross–sections, i.e. codimension 1 submanifolds Y of the phase space X which
are transversal to the flow and on which the original problem of dynamics reduces
to the study of the iteration of a diffeomorphism of Y . This method was first used
by Poincaré more than a century ago in his study of the three body problem of
celestial mechanics.

More recently another important fact has put emphasis on the study of dis-
crete time dynamical systems : the massive use of computers to study numerically
the solutions of differential equations. Virtually all methods of numerical integra-
tion of differential equations are based on a discretization of time and replace an
o.d.e. (or a p.d.e.) with the iteration of a discrete time dynamical system. One
should be however aware that this discretization is far from being an innocuous
artifact ! Indeed even in the simplest cases the dynamics obtained can be on the
long run dramatically different from the original one. For example consider the
most classical mechanical example of a simple pendulum

ẍ = sin x .
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A first order finite difference scheme of time step µ transforms it into

x(t + µ)− 2x(t) + x(t− µ) = µ2 sin x(t) .

Setting ε = µ2, x = x(t), x′ = x(t+µ), y = x(t)−x(t−µ) and y′ = x(t+µ)−x(t)
one obtains the map of T1

x × Ry

x′ = x + y′ , y′ = ε sin x + y

which is the celebrated standard map of the theory of twist maps (see Lecture ? ? ?).
Whereas all the trajectories of the simple pendulum are either periodic or connect
the unstable equilibrium position with itself in infininite time (separatrices) the
trajectories of the standard map, even for very small values of ε, are extremely
complicated, many aperiodic orbits exist and it is even conjectured that for all
values of ε (different from zero) there exists a positive measure set of chaotic
trajectories (in a very well precise sense, see Lecture 11).

Most of the concepts we define for discrete time dynamical systems have a
natural reformulation for flows. In general we will leave to the reader the duty of
translating them into the flow framework.

One exception is the notion of equivalence of two flows where various possi-
bilities arise since one can choose to consider equivalent two flows with the same
orbits (up to homeomorphisms) preserving or not the time evolution along them.

Definition 1.13 A flow ϕ′t on X is a time reparametrization of another flow ϕt

on X if there exists a function χ : R×X → R (called an (untwisted) one–cocycle
over ϕt) such that :

(i) ϕ′t(x) = ϕχ(t,x)(x) for all x ∈ X and for all t ∈ R ;

(ii) χ(t, x) ≥ 0 if t ≥ 0 and either χ(t, x) > 0 if t > 0 or χ(t, x) ≡ 0 (then x is a

fixed point).

¿From the group properties of the flow one sees that χ must verify the equations

χ(t + s, x) = χ(t, x) + χ(s, ϕ′t(x)) ,

χ(−t, x) = −χ(t, ϕ′−t(x)) .

One has now to possibilities : one can consider equivalence classes of flows
up to time reparametrizations (orbit equivalence) or not (flow equivalence). In
the former case one says that the flow ϕt is equivalent to ψt if there exists a
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diffeomorphism h ∈ Diff (X) such that hϕth
−1 is a time reparametrization of

ψt. In the latter case one requires ψt = hϕth
−1, i.e. the two actions of R are

conjugate. We will study time–reparametrizations of linear flows on tori in some
detail in Lecture 3.

Exercise 1.14 Show that the vector fields of R2 v(x, y) = (x, y) and w(x, y) =
(x + y,−x + y) give rise to topologically conjugate flows whereas they are not
conjugate to u(x, y) = (−y, x). Show that the vector field v(x) = x2 of R is not
structurally stable. Is u structrurally stable ?

Let X be a smooth manifold and let X (M) be the set of C1 (or Cr) vector fields
on X equipped with the C1 (resp. Cr) topology.

Definition 1.15 A vector field v ∈ X (M) is structurally stable if there is an open

neighborhood N of v in X (M) such that all w ∈ N are C0–orbit equivalent to v

(i.e. the flow ϕt,v is topologically conjugate to a time reparametrization of ϕt,w).

Once again structurally stable vector fields form an open subset of X. Peixoto
[Pe] showed that the set of structurally stable vector fields (resp. diffeomorphisms)
on a compact orientable 2–dimensional manifold X (resp. of the circle T1) is open
and dense in X r(M) (resp. Diffr(T1)) for 1 ≤ r ≤ ∞. Indeed they do coincide
with Morse–Smale systems (see [Sm3]) : these are the natural generalizations of
gradient flows for which the Morse inequalities still hold [Sm1]. Unfortunately in
dimension ≥ 3 (for flows, resp. ≥ 2 for diffeomorphisms) structural stability is not
a dense property [Sm2, Ne1]. A nice introduction to structural stability is due to
Arnold [Ar4, Chapter 3].

We conclude this short survey on the relationship between flows and diffeo-
morphisms making the notion of cross-section more precise and showing conversely
how to associate to each diffeomorphism a flow.

Definition 1.16 A compact codimension one submanifold Y of a compact

manifold X is called a cross–section for a flow ϕt on X if Y intersects every

orbit, has transversal intersection with the flow and whenever x ∈ Y , ϕt(x) ∈ Y

for some t > 0.

A flow ϕt induces a diffeomorphism f ∈ Diff (Y ) by setting f(x) = ϕt0(x) where
t0 is the first positive t such that ϕt(x) ∈ Y . Note that there cannot be any fixed
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points for the flow whenever a cross–section exists. But one can have periodic
orbits and they will become cycles (or fixed points) of f .

Exercise 1.17 Show that the topological equivalence of flows with cross–sections
is determined by the topological equivalence of the corresponding diffeomorphisms.

Let us complete our discussion of cross–sections of flows showing how to associate
to each diffeomorphism a flow.

Definition 1.18 If f is a diffeomorphism of X the suspension of f is the flow ϕt

on the manifold X0 of dimension dim X + 1 defined as follows :

(i) X0 is obtained as the orbit space of X×R under the free action of Z generated

by the diffeomorphism ψ(x, u) = (f(x), u + 1), i.e. is the quotient space

X × R/ψZ ;

(ii) The flow ϕt on X0 is given by ψt([x, u]) = [x, u + t], where [x, u] denotes the

equivalence class of (x, u) ∈ X × R w.r.t. the action of Z generated by ψ.

Exercise 1.19 Show that X0 has a cross–section Y0 = p(X × {0}) where
p : X×R→ X0 is the projection on the quotient. Check that the diffeomorphism
f0 associated to the cross–section Y0 is differentiably conjugate to f−1.
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Lecture 2. Topological and statistical properties of dy-
namics

In this lecture we will first introduce several properties of a dynamical system
which are preserved by topological conjugacy. Then we will introduce the notion
of invariant measure and ergodicity. When the phase space is at the same time
equipped of topological and measurable structures the two approaches can be
compared : this will be the object of the next Lecture.

2.1 Topological properties : Recurrence, transitivity and minimality

Let X be a compact metric space : End (X) = C(X) and Aut (X) = Homeo (X).
Let f ∈ Aut (X) and consider the discrete time dynamical system generated by f .

Definition 2.1 A point x ∈ X is called a wandering point when there is a

neighborhood U of x such that ∪|n|>0f
n(U) ∩ U = ∅. If f ∈ End (X) we only

consider n > 0. A point will be called nonwandering if it is not a wandering point.

These nonwandering points are those with the mildest possible form of recurrence.
They form a closed invariant set usually denoted as Ω(f).
Given any point x we define the α and ω limit sets of its orbit

Definition 2.2 A point y ∈ X is called an ω–limit point (respectively, an α–limit
point) of x ∈ X if there is a sequence (nj)j∈N going to +∞ (respectively, to −∞)

such that fnj (x) → y. The set of all ω–limit points of x is denoted ωf (x) or simply

ω(x) (respectively, αf (x) or α(x)).

¿From the definition of α(x) and ω(x) it follows that

ω(x) =
⋂
n>0


 ⋃

m≥n

fm(x)


 ,

α(x) =
⋂
n<0


 ⋃

m≤n

fm(x)


 .

Recurrent points must verify a much stronger constraint than nonwandering
points :

12



C. Carminati and S. Marmi – An Introduction to Dynamical Systems

Definition 2.3 A point x ∈ X is positively recurrent if x ∈ ωf (x), negatively
recurrent if x ∈ αf (x), recurrent if it is both positively and negatively recurrent.

We will denote Recf (X) (resp. Rec+
f (X), Rec−f (X)) the set of recurrent points

(resp. positively recurrent, negatively recurrent).

Exercise 2.4xxx Show that f is positively recurrent iff for all δ > 0 ∩n{fk(x), k ≥
n} ∩B(x, δ) 6= ∅.

Exercise 2.4 Show that Ω(f), α(x) and ω(x) are closed and invariant and that
Ω(f) contains the ω– and α–limit sets of all points. Show that since X is compact
they cannot be empty.

Exercise 2.5 Give the definition of nonwandering point, α– and ω–limit sets and
recurrent points for flows. Of course the properties of the above exercise are true
also for flows.

Exercise 2.6 Consider the flows associated to the vector fields of R2 v(x, y) =
(x,−y) and w(x, y) = (y + x(1− x2− y2),−x + y(1− x2− y2)) and determine the
α– and ω–limit sets of all orbits. Show that [0,+∞) × {0} is a cross–section of
the flow associated to w and compute the induced diffeomorphism f . [Answer :
f(x) = e2πx/

√
1− x2 + x2e2π.]

Periodic points are the simplest kind of orbits one can conceive and they give the
most perfect case of recurrence. However they do not always exists. The next case
of very strong and uniform recurrence is represented by minimal sets.

Definition 2.7 A discrete dynamical system f : X → X is topologically
transitive if there exists a point x ∈ X such that its orbit Of (x) is dense in

X. If the orbit of every point is dense in X then f is called minimal. A closed

non–empty f–invariant subset A of X is called a minimal set if f |A is minimal.

Example 2.8 Let X = [0, 1], f(x) = 2x (mod 1). This maps acts on the binary
expansion of x ∈ X, x =

∑∞
j=1 aj2−j , aj ∈ {0, 1}, as a shift map σ : f(x) =∑∞

j=1 aj+12−j . Note that the space of sequences {0, 1}N with the topology induced
by asking that π : {0, 1}N → [0, 1], π({aj}) =

∑∞
j=1 aj2−j , to be continuous is

completely disconnected. The map π is 1 to 1 at all but countably many points
(the dyadic rationals) where is 2 to 1. Thus f is a factor of the shift σ. The orbit of
the point x whose binary expansion is 0100011011000001010011100101110111 . . .

13
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is dense in X, thus f is topologically transitive. On the other hand f cannot be
minimal since it has infinitely many periodic orbits : e.g. 010101 . . .. The dynamics
of f provides one of the simplest examples of hyperbolic (chaotic) dynamics (see
Lecture 6).

Topological transitivity gives some sort of topological indecomposability. We will
later compare it to ergodicity which gives measure indecomposability. We now see
some criteria for topological transitivity (see [Wa], p. 127)

Proposition 2.9 Let f : X → X be a homeomorphism of a compact metric

space X. The following are equivalent :

(i) f is topologically transitive ;

(ii) if U is open and f–invariant then either U is empty or U is dense ;

(iii) for any two non–empty open sets U, V there exists an integer N = N(U, V )
such that fN (U) ∩ V 6= ∅ ;

(iv) the set of points of X with a dense orbit is a dense Gδ.

Proof. (i)⇒(ii). Let the orbit of x ∈ X be dense and let U 6= ∅, U open and
f(U) = U . There exists an integer j such that f j(x) ∈ U , thus by the f–invariance
of U the orbit of x is contained in U and U is dense.
(ii)⇒(iii). Let U, V be two open non–empty sets. Then the invariant non–empty
open set ∪n∈Zfn(U) is necessarily dense. Thus ∪n∈Zfn(U) ∩ V 6= ∅ from which
(iii) follows.
(iii)⇒(iv). Let (Un)n∈Z be a countable open basis for X. Then {x ∈ X | Of (x) =
X} = ∩∞n=1 ∪m∈Z fm(Un) and by (iii) ∪m∈Zfm(Un) is dense.
(iv)⇒(i). Obvious. ¤

Exercise 2.10 Let X be compact and f ∈ Aut (X). Show that the following are
equivalent :
(i) f is minimal ;
(ii) X has no proper closed non–empty f–invariant subset ;
(iii) for every non–empty open subset U of X one has ∪+∞

−∞fn(U) = X.

Remark 2.11 If A is a minimal set and γ is an orbit contained in A then γ is
recurrent. This is because ω(γ) is closed, nonempty, invariant and ω(γ) ⊂ A. Thus
γ ⊂ A = ω(γ). Similarly γ ⊂ α(γ).
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Topological transitivity (and a fortiori minimality) has an interesting consequence
on the observables, i.e. on continuous functions F : X → C.

Proposition 2.12 If f : X → X is topologically transitive then the only f–

invariant continuous functions are the constants.

Proof. Let F ◦f = F . Then the same holds iterating f n times F ◦fn = F ∀n ∈ Z.
Pick x ∈ X whose orbit is dense : F must be constant on the orbit. By continuity
F is constant on X. ¤

The converse of Proposition 2.12 is in general false : see [Wa, p. 131] for a
counterexample.

Exercise 2.13 Let G be a topological group and consider the action of G on itself
by left translations : L : G × G → G, Lg(g′) = L(g, g′) = gg′. Show that if the
discrete dynamical system on G generated by the left translation Lg by a fixed
element g is topologically transitive then it is also minimal (thus in this setting
being topologically transitive is equivalent to being minimal).

The example of translations on abelian groups is the prototype of quasiperiodic
dynamics (see Lecture 6). The next exercise gives the most important example of
quasiperiodic dynamics.

Exercise 2.13-bis Find an example of a topologically transitive dynamical system
which is not minimal.

Exercise 2.14 Let Tn = Rn/Zn denote the n–dimensional torus and consider
the discrete time dynamical system generated by the translation Rα(x) = x +
α (modZn), where α ∈ Tn. Show that Rα is minimal if and only if α is rationally
independent (or non–resonant) : α ·k+p 6= 0 for all (k, p) ∈ Zn×Z, (k, p) 6= (0, 0).
In this case Rα is called an irrational translation. [Hint : use the previous exercise,
Fourier expansions and apply Proposition 2.9 (iii) to show that the condition is
sufficient, Proposition 2.12 to show that it is also necessary.]

A dynamical system need not be minimal but it always has a minimal set.

Proposition 2.15 Every continuous map f on a compact metric space X has a

minimal set.
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Proof. Let A denote the collection of all closed f–invariant non–empty closed
subsets of X. Inclusion gives a partial ordering on A. Every ordered chain in
A has a non–empty least element (the intersection of the elements of the chain,
which is clearly closed, non–empty and invariant). Thus by Zorn’s lemma A has
a minimum element which is by construction a minimal set. ¤

Denjoy [De] constructed a C1 vector field of the two–dimensional torus T2 with a
nontrivial minimal set (i.e. distinct from a fixed point or a periodic orbit) distinct
from T2 (see also Appendix 1). On the other hand one can prove [Sch] that a
minimal set A of a C2 vector field on a two–dimensional compact surface X is
either trivial or the whole of X and, in this case, X = T2.

The Cherry flow [Ch] is an example of an analytic vector field on the two–
torus with highly nontrivial recurrence. It has exactly two fixed points, no closed
orbit and it has a circle cross–section and the non–wandering set of the induced
diffeomorphism is the union of an attracting fixed point and an invariant Cantor
set (i.e. a compact, totally disconnected, nonempty perfect set). We refer to [PDM]
(pp. 181–188) for its construction.

2.2 Statistical properties : Poincaré recurrence theorem

Ergodic theory is an attempt to study the statistical behaviour of orbits of
dynamical systems restricting the attention to their asymptotic distribution. One
waits until all transients have been wiped off and looks for an invariant probability
measure describing the distribution of typical orbits.

This approach is especially fruitful for systems with a very strong sensitivity
to initial conditions.

Let (X,A, µ) be a probability space, i.e. X is a set, A is a σ–algebra of subsets
of X and µ is a measure on (X,A) such that µ(X) = 1.

Definition 2.16 A map f : X → X is measurable if for all A ∈ A, f−1(A) ∈ A.

A measurable transformation is non singular if µ(f−1(A)) = 0 for all A ∈ A such

that µ(A) = 0. A non singular measurable transformation is measure–preserving
if for all A ∈ A, µ(f−1(A)) = µ(A).

In the above definition f−1(A) = {x ∈ X | f(x) ∈ A} and f need not be invertible.
If f is invertible with a non singular measurable inverse and it preserves the
measure µ then µ(f−1(A)) = µ(A) = µ(f(A)), ∀ A ∈ A.

16
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Exercise 2.17 Why should one use f−1 instead of f in Definition 2.16 ?

Example 2.18 The Hénon map on R2 : fc(x, y) = (x2 + c− y, x) is a polynomial
automorphism of the plane and preserves the Lebesgue measure. The Jacobian
determinant of any polynomial automorphism of the plane is a constant (when
this constant equals one the automorphism preserves Lebsegue measure). The
Jacobian conjecture asserts the converse : a polynomial endomorphism of the
plane with constant Jacobian is invertible.

Definition 2.19 A measurable dynamical system (X,A, µ, f) is the datum of

a probability space (X,A, µ) and of a measure preserving (surjective ? ? ?) map

f : X → X.

If f : X → X is surjective it is possible to perform the following natural extension
construction : consider the subset of bi-infinite sequences

X̂ = {(xn)n∈Z : xn ∈ X, f(xn) = xn+1 ∀n ∈ Z},

consider the shift map f̂ : X̂ → X̂ defined as (f̂ x̂)(k) = xk+1 and the projection
π : (xn)n∈Z 7→ x0. Consider also Â, the smallest σ-algebra that ensures that
π ◦ f̂k is measurable for all k ∈ Z : the pullback π̂ := π#µ defines a f̂ -invariant
probability measure on (X̂, Â) and π is a measurable semiconjugacy between the
shift (X̂, σ) and (X, f).

Example 2.20 The dyadic map of Example 2.8 preserves the Lebsegue measure
on [0, 1].

Exercise 2.21 Let X = [0, 1], f : X → X non singular. Assume that f is
piecewise monotonic and C1, i.e. there exists a finite or countable decomposition
of the interval [0, 1] in subintervals [ai, ai+1], i ∈ I, on which f si monotonic and
of class C1 in their interior. On each of these subintervals an inverse branch f−1

i

of f is well–defined. Show that a measure µρ(x) = ρ(x)dx is f–invariant if and

only if ρ(x) =
∑

i∈Ix

ρ(f−1
i

(x))

|f ′(f−1
i

(x))| , where Ix denotes the subset of I corresponding

to the indices i such that f−1
i (x) 6= ∅. Use this result to check that the following

probability measures are invariant :
(i) Ulam–Von Neumann’s map f(x) = 4x(1− x), ρ(x)dx = dx

π
√

x(1−x)
;

(ii) p–adic map f(x) = px(mod 1), ρ(x)dx = dx ;

17
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(iii) Gauss’ map f(x) = { 1
x} if x 6= 0, f(0) = 0, where {x} denotes the fractional

part of x, ρ(x)dx = dx
(1+x) log 2 .

Example 2.22 Translations on compact topological groups X : they preserve
the Haar measure µ defined on the Borelian subsets of X. The Haar measure is
the unique probability measure on the Borel σ–algebra of X which is translation
invariant and regular (i.e. for all ε > 0 and for all A ∈ A there exists a compact
subset K and an open subset U such that K ⊂ A ⊂ U and µ(U \K) < ε. When
X = T1 the Haar measure is just the normalized circular Lebsegue measure. When
X = Tn it is the direct product of the measure on T1.

Let X be a (nonempty) compact metric space, A be the σ–algebra of its Borel
subsets and f ∈ Homeo (X). Let M(X) denote the topological space of all
probability measures on X with the usual weak–∗ topology : µn → µ in M(X) if
and only if for all ϕ ∈ C(X,R) one has

∫
X

ϕdµn →
∫

X
ϕdµ.

Exercise 2.23 Prove that M(X) is compact in the weak–∗ topology. [Hint : use
Riesz representation theorem : if J is a continuous linear functional on C(X,R)
such that J ≥ 0 (i.e. if ϕ ≥ 0 then J(ϕ) ≥ 0) and J(1) = 1, then there exists
µ ∈M(X) such that J(ϕ) =

∫
X

ϕdµ for all ϕ ∈ C(X,R).]

The compactness of M(X) implies that there is always at least an f–invariant
probability measure on X [KB] :

Theorem 2.24 (Krylov–Bogolubov) There exists at least an f–invariant

probability measure on X.

Proof. Consider the continuous map f∗ : M(X) →M(X) defined by (f∗µ)(A) =
µ(f−1(A)) for all A ∈ B. A probability measure is invariant if f∗µ = µ. Take any
measure µ0 ∈ M(X) and consider the sequence µm = 1

m

∑m−1
j=0 f∗mµ0. By the

compactness of M(X) any weak limit µ of the sequence (µm)m∈N is an invariant
probability measure since for all ϕ ∈ C(X,R) one has | ∫

X
(ϕ−ϕ◦f)dµm| ≤ 2

m‖ϕ‖∞.
¤

Definition 2.1xxx The support supp(µ) of a borel mesure µ is the complement

of the union of open sets U such that µ(U) = 0. Since X is supposed to be a

compact metric space it is easy to show that suppµ is a closed set. Let us remark

that supp(µ) = X iff any nonempty open set has strictly positive measure.

18
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Exercise 2.xxx Show that if µ is f -invariant, supp(µ) is a closed f -invariant
set ; moreover the support of µ is a subset of the nonwandering set of f :
supp(µ) ⊂ Ω(f).

The existence of an invariant probability measure for a homeomorphism on a
compact space is sufficient to show that “most” orbits are recurrent, i.e. the
probability for an orbit to be recurrent is equal to one :

Theorem 2.25 (Poincaré recurrence theorem) Let f ∈ Homeo (X) preserve

the probability measure µ. Then all points of X except a set E of measure zero

are recurrent under f . If X = supp(µ) the exceptional set E is of first category.

We recall that a set is called first category if it can be represented as a countable
union of nowhere dense sets (see [Ox], p. 2 and p. 67). Of course it can be a dense
set (e.g. Q in R).

Lemma 2.26 (Weak Poincaré recurrence theorem) If f is a measure-

preserving transformation of a probability space (X,A, µ) then for all A ∈ A
the subset Arec of the points x ∈ A such that fn(x) ∈ A for infinitely many n ∈ N
belongs to A and µ(A) = µ(Arec).

Let us remark that this statement looks weaker than the previous one, but
does not use neither invertibility nor the metric structure.

Proof.
Arec = A∩[∩n∪k≥nf−k(A)], it is clear that An := ∪k≥nf−k(A) is a decreasing

sequence of measurable sets such that f−1An = An+1. Since µ(An) = µ(f−1An) =
µ(An+1) we deduce that Zn := An \An+1 is a null set : µ(Zn) = 0. We can prove
by induction that An+1 = A0 \ ∪n

k=0Zk so, setting Z = ∪+∞
k=0Zk, we get that

∩nAn = A0 \ Z. On the oter hand µ(Z) = 0 and Arec = A ∩ (A0 \ Z), thus

µ(Arec) = µ(A ∩ (A0 \ Z)) = µ(A ∩A0) = µ(A),

so µ(A \Arec) = 0. ¤

Exercise 2.27 Show that if X = supp(µ) then Arec is a Gδ–set and is dense in
A ; hence A \Arec is a set of first category.

Show that if A is open then Arec is a Gδ set. [Hint : the sets Bn are relatively
closed in A.]
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Proof of Theorem 2.25 Let {Vn}n∈N be a countable basis for the topology of X

such that diam (Vn) → 0 as n →∞ and, for all m ≥ 0, ∪n≥mVn = X. By Lemma
2.26 one has µ(Vn \ Vn,rec) = 0 for all n.
Claim : Rec (X) = ∩m≥0 ∪n≥m Vn,rec.

If one accepts the claim then it is immediate to conclude that µ(Rec (X)) = 1
since

µ(X \ Rec (X)) = µ (∩∞m=0 ∪n≥m Vn \ ∩∞m=0 ∪n≥m Vn,rec)

≤ µ (∩∞m=0 ∪n≥m Vn \ Vn,rec) = 0 .

For all m ≥ 0 one has Rec (X) ⊂ ∩n≥mVn,rec as one can easily check. To see
that ∩∞m=0 ∪n≥m Vn,rec ⊂ Rec (X) we let δ > 0 such that diam (Vn) < δ/3 for all
n large enough.

Pick a point x ∈ Vn,rec for some n ≥ m. Since m can be chosen large one will
have diam (Vn) < δ/3 thus
• Vn ⊂ B(x, δ) ;
• f j(x) ∈ B(x, δ) if f j(x) ∈ Vn ;

which implies d(f j(x), x) < δ for infinitely many j. Since δ is arbitrary this
concludes the proof of the claim.

To see that Rec (X) is the complement of a first category set we use Exercise
2.27 which shows that Vn \ Vn,rec is a nullset of first category. Hence also
∪∞n=1Vn \ Vn,rec is a first category nullset. It is then immediate to check that
its complement belongs to Rec (X). ¤

Poincaré’s Recurrence Theorem leads to (apparent) paradoxes when applied to
systems relevant in statistical mechanics. If we insert a partition in a box and
pump out all the air on one side of the partition then our system is in an initial
state for which all the molecules are in half of the box. Remove the partition and
wait long enough : almost surely all the molecules will concentrate once again in
their original half of the box. But . . . the expected return time is so long to be
physically irrelevant : see [Pet, pp. 35 ff]

2.3 More statistical properties : frequency of visit and ergodicity

To understand better the statistical distribution of orbits it is useful to introduce
the frequency of visit of a (measurable) set. Among all systems, those for which
the interpretation of the invariant probability measure as the frequency of visit of
measurable sets by typical orbits is correct, will have a distinguished role.
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Let (X,A, µ, f) be a measurable dynamical system. Given a set A ∈ A we
denote χA its characteristic function.

Definition 2.28 The frequency of visit ν(x,A) of the set A by the orbit of x is

the limit (when it exists)

ν(x, A) = lim
n→+∞

1
n

n−1∑

j=1

χA(f j(x)).

If ϕ ∈ L1(X, dµ) we call n-th Birkhoff sum the quantity Snϕ(x) :=
∑n−1

j=0 ϕ(f j(x)) :

thus the frequency of visits is obtained taking the limit of means of the Birkhoff

sums of χA (the characteristic function of A).

Exercise 2.29 Give examples of systems where the frequency of visit is indepen-
dent on the choice of the initial point x and examples where the frquency depends
on the initial point x.

Definition 2.30 A measurable dynamical system (X,A, µ, f) is ergodic if for all

A ∈ A one has ν(x,A) = µ(A) for µ–a.e. x ∈ X.

Exercise 2.31 Try to prove directly the following “primitive form of Birkhoff
ergodic theorem : For all A ∈ A and for µ–almost every point x ∈ X the frequency
of visit ν(x,A) exists.(Hint : see [BKS])

The preceding exercise can be solved using quite elementary tools. We shall
prove a slightly more general statement : we shall consider the limit of means of
Birkhoff sums of a general L1 function (not just χA). Before stating the result
we need some theoretical tools which will be useful to characterize the limit of
Birkhoff sums.

If ϕ ∈ L1(X,A, µ) and B is a subσalgebra then then νϕ(A) :=
∫

A
ϕdµ defines

a (signed) measure on B which is absolutely continuous with respect to µ|B and,
by Radon-Nikodym theorem, admits a unique density ϕB ∈ L1(X,B, µ) namely
the function uniquely characterized by the twoproperties

[ (i)] ϕB ∈ L1(X,B, µ) ;
[ (ii)] νϕ(A) =

∫
A

ϕBdµ ∀A ∈ B.
This density is usually called conditional expectation of ϕ given B and is

denoted ϕB = E(ϕ|B). This shows that it is well defined a linear operator
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E(·|B) : L1(X,A, µ) → L1(X,B, µ) that maps ϕ 7→ E(ϕ,B). It is not hard
to prove that the operator E(·|B) is in fact a projector and has the following
properties :

( a) E(·,B) is a linear continuous operator ;
( b) If B0 ⊂ B1 ⊂ A then E(·,B0)E(·,B1) = E(·,B0) ; in particular if
B0 = B1 = B then [E(·,B)]2 = E(·,B) i.e. E(·,B) is a linear projector ;

( c) E(|ϕ|,B) = |E(·,B)| ;
( d) If Φ is a convex function thenE(Φ ◦ ϕ|B) ≥ Φ ◦ E(ϕ,B) ; in particular

E(·,B) : Lp(X,A, µ) → Lp(X,B, µ) for all p ∈ [1, +∞].
( e) If f is measure preserving then E(ϕ,B)◦f = E(ϕ◦f, f−1B) [see Billingsley

xxx]
Let J the family of A-measurable f -invariant sets ; it is not difficult to check

that J := {A ∈ A : µ(A∆f−1A) = 0} is a sub-σalgebra of A and E(ϕ|J ) is a
well defined J -measurable function which, by (e), is f -invariant as well. Nowwe
are ready to prove

Theorem 2.32 (Birkhoff Ergodic Theorem) Let (X,A, µ, f) be a measurable

dynamical system and let ϕ ∈ L1(X,A, µ). For µ–a.e. x ∈ X

lim
n→∞

1
n

n−1∑

j=0

ϕ(f j(x)) = ϕJ (x)

This limit is called the time average of ϕ along the orbit of x ∈ X. If the system

is ergodic then ϕJ (x) =
∫

X
ϕdµ a.e.

To prove the theorem we shall need the following

Lemma 2.33 In the same hypotheses of Theorem 2.29, if ϕJ (x) < 0 for µ–a.e.

x ∈ X then lim sup 1
nSn(ϕ) ≤ 0 for almost every x ∈ X.

Proof. (of Lemma 2.33) Let ϕ ∈ L1(X, dµ) be fixed, S0 = 0 and Snϕ(x) :=∑n−1
j=0 ϕ(f j(x)) (n ≥ 1) be the Birkhoff sums. Let us define a monotone sequence

of positive functions Φn := max{Sk : 0 ≤ k ≤ n} and call A := {x ∈ X :
Φn(x) → +∞}. Clearly

∀x ∈ Ac lim sup
1
n

Sn(x) ≤ lim sup
1
n

Φn(x) ≤ 0.

Since
Φn ◦ f(x) = max{Sk(x) : 1 ≤ k ≤ n + 1} − ϕ(x)
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we deduce easily that A is an f -invariant set. Moreover it is easy to check that

Φn+1(x)−Φn◦f(x) = { ϕ(x)if Φn ◦ f(x) + ϕ(x) ≥ 0

ϕ(x)−max{Sk : 1 ≤ k ≤ n + 1}otherwise
,

and thus we deduce that

Φn+1(x)− Φn ◦ f(x) = −min{0, Φn ◦ f(x) + ϕ(x)}.

This shows that Φn+1(x)−Φn◦f(x) is a decreasing sequence which, for a.e. x ∈ A,
converges to ϕ(x). By f -invariance of µ and Fatou’s lemme we get

0 ≤
∫

A

[Φn+1 − Φn]dµ =
∫

A

[Φn+1 − Φn ◦ f ] →
∫

A

ϕdµ =
∫

A

ϕJ dµ

Since ϕJ < 0 µ–a.e. the condition
∫

A
ϕJ dµ ≥ 0 can hold only if µ(A) = 0 : our

claim is proved. ¤

Proof. (of Theorem 2.32) Let a be any f -invariant function such that a > ϕJ (for
instance a = ϕJ + ε, ε > 0 is fine), we set ϕa := ϕ− a and we have

∫
X

ϕadµ < 0 ;
therefore the previous lemma we get lim sup 1

nSn(ϕa) = lim sup 1
n [Sn(ϕ)−na] ≤ 0

which implies lim sup 1
nSn(ϕ) ≤ a. On the other hand, if b is an invariant

function such that b < ϕJ we set ψb = b − ϕ and the same argument as above
leads to lim inf 1

nSn(ϕ) ≥ b. Since a > ϕJ > b are arbitrary we get that
limn→∞ 1

n

∑n−1
j=0 ϕ(f j(x)) = ϕJ (x) ¤

Exercise xxx : Prove that

1
n

n−1∑

j=0

ϕ ◦ f j → ϕJ (x)

where the convergence is in L1 as well.
It is interesting to list some equivalent formulations of ergodicity

Theorem 2.34 Let (X,A, µ, f) a measurable dynamical system. The following

properties are equivalent :

1) ergodicity ;

2) measurable (or metric) indecomposabily : for all f–invariant A ∈ A one has

µ(A) = 0 or µ(A) = 1 ;
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3) if ϕ ∈ L1(X,A, µ) is invariant then ϕ is constant µ–a.e. ;

4) if ϕ ∈ L1(X,A, µ) then
∫

X
ϕdµ = limn→+∞ 1

nSnϕ(x) for µ–a.e. x ∈ X ;

5) ∀ A,B ∈ A one has limn→+∞ 1
n

∑n−1
j=0 µ(f−j(A) ∩B) = µ(A)µ(B).

Proof. 1) ⇒ 2) Assume that there exists a measurable f–invariant set A ∈ A
with µ(A) > 0. Since A is invariant, for all x ∈ A the frequqncy of visit of A is
ν(x,A) = 1. By ergodicity for µ–a.e. x one has ν(x,A) = µ(A), thus µ(A) = 1.
2) ⇒ 3) If ϕ ∈ L1(X,A, µ) is invariant, for all γ ∈ R the set Aγ = {x ∈ X , ϕ(x) ≤
γ} is invariant. By 2) one gets µ(Aγ) = 0 or = 1. On the other hand if γ1 < γ2

one obviously has Aγ1 ⊂ Aγ2 , thus setting γf = inf{γ ∈ R , µ(Aγ) = 1} one has
ϕ(x) = γf for µ–a.e. x.
3) ⇒ 4) The f–invariance of the time average ϕ̂ implies that ϕ̂ is µ–a.e. constant.
Thus ϕ̂(x) =

∫
X

ϕdµ for µ–a.e. x ∈ X.
4) ⇒ 1) Just apply 4) to the characteristic function χA.
4) ⇒ 5) Let ϕ = χA. For µ–a.e. x ∈ X one has

µ(A) =
∫

X

χA dµ = χ̂A(x) = lim
n→∞

1
n

n−1∑

j=0

χA(f j(x)) .

Thus by dominated convergence one has

µ(A)µ(B) =
∫

X

lim
n→∞

1
n

n−1∑

j=0

χA(f j(x))χB(x) dµ =

lim
n→∞

1
n

∫

X

n−1∑

j=0

χA(f j(x))χB(x) dµ = lim
n→∞

1
n

n−1∑

j=0

µ(f−j(A) ∩B)

5) ⇒ 2) Let A be invariant. Applying 5) to B = X \A

µ(A)µ(X \A) = lim
n→∞

1
n

n∑

j=0

µ(f−j(A) ∩ (X \A)) = 0

because A is f–invariant. Thus either µ(A) = 0 or µ(X \A) = 0. ¤

Example 2.35 Ergodicity of irrational translations on the torus Tn. Let ϕ be
an invariant function. Then if one writes its Fourier series expansion ϕ(x) =∑

k∈Zn ϕ̂(k)e2πik·x the invariance condition implies

ϕ̂(k)(e2πik·α − 1) = 0 for all k ∈ Zn ,
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and by the non resonance condition one obtains ϕ̂(k) = 0 for all k 6= 0, i.e. ϕ is
constant a.e. .

Example 2.36 Ergodicity of the p–adic maps. Let p ∈ N, p ≥ 2, and consider
the map f(x) = px (mod 1). Clearly it preserves Lebesgue measure. If ϕ ∈ L1 is
f–invariant then using its Fourier expansion ϕ(x) =

∑
k∈Z ϕ̂(k)e2πikx we obtain

ϕ̂(k) = ϕ̂(pk) for all k ∈ Z. By the Riemann–Lebesgue lemma we have |ϕ̂(k)| → 0
as k →∞, thus ϕ̂(k) = 0 for all k 6= 0 and ϕ is constant a.e. .

Exercise 2.37 Prove Borel’s theorem on normal numbers : almost all numbers in
[0, 1) are normal to base 2, i.e. for a.e. x ∈ [0, 1) the frequency of 1’s in the binary
expansion of x is 1/2. [Hint : use ergodicity of the dyadic map.] perche’ non in
base p con la mappa piadica e quindi in ogni base ? ? ?

Exercise 2.38 Ergodicity of hyperbolic automorphisms of T2. Here the two–
dimensional torus T2 is considered multiplicatively, thus Aut (T2) ≈ SL (2,Z). A
matrix A ∈ SL (2,Z) is hyperbolic if it has no eigenvalue of unit modulus. Equiv-

alently if A =
(

a b
c d

)
then |Tr (A)| = |a + d| > 2. Hyperbolic automorphism of

T2 are ergodic. (Hint : proceed as for the dyadic map.)

Exercise 2.39 Assume that the measurable dynamical system (X,A, µ, f) is
ergodic and let µ1 : A → [0, 1] be another f–invariant probability measure.
Show that if µ1 6= µ then µ1 is not absolutely continuous w.r.t. µ. [Hint : By
contradiction, if it were absolutely continuous then the Radon-Nykodim derivative
dµ1
dµ would be f–invariant.]

2.4 Characterization of ergodic measures. Unique ergodicity

Let X be a compact metric space, f a homeomorphism of X, and consider the
compact space M(X) of the probability measures on the borelian subsets of X.
It is immediate to check that it is a closed subset of the unit ball in C(X,R)∗.
The f–invariant probability measures on X form a closed convex subset of M(X)
which we denote Mf (X).

Proposition 2.40 A probability measure µ ∈Mf (X) is ergodic if and only if it

is an extreme point of Mf (X).

Proof. Let us first show by contradiction that being an extreme point is a sufficient
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condition for ergodicity. Indeed, if µ is not ergodic and A ∈ A is a Borel f–invariant
set such that 0 < µ(A) < 1 then both µA = 1

µ(A)µ|A and µX\A = 1
1−µ(A)µ|X\A

are f–invariant and µ = µ(A)µA +(1−µ(A))µX\A, i.e. µ is not an extreme point.
Again by contradiction we can show that the condition is also necessary. For,
if µ = t1µ1 + t2µ2 with µ1, µ2 ∈ Mf (X), t1, t2 ∈ (0, 1), t1 + t2 = 1, then µ1 is
absolutely continuous w.r.t. µ and its Radon–Nikodym derivative is a non–constant
f–invariant function in L1(X,A, µ), thus µ cannot be ergodic. ¤

Corollary 2.41 Every homeomorphism of a compact metric space preserves at

least an ergodic probability measure.

Proof. It is an immediate consequence of Proposition 2.40, Krylov–Bogolubov’s
theorem and Krein–Milman’s theorem (every compact convex set in a locally
convex topological vector space is the closure of the convex envelope of its extreme
points). ¤

Sometimes a dynamical system has a unique invariant measure µ : in this case it is
called uniquely ergodic, since it is obviously authomatically ergodic. Moreover, if
the support of µ is the whole space X then the system is called strictly ergodic. For
uniquely ergodic systems one has this stronger formulation of Birkhoff’s theorem :

Theorem 2.42 Let (X,A, µ, f) be uniquely ergodic. Then for all continuous

function ϕ : X → R and for all initial condition x ∈ X the sequence of Birkhoff’s

averages 1
n

∑n−1
j=0 ϕ(f j(x)) converges uniformly to a constant independent of x.

Thus the time average exists for all initial points x ∈ X and equals
∫

X
ϕdµ.

Proof. By contradiction : assume that for a continuous ϕ : X → R the sequence of
functions

(
1
n

∑n−1
j=0 ϕ ◦ f j

)
n∈N

is not uniformly convergent to
∫

X
ϕdµ Then there

exists ε > 0 and two sequences (ni)i∈N ⊂ N, ni → ∞ and (xi)i∈N ⊂ X such that
for all i ∈ N ∣∣∣∣∣∣

1
ni

n−1∑

j=0

ϕ(f j(xi))−
∫

X

ϕ dµ

∣∣∣∣∣∣
≥ ε .

By the compactness of the space of probability measures on X the sequence of
probability measures

νi :=
1
ni

ni−1∑

j=0

δfj(xi)
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converges to some measure ν. One easily checks that it is invariant : if ψ : X → R
is continuous then

∫

X

ψ(f(x)) dν = lim
i→∞

∫

X

ψ(f(x)) dνi = lim
i→∞

1
ni

ni−1∑

j=0

ψ(f j+1(xi))

= lim
i→∞

[∫

X

ψ(x) dνi − 1
ni

ψ(xi) +
1
ni

ψ(fni+1(xi))
]

.

The second and the third term have limit zero thus ν is invariant. Then one gets
∣∣∣∣
∫

X

ϕdν −
∫

X

ϕ dµ

∣∣∣∣ = lim
i→∞

∣∣∣∣
∫

X

ϕdνi −
∫

X

ϕdµ

∣∣∣∣ =

lim
i→∞

∣∣∣∣∣∣
1
ni

ni−1∑

j=0

ϕ(f j(xi))−
∫

X

ϕ dµ

∣∣∣∣∣∣
≥ ε

which shows that ν 6= µ, a contradiction. ¤

Exercise 2.43 Show that if for all continuous functions ϕ : X → R the time
average exists for all initial points x and is independent of x then the system is
uniquely ergodic.

Exercise 2.44 Prove that the irrational translations on tori are strictly ergodic.
Use this fact to solve a famous exercise proposed by V.I. Arnol’d : does 8 appear
more frequently than 7 in the sequence of the most significant digit in the powers
of 2 (i.e. 1, 2, 4, 8, 1(6), 3(2), 6(4), etc.) ?

2.5 The spectral viewpoint.
Birkhoff theorem admits some variants which are obtained changing the space

of “observables”. The L2-case is particularly interesting, not only because it admits
a much simpler proof but also because in this setting one can easily establish close
connections between dynamical properties and spectral theory. In the following
(X,A, µ, f) will be a measurable dynamical system and L2(X, dµ) = {φ : X →
C : φ measurable

∫
X
|φ|2dµ < +∞}. It is then natural to consider the linear

operator Uf defined on L2(X, dµ) as Ufϕ = φ ◦ f . It is strightforward to check
that Uf is an isometry and, if f is invertible with nonsingular measurable inverse
then Uf is an unitary operator and U∗

f = U−1
f = Uf−1 .

Exercise 2.45 Prove that if H is an Hilbert space and U : H → H

is an isometry then the spectrum of U (i.e. the set σ(U) := {λ ∈ C :
U − λIdoes not admit a bounded inverse} ) is contained in S1 ∪ {0}.
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Theorem 2.46 (Von Neumann mean ergodic theorem) If U is an isometry

on the Hilbert space H then

1
n

n−1∑

k=0

Ukϕ → Pϕ ∀ϕ ∈ H

where P is the orthogonal projection on the space of U–invariant vectors.

Let us recall that, if H = L2(X, dµ) and U = Uf is the induced operator this
shows that Birkhoff sums converge in L2-norm

1
n

n−1∑

k=0

ϕ ◦ fk →
∫

J
ϕdµ in L2.

Of course, if µ is ergodic then J = {∅, X} and ϕJ =
∫

X
ϕdµ.

Proof. Let us first deal with the case U unitary operator. Let Z := ker(U−I) be the
space of fixed points of U and B := range(U − I). If y ∈ B̄⊥ then (y, Ux− x) = 0
for all x ∈ H. Hence U−1y − y ⊥ x for all x ∈ H and y is a fixed point for
U−1. This shows that B̄⊥ ⊂ Z. In fact the other inclusion is also true since, again
using the invertibility of U , Ux = x implies that x ∈ B̄⊥. Calling P the orthogonal
projection on Z we get that x = Px+y whith y ∈ B̄. It is easy to check that, since
y ∈ B̄, 1

n

∑n−1
0 Uny → 0 as n → ∞ (this is obvious for y ∈ B and must be true

on B̄ as well since the Un are equi-lipschitz). Thus 1
n

∑n−1
k=0 Ukϕ → Pϕ ∀ϕ ∈ H

as claimed.
To deal with the noninvertible case let u ∈ L(H) be an isometry, it is

convenient to see u as a factor of a unitary operator U ∈ L(H × H) defined
as follows

U :=
(

u 1− uu∗

0 u∗

)
.

It is a straightforward calculation to check that U is unitary ; moreover, if we
define j : H → H × H and p : H × H → H as j(x) = (x, 0) and p(x, y) = x,
we see immediately that ux = (pUj)x and (by induction) ukx = (pUkj)x. Thus

1
n+1

∑n
0 ukx = p

(
1

n+1

∑n
0 Ukjx

)
→ Px with P is the orthogonal projection on

the vector space ker(u− 1). ¤
Exercise xxx : Show directly (i.e. without using neither Radon-Nykodim

nor any of the results of section 2.3) that, if H = L2(X, dµ), f : X → X and
U = Uf is the induced operator, then the projector P of Von Neumann Theorem
can be extended by continuity to a linear operator defined on L1(X,A, µ).
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From now on we will denote with L2
0(X, dµ) the space of L2 functions with

zero mean ; moreover in what follows we shall always use the symbol U instead of
Uf since we always deal with a single map f .

Proposition 2.47 The following conditions are equivalent :

(i) µ is ergodic ;

(ii) 1 is not an eigenvalue of Uf restricted to L2
0(X, dµ) ;

(iii) 1
n

∑n−1
k=0 Ukϕ → 0 ∀ϕ ∈ L2

0(X, dµ) ;

(iv) 1
n

∑n−1
k=0(Ukϕ,ψ) → 0 ∀ϕ,ψ ∈ L2

0(X, dµ) ;

(v) 1
n

∑n−1
k=0(Ukϕ,ϕ) → 0 ∀ϕ ∈ L2

0(X, dµ) ;

Proof.
The fact that (i) and (ii) are equivalent has already been proved in Theorem

2.34. The equivalence between (ii) and (iii) follows from Von Neumann Mean
Ergodic Theorem together with Theorem 2.34. The implications (iii) ⇒ (iv) and
(iii) ⇒ (v) are strightforward while the converse (iv) ⇒ (iii) follows again from
Theorem 2.34-(5) just setting ϕ(x) = χA(x), ψ(x) = χB(x). We leave to the
reader to prove the implication (v) ⇒ (iv) which closes the graph of arrows of this
proof. ¤

Exercise 2.48. Prove that, if f is an ergodic transformation and U = Uf is
the induced operator, then
(a) each eigenfunction of U is µ-a.e. constant ;
(b) each eigenvector of U is simple ;
(c) the set of eigenvectors {λ ∈ C : Uϕ for some ϕ ∈ L2} is a multiplicative

subgroup of S1.
The set of eigenvalues of a linear operator U is usually called point spectrum.
Another spectral property, stronger than ergodicity, is weak-mixing.

Definition 2.49The measurable dynamical system (X,A, µ, f) is said to be weak
mixing if the induced operator U : L2

0(x, dµ) → L2
0(x, dµ) has no (unitary)

eigenvalue i.e. if Uϕ = λϕ (and |λ| = 1) implies ϕ = 0.

Proposition 2.50 The following conditions are equivalent :

(i’) f is weak-mixing ;

(ii’) 1
n

∑n−1
k=0 |(Ukϕ,ψ)| → 0 ∀ϕ,ψ ∈ L2

0(X, dµ) ;

(iii’) 1
n

∑n−1
k=0 |(Ukϕ,ϕ)| → 0 ∀ϕ ∈ L2

0(X, dµ).
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Proof. See Parry. ¤
Definition 2.51The measurable dynamical system (X,A, µ, f) is said to be

strong mixing if µ(f−n(A) ∩B) → µ(A)µ(B) as n → +∞ for all A,B ∈ A.
Strong mixing has the following phisical interpretation : the portion of the

set B which, after n iterates, is occupied by elements that were initially in A tends
to the constant value µ(A) as n goes to ∞. This means that iterating f has the
effect of spreading the set A uniformly all over the space X. On the other hand
strong mixing has a spectral counterpart as well (although not as immediate as
ergodicity or weak mixing). Using the language of probability we could express
this sayng that the event B and f−nA tend to become independent as n → +∞.
Indeed an analogue of Proposition 2.49 is still true :

Proposition 2.51 The following conditions are equivalent :

(i”) f is strong mixing ;

(ii”) (Ukϕ,ψ) → 0 ∀ϕ,ψ ∈ L2
0(X, dµ) ;

(iii”) (Ukϕ,ϕ) → 0 ∀ϕ ∈ L2
0(X, dµ).

Proposition 2.52 Hyperbolic automorphism of T2 are mixing and hence er-

godic.

Lemma 2.53 Let H be a Hilbert space and U ∈ L(H) be a unitary operator

such that

(a) H = span < φξ,j : ξ ∈ Ξ, j ∈ Z >, where Ξ is some set of indices ;

(b) Uφξ,j = φξ,j+1. Then for all ϕ,ψ ∈ H we have

(Unϕ,ψ) → 0 as n → +∞.

Proof. The claim is strightforward for ϕ = φξ,j and ψ = φξ′,j′ since the scalar

product is zero only if ξ = ξ′ and, in any case, it vanishes as soon as n > h − j.

Therefore, setting D := {ϕ ∈ H : ϕ =
∑

(ξ,j)∈F cξ,jφξ,j , F ⊂ Ξ× Z, card(F ) <

+∞, cξ,j ∈ C}, arguing by linearity we conclude that the claim is true also if

ϕ,ψ ∈ D. To deal with the general case proceed as follows : for any ε > 0 write

ϕ = ϕ0 + ϕ1,ψ = ψ0 + ψ1 where ϕ0, ψ0 ∈ D while both ϕ1, ψ1 have norm smaller

than ε.

lim sup
n→+∞

|(Unϕ,ψ)| = lim sup
n→+∞

|(Unϕ0, ψ0) + (Unϕ1, ψ0) + (Unϕ0, ψ1) + (Unϕ1, ψ1)|

= lim sup
n→+∞

|(Unϕ0, ψ0)|+ ε(‖ϕ‖+ ‖ψ‖) + ε2 ≤ ε(‖ϕ‖+ ‖ψ‖+ ε)
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Since ε can be chosen arbitrarily small this implies that the limit must be zero. ¤

Definition 2.54 An invertible automorphism of a probability space (X,A, µ)
has Lebesgue spectrum LΞ if, setting H := L2

0(X, dµ), the induced unitary
operator Uf ∈ L(H) satisfies properties (a) and (b) of the above lemma. So
we have proved that Lebesgue automorphism are mixing. We shall now prove that
hyperbolic automorphisms have Lebesgue spectrum.
Proof. The set {Φh(x) := exp(2πih · x) : h ∈ Z2

∗} is an orthonormal base of
L2

0(T2) ; we easily check that UAΦh = ΦA∗h. It is easily checked that the action of
A∗ on Z2 splits the frequencies in a disjoint union of A∗–orbits and each orbit is
unbounded. The claim follows just choosing a representative set Ξ ⊂ Z2 of orbits
and setting φξ,j := Φ(A∗)jξ (ξ ∈ Ξ, j ∈ Z). ¤

Exercise 2.55 Prove directly, using only the definition, that hyperbolic
automorphisms of T2 are mixing (see [KH] ?).
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Lecture 3. Topological vs. statistical properties of dy-
namics. Observables and cohomology

In this lecture we will consider a dynamical system on a compact metric space
equipped with an invariant probability measure and we will compare the topolog-
ical notions of topological transitivity and minimality with ergodicity and unique
ergodicity. Then we will proceed at introducing the fundamental tool for the study
of the observables, and in doing so we will introduce some group cohomology. Fi-
nally we will describe an example due to Furstenberg of a minimal non–ergodic
map on the two–dimensional torus and a remarkable theorem of Oxtoby–Ulam
on the transitivity of the action of the group of homeomorphisms on the space of
non–atomic probability measures with full support.

3.1 Topological transitivity and minimality vs. ergodicity and unique
ergodicity

Let X be a compact metric space, f ∈ Homeo (X), µ an f–invariant probability
measure defined on the Borelian subsets of X. In the previous lecture we have
introduced several topological and statistical notions to study the asymptotic
behaviour of the orbits of the dynamical system generated by f . Here we will
clarify the relationship between the two approaches show how ergodicity relates to
topological transitivity and strict ergodicity to minimality.

Definition 3.1A probability measure µ on borelian subsets of a compact metric
space X has full support if µ(U) > 0 for all nonempty open subset U of X. More
generally the support supp µ of a probability measure µ is the set of points x ∈ X

such that for all U ⊂ X open containing x one has µ(U) > 0.

Exercise 3.2 Show that supp µ is closed f–invariant and that suppµ ⊂ Recf (X).

Theorem 3.3 If f preserves an ergodic probability measure µ with full support

then µ({x ∈ X , Of (x) = X}) = 1. In particular f is topologically transitive.

Proof. Let {Un}n∈N be a countable basis for the topology of X. Then {x ∈
X , Of (x) = X} = ∩n∈N ∪m∈Z fm(Un) and ∪m∈Zfm(Un) is open nonempty
and f–invariant. Since µ is ergodic and has full support one must have
µ(∪m∈Zfm(Un)) = 1, which implies the desired result. ¤
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The converse of Theorem 3.3 is not true : a topologically transitive map may fail to
have an ergodic measure with full support. An example can be obtained making a
suitable time–reparametrization of an irrational linear flow on the two–torus so as
to create a fixed point in such a way that the unique invariant probability measure
is the Dirac delta at the fixed point. However typical orbits will be dense.

Theorem 3.4 If f is uniquely ergodic and µ is the f–invariant probability

measure then f is minimal if and only if µ has full support.

Proof. Suppose f is minimal. If U is a nonempty open set then ∪n∈Zfn(U) = X

by Exercise 2.10 (iii). Thus one must have µ(U) > 0 otherwise µ(X) would vanish,
a contradiction.

Conversely, suppose that µ has full support. If f is not minimal then there
exists a nontrivial closed f–invariant set K (Exercise 2.10 (ii)). By Krylov–
Bogolubov’s theorem the restriction of f to K has an invariant probability
measure νK . Then setting ν(A) = νK(K ∩ A) for all Borel subsets A of X

one obtains an f–invariant probability measure on X which differs from µ since
µ(X \K) > 0 = ν(X \K). ¤
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