Introduction to ARMA processes

Fulvio Corsi

SNS Pisa
Definitions

- Stochastic process (univariate): sequence of random variables \(\{Y_t; \ t \in \mathbb{N}; \text{or} \ t \in \mathbb{Z}\} \)

- Second order process: \(\mathbb{E}[Y_t^2] < +\infty \quad \forall t \)

- Mean \(\mu_t = \mathbb{E}[Y_t] \)

- Variance \(\sigma_t^2 = \mathbb{E}(Y_t - \mu_t)^2 \)

- Autocovariance \(\gamma_t(k) \equiv \text{Cov}(Y_t, Y_{t-k}) = \mathbb{E}(Y_t - \mu_t)(Y_t - k - \mu_t - k) \) hence \(\sigma_t^2 \equiv \gamma_t(0) \)

- Autocorrelation
 \[
 \rho_t(k) \equiv \text{Corr}(Y_t, Y_{t-k}) = \frac{\gamma_t(k)}{\sqrt{\gamma_t(0)\gamma_{t-k}(0)}}, \quad -1 \leq \rho_t(k) \leq 1
 \]

- Partial Autocorrelation \(a_t(k) \equiv \text{Corr}(Y_t, Y_{t-k}|Y_{t-1}, \ldots, Y_{t-k+1}) \)
Stationarity and Ergodicity

- **Strict stationarity:**
 \[(Y_1, Y_2, \ldots, Y_n) \overset{d}{=} (Y_{1+k}, Y_{2+k}, \ldots, Y_{n+k})\]
 for any integer \(n > 1, k\)

- **Weak/second-order/covariance stationarity:**
 \begin{align*}
 &\mathbb{E}[Y_t] = \mu \\
 &\mathbb{E}[(Y_t - \mu)^2] = \sigma^2 < +\infty \text{ (i.e. constant and independent of } t) \\
 &\mathbb{E}[(Y_t - \mu)(Y_{t+k} - \mu)] = \gamma(|k|) \text{ (i.e. independent of } t \text{ for each } k) \\
 \Rightarrow &\quad \rho(k) = \frac{\gamma(k)}{\gamma(0)}.
 \end{align*}

- **Ergodicity**
 \begin{align*}
 &\text{Ergodic in mean: } \bar{y} \equiv \frac{1}{T} \sum_{t=1}^{T} Y_t \xrightarrow{p} \mathbb{E}[Y_t] \\
 &\text{Ergodic in second moments: } \frac{1}{T} \sum_{t=1}^{T} (Y_t - \mu)(Y_{t-k} - \mu) \xrightarrow{p} \gamma(k)
 \end{align*}

- **Interpretation:**
 \begin{itemize}
 \item unconditional mean and variance are constant
 \item mean reversion
 \item shocks are transient
 \item covariance between \(Y_t\) and \(Y_{t-k}\) tends to 0 as \(k \to \infty\)
With the noise

- weak (uncorrelated)
 - $\mathbb{E}(\epsilon_t) = 0 \quad \forall t$
 - $V(\epsilon_t) = \sigma^2 \quad \forall t$
 - $\text{Corr}(\epsilon_t, \epsilon_s) = 0 \quad \forall s \neq t$

- strong (independence)
 - $\epsilon_t \sim I.I.D.(0, \sigma^2)$

- Gaussian (weak=strong)
 - $\epsilon_t \sim N.I.D.(0, \sigma^2)$
the Lag operator is defined as:

\[LY_t \equiv Y_{t-1} \]

is a linear operator:

\[
L(\beta Y_t) = \beta \cdot LY_t = \beta Y_{t-1} \\
L(X_t + Y_t) = LX_t + LY_t = X_{t-1} + Y_{t-1}
\]

and admits power exponent, for instance:

\[
L^2 Y_t = L(LY_t) = LY_{t-1} = Y_{t-2} \\
L^k Y_t = Y_{t-k} \\
L^{-1} Y_t = Y_{t+1}
\]

Some examples:

\[
\Delta Y_t = Y_t - Y_{t-1} = Y_t - LY_t = (1 - L)Y_t \\
y_t = (\theta_1 + \theta_2 L)LY_t = (\theta_1 L + \theta_2 L^2)Y_t = \theta_1 Y_{t-1} + \theta_2 Y_{t-2}
\]

Expression like

\[
(\theta_0 + \theta_1 L + \theta_2 L^2 + \ldots + \theta_n L^n)
\]

with possibly \(n = \infty \), are called lag polynomial and are indicated as \(\theta(L) \)
Moving Average (MA) process

The simplest way to construct a stationary process is to use a lag polynomial \(\theta(L) \) with \(\sum_{j=0}^{\infty} \theta_j^2 < \infty \) to construct a sort of “weighted moving average” of white noises \(\epsilon_t \), i.e.

- **MA(q)**
 \[
 Y_t = \theta(L)\epsilon_t = \epsilon_t + \theta_1\epsilon_{t-1} + \theta_2\epsilon_{t-2} + \ldots + \theta_q\epsilon_{t-q}
 \]

- **Example, MA(1)**
 \[
 Y_t = \epsilon_t + \theta\epsilon_{t-1} = (1 + \theta L)\epsilon_t
 \]
 being \(\mathbb{E}Y_t = 0 \)
 \[
 \begin{align*}
 \gamma(0) & = \mathbb{E}Y_tY_t = \mathbb{E}(\epsilon_t + \theta\epsilon_{t-1})(\epsilon_t + \theta\epsilon_{t-1}) = \sigma^2(1 + \theta^2); \\
 \gamma(1) & = \mathbb{E}Y_tY_{t-1} = \mathbb{E}(\epsilon_t + \theta\epsilon_{t-1})(\epsilon_{t-1} + \theta\epsilon_{t-2}) = \sigma^2\theta; \\
 \gamma(k) & = \mathbb{E}Y_tY_{t-k} = \mathbb{E}(\epsilon_t + \theta\epsilon_{t-1})(\epsilon_{t-k} + \theta\epsilon_{t-k-1}) = 0 \quad \forall k > 1
 \end{align*}
 \]
 and,
 \[
 \begin{align*}
 \rho(1) & = \frac{\gamma(1)}{\gamma(0)} = \frac{\theta}{1 + \theta^2} \\
 \rho(k) & = \frac{\gamma(k)}{\gamma(0)} = 0 \quad \forall k > 1
 \end{align*}
 \]
 hence, while a white noise is “0-correlated”, MA(1) is **1-correlated** (i.e. it has only the first correlation \(\rho(1) \) different from zero)
Properties MA(q)

In general for a \textbf{MA}(q) process

\[
Y_t = \theta(L)\epsilon_t = \epsilon_t + \theta_1\epsilon_{t-1} + \theta_2\epsilon_{t-2} + \ldots + \theta_q\epsilon_{t-q}
\]

we have

\[
\gamma(0) = \sigma^2 \left(1 + \theta_1^2 + \theta_2^2 + \ldots + \theta_q^2 \right)
\]

\[
\gamma(k) = \sigma^2 \sum_{j=0}^{q-k} \theta_j\theta_{j+k} \quad \forall k \leq q
\]

\[
\gamma(k) = 0 \quad \forall k > q
\]

and

\[
\rho(k) = \frac{\sum_{j=0}^{q-k} \theta_j\theta_{j+k}}{1 + \sum_{j=1}^{q} \theta_j^2} \quad \forall k \leq q
\]

\[
\rho(k) = 0 \quad \forall k > q
\]

Hence, an MA(q) is \textbf{q-correlated} and it can also be shown that any stationary q-correlated process can be represented as an MA(q).

But, given a q-correlated process, is the MA(q) process unique? In general no, indeed it can be shown that for a q-correlated process there are \(2^q\) possible MA(q) with same autocovariance structure. However, there is only one MA(q) which is \textbf{invertible}.
Invertibility conditions for MA

- first consider the MA(1) case:
 \[Y_t = (1 + \theta L)\epsilon_t \]
 given the result
 \[(1 + \theta L)^{-1} = (1 - \theta L + \theta^2 L^2 - \theta^3 L^3 + \theta^4 L^4 + \ldots) = \sum_{i=0}^{\infty} (-\theta L)^i \]
 inverting the \(\theta(L) \) lag polynomial, we can write
 \[(1 - \theta L + \theta^2 L^2 - \theta^3 L^3 + \theta^4 L^4 + \ldots)Y_t = \epsilon_t \]
 which can be considered an AR(\(\infty \)) process.

 If an MA process can be written as an AR(\(\infty \)) of this type, such MA representation is said to be **invertible**. For MA(1) process the invertibility condition is given by \(|\theta| < 1 \).

- For a general MA(q) process
 \[Y_t = (1 + \theta_1 L + \theta_2 L^2 + \ldots + \theta_q L^q)\epsilon_t \]
 the invertibility conditions are that the roots of the lag polynomial
 \[1 + \theta_1 z + \theta_2 z^2 + \ldots + \theta_q z^q = 0 \]
 lie outside the unit circle. Then the MA(q) can be written as an AR(\(\infty \)) by inverting \(\theta(L) \).

- Invertibility also has important practical consequence in application. In fact, given that the \(\epsilon_t \) are **not observable** they have to be reconstructed from the observed \(Y \)'s through the AR(\(\infty \)) representation.
suppose you want to invert the generic lag polynomial

\[
\theta(L) = 1 + \theta_1 L + \theta_2 L^2 + ... + \theta_q L^q
\]

i.e. finding the series \(\theta(L)^{-1} = \varphi_0 + \varphi_1 L + \varphi_2 L^2 + ... \) such that

\[
(1 + \theta_1 L + \theta_2 L^2 + ... + \theta_q L^q)(\varphi_0 + \varphi_1 L + \varphi_2 L^2 + ...) = 1
\]

by matching the coefficients of \(L^0, L^1, ..., L^i \) in both sides we can obtain the \(\varphi_i \) recursively

\[
\begin{align*}
\varphi_0 &= 1 \\
\varphi_1 + \varphi_0 \theta_1 &= 0 \quad \Rightarrow \varphi_1 = -\theta_1 \\
\varphi_2 + \varphi_1 \theta_1 + \varphi_0 \theta_2 &= 0 \quad \Rightarrow \varphi_2 = \theta_1^2 - \theta_2 \\
&\vdots \quad \Rightarrow \varphi_i = \theta_1^{i-1} - \theta_i \\
\varphi_i + \varphi_{i-1} \theta_1 + ... + \varphi_0 \theta_i &= 0 \quad \Rightarrow \varphi_i = \theta_1^{i-1} - \theta_i
\end{align*}
\]
A general AR process is defined as

$$\phi(L)Y_t = \epsilon_t$$

It is always invertible but not always stationary.

Example: AR(1)

$$(1 - \phi L)Y_t = \epsilon_t \quad \text{or} \quad Y_t = \phi Y_{t-1} + \epsilon_t$$

by inverting the lag polynomial $(1 - \phi L)$ the AR(1) can be written as

$$Y_t = (1 - \phi L)^{-1} \epsilon_t = \sum_{i=0}^{\infty} (\phi L)^i \epsilon_t = \sum_{i=0}^{\infty} \phi^i \epsilon_{t-i} = MA(\infty)$$

hence the stationarity condition is that $|\phi| < 1$.

From this representation we can apply the general formula of MA to compute $\gamma(\cdot)$ and $\rho(\cdot)$. In particular,

$$\rho(k) = |\phi|^k \quad \forall k$$

i.e. monotonic exponential decay for $\phi > 0$ and exponentially damped oscillatory decay for $\phi < 0$.

In general an AR(p) process

$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \ldots + \phi_p Y_{t-p} + \epsilon_t$$

is stationarity if all the roots of the characteristic equation of the lag polynomial

$$1 - \phi_1 z - \phi_2 z^2 - \ldots - \phi_p z^p = 0$$

are outside the unit circle.
Example: AR(2)

\[(1 - \phi_1 L - \phi_2 L^2) Y_t = \epsilon_t \quad \text{or} \quad Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \epsilon_t\]

the roots of the quadratic characteristic equation exceed 1 in absolute value if three conditions are satisfied:

\[\phi_1 + \phi_2 < 1, \quad \phi_2 - \phi_1 < 1 \quad \text{and} \quad |\phi_2| > 1\]
State Space Representation of AR(p)

to gain more intuition on the AR stationarity conditions write an AR(p) in its state space form

\[
\begin{bmatrix}
Y_t \\
Y_{t-1} \\
\vdots \\
Y_{t-p+1}
\end{bmatrix} =
\begin{bmatrix}
\phi_1 & \phi_2 & \phi_3 & \cdots & \phi_{p-1} & \phi_p \\
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots & 1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
Y_{t-1} \\
Y_{t-2} \\
\vdots \\
Y_{t-p}
\end{bmatrix} +
\begin{bmatrix}
\epsilon_t \\
0 \\
\vdots \\
0
\end{bmatrix}
\]

\[X_t = F X_{t-1} + \nu_t\]

Hence, the expected value of \(X_t\) satisfy,

\[\mathbb{E}X_t = F X_{t-1}\]

and \[\mathbb{E}X_{t+j} = F^{j+1} X_{t-1}\]

is a linear map in \(\mathbb{R}^p\) whose dynamic properties are given by the eigenvalues of the matrix \(F\).

The eigenvalues of \(F\) are given by solving the characteristic equation

\[\lambda^p - \phi_1 \lambda^{p-1} - \phi_2 \lambda^{p-2} - \cdots - \phi_{p-1} \lambda - \phi_p = 0.\]

Comparing this with the characteristic equation of the lag polynomial \(\phi(L)\)

\[1 - \phi_1 z - \phi_2 z^2 - \cdots - \phi_{p-1} z^{p-1} - \phi_p z^p = 0\]

we can see that the roots of the 2 equations are such that

\[z_1 = \lambda_1^{-1}, \quad z_2 = \lambda_2^{-1}, \quad \ldots, \quad z_p = \lambda_p^{-1}\]
for an AR(p) process, the k–lag ACF ρ_k can be interpreted as simple regression

$$Y_t = \rho_k Y_{t-k} + \text{error},$$

while the k–lag PACF $a_t(k) \equiv \text{Corr}(Y_t, Y_{t-k}|Y_{t-1}, \ldots, Y_{t-k+1})$ can be seen as a multiple regression

$$Y_t = a_1 Y_{t-1} + a_2 Y_{t-2} + \ldots + a_k Y_{t-k} + \text{error}$$

it can be computed by solving the Yule-Walker system (obtained by multiplying both sides of an AR(p) model by Y_t, Y_{t-1}, \ldots, taking expectations, and inverting).

$$\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_k \end{bmatrix} = \begin{bmatrix} \gamma(0) & \gamma(1) & \ldots & \gamma(k-1) \\ \gamma(1) & \gamma(0) & \ldots & \gamma(k-2) \\ \vdots & \vdots & \ddots & \vdots \\ \gamma(k-1) & \gamma(k-2) & \ldots & \gamma(0) \end{bmatrix}^{-1} \begin{bmatrix} \gamma(1) \\ \gamma(2) \\ \vdots \\ \gamma(k) \end{bmatrix}$$

Importantly, AR(p) processes are “p–partially correlated” ⇒ identification of AR order
An ARMA(p,q) process is defined as

$$\phi(L)Y_t = \theta(L)\epsilon_t$$

where $\phi(L)$ and $\theta(L)$ are p^{th} and q^{th} lag polynomials.

The process is stationary if all the roots of

$$\phi(z) \equiv 1 - \phi_1 z - \phi_2 z^2 - \ldots - \phi_{p-1} z^{p-1} - \phi_p z^p = 0$$

lie outside the unit circle and, hence, admits the MA(∞) representation:

$$Y_t = \phi(L)^{-1} \theta(L)\epsilon_t$$

The process is invertible if all the roots of

$$\theta(z) \equiv 1 + \theta_1 z + \theta_2 z^2 + \ldots + \theta_q z^q = 0$$

lie outside the unit circle and, hence, admits the AR(∞) representation:

$$\epsilon_t = \theta(L)^{-1} \phi(L)Y_t$$
Estimation of AR models

- In time series the data are usually not i.i.d.
 ⇒ It is then very convenient to use the “prediction–error” decomposition of the likelihood:

\[L(y_T, y_{T-1}, \ldots, y_1; \theta) = f(y_T|\Omega_{T-1}; \theta) f(y_{T-1}|\Omega_{T-2}; \theta) \ldots f(y_1|\Omega_0; \theta) \]

- For example for the AR(1)

\[y_t = \phi_1 y_{t-1} + \epsilon_t \]

the full log-Likelihood can be written as

\[l(\phi) = f_{Y_1}(y_1; \phi) + \sum_{t=2}^{T} f_{Y_t|Y_{t-1}}(y_t|y_{t-1}; \phi) = f_{Y_1}(y_1; \phi) - \frac{T}{2} \log(2\pi) - \sum_{t=1}^{T} \log \sigma^2 - \frac{1}{2} \sum_{t=2}^{T} \frac{(y_t - \phi y_{t-1})^2}{\sigma^2} \]

Hence, maximizing the conditional likelihood for \(\phi \) is equivalent to minimize

\[\sum_{t=2}^{T} (y_t - \phi y_{t-1})^2 \]

which is the OLS criteria.

- In general for AR(p) process OLS are consistent and, under gaussianity, asymptotically equivalent to MLE ⇒ asymptotically efficient
Estimation of MA models

For example, for the MA(1)

\[y_t = \theta \epsilon_{t-1} + \epsilon_t \]

the full log-Likelihood can be written as

\[l(\phi) = \underbrace{f_Y(y_1; \phi)}_{\text{marginal 1st obs}} + \sum_{t=2}^{T} \underbrace{f_{Y_t|Y_{t-1}}(y_t|y_{t-1}; \phi)}_{\text{conditional likelihood}} = f_Y(y_1; \phi) - \frac{T}{2} \log(2\pi) - \sum_{t=1}^{T} \log \sigma^2 - \frac{1}{2} \sum_{t=2}^{T} \frac{(y_t - \theta \epsilon_{t-1})^2}{\sigma^2} \]

However, now the \(\epsilon \) are not observed, I can only observe \(y \). Hence, we have to recover \(\epsilon \) from \(y \) by

\[\epsilon_t = y_t - \theta \epsilon_{t-1} = (-\theta)^t \epsilon_0 + \sum_{i=1}^{t} (-\theta)^i y_{t-i} \]

as long as the MA is invertible.

So now the minimization of RSS is highly non-linear in \(\theta \) \(\Rightarrow \) MLE or Non-linear Least Square.
For a general \textbf{ARMA}(p, q)

\[Y_t = \phi_1 Y_{t-1} + \ldots + \phi_p Y_{t-p} + \epsilon_t + \theta_1 \epsilon_{t-1} + \ldots + \theta_q \epsilon_{t-q} \]

\(Y_{t-1} \) is correlated with \(\epsilon_{t-1}, \ldots, \epsilon_{t-q} \) \(\Rightarrow \mathbb{E}[\epsilon|X] \neq 0 \Rightarrow \text{OLS not consistent.} \)

\(\rightarrow \text{MLE with numerical optimization procedures.} \)
Optimal Prediction

if the Loss Function of a prediction is a quadratic function of the prediction error i.e. the Mean Square Error (MSE)

\[\text{MSE}(\hat{Y}_t) \equiv \mathbb{E}(Y_t - \hat{Y}_t)^2 \]

then the optimal prediction of \(Y \) in terms of past values \(X \) is given by the conditional expectation \(\mathbb{E}(Y_{t+1} | X_t) \).

Proof:

\[
\mathbb{E}[Y_{t+1} - g(X_t)]^2 = \mathbb{E}[Y_{t+1} - \mathbb{E}(Y_{t+1} | X_t) + \mathbb{E}(Y_{t+1} | X_t) - g(X_t)]^2 \\
= \mathbb{E}[Y_{t+1} - \mathbb{E}(Y_{t+1} | X_t)]^2 \\
+ \mathbb{E}[(\mathbb{E}(Y_{t+1} | X_t) - g(X_t)]^2 \\
+ 2\mathbb{E}\{|Y_{t+1} - \mathbb{E}(Y_{t+1} | X_t)|[\mathbb{E}(Y_{t+1} | X_t) - g(X_t)]\} \\
= 0 \\
\geq \mathbb{E}[Y_{t+1} - \mathbb{E}(Y_{t+1} | X_t)]^2
\]

If the process \(Y \) is linear or normally distributed the linear projection \(\hat{Y}_t \equiv P(Y_{t+1} | X_t) = \alpha'X \) is the optimal prediction (i.e. the one minimizing the MSE) and \(\alpha' = [\mathbb{E}(X_tX_t')]^{-1}\mathbb{E}(X_t'Y_{t+1}) \approx OLS \)
Prediction with ARMA models: AR(1) example

with \(\mathbb{E}_t(Y_{t+1}) \equiv \mathbb{E}(Y_{t+1}|Y_t, Y_{t-1}, \ldots, \epsilon_t, \epsilon_{t-1}, \ldots) \) and \(\text{Var}_t(Y_{t+1}) \equiv \text{Var}(Y_{t+1}|Y_t, Y_{t-1}, \ldots, \epsilon_t, \epsilon_{t-1}, \ldots) \)

For the AR(1): \(Y_t = \phi Y_{t-1} + \epsilon_t \) we have

\[
\begin{align*}
\mathbb{E}_t(Y_{t+1}) &= \mathbb{E}_t(\phi Y_t + \epsilon_{t+1}) = \phi Y_t \\
\mathbb{E}_t(Y_{t+2}) &= \mathbb{E}_t(\phi^2 Y_t + \phi \epsilon_{t+1} + \epsilon_{t+2}) = \phi^2 Y_t \\
\mathbb{E}_t(Y_{t+k}) &= \ldots = \phi^k Y_t
\end{align*}
\]

with

\[
\begin{align*}
\text{Var}_t(Y_{t+1}) &= \text{Var}_t(\phi Y_t + \epsilon_{t+1}) = \sigma^2 \\
\text{Var}_t(Y_{t+2}) &= \text{Var}_t(\phi^2 Y_t + \phi \epsilon_{t+1} + \epsilon_{t+2}) = (1 + \phi^2)\sigma^2 \\
\text{Var}_t(Y_{t+k}) &= \ldots = (1 + \phi^2 + \phi^4 + \ldots + \phi^{2(k-1)})\sigma^2
\end{align*}
\]

Notice that

\[
\lim_{k \to \infty} \mathbb{E}_t(Y_{t+k}) = 0 = \mathbb{E}(Y_t)
\]

\[
\lim_{k \to \infty} \text{Var}_t(Y_{t+k}) = \sum_{j=0}^{\infty} \phi^{2j} \sigma^2 = \frac{\sigma^2}{1 - \phi^2} = \text{Var}(Y_t)
\]

In general

\[
Y_{t+k} = \underbrace{\{\text{function of future values}\}}_{\text{determine } \text{Var}_t(Y_{t+k})} + \underbrace{\{\text{function of past values}\}}_{\text{determine } \mathbb{E}_t(Y_{t+k})}
\]
write the model in its AR(\(\infty\)) representation:
\[
\eta(L)(Y_t - \mu) = \epsilon_t
\]

then the optimal prediction of \(Y_{t+s}\) is given by
\[
E[Y_{t+s}|Y_t, Y_{t-1}, ...] = \mu + \left[\frac{\eta(L)^{-1}}{L^s} \right] + \eta(L)(Y_t - \mu) \quad \text{with} \quad \left[L^k \right]_+ = 0 \quad \text{for} \quad k < 0
\]
which is known as Wiener-Kolmogorov prediction formula.

In the case of an AR(p) process the prediction formula can also be written as
\[
E[Y_{t+s}|Y_t, Y_{t-1}, ...] = \mu + f_{11}^{(s)}(Y_t - \mu) + f_{12}^{(s)}(Y_{t-1} - \mu) + ... + f_{1p}^{(s)}(Y_{t-p+1} - \mu)
\]
where \(f_{ij}^{(j)}\) is the element (1, 1) of the matrix \(F^j\) in the state space representation of AR(p).

The easiest way to compute prediction from AR(p) model is, however, through recursive methods.
Wold Theorem: any mean zero covariance stationary process can be represented in the form

\[Y_t = \sum_{j=0}^{\infty} \varphi_j \epsilon_{t-j} + k_j \]

where

- \(\sum_{j=0}^{\infty} \varphi_j^2 < \infty \) and \(\varphi_0 = 1 \)
- \(\epsilon_t = Y_t - P(Y_t | Y_{t-1}, Y_{t-2}, \ldots) \) are the linear prediction errors
- \(\{ \varphi_j \} \) and \(\{ \epsilon_t \} \) are unique
- \(k_j \) is linearly deterministic
- \(\epsilon_{t-j} \) and \(k_j \) are uncorrelated.
Box-Jenkins Approach

- **check for stationarity:** if not try different transformation (ex differentiation → ARIMA models)

- **Identification:**
 - check the autocorrelation (ACF) function: a q-correlated process is an MA(q) model
 - check the partial autocorrelation (PACF) function: a p-partially-correlated process is an AR(p) model

- **Validation:** check the appropriateness of the model by some measure of fit.
 - AIC/Akaike $= T \log \hat{\sigma}_e^2 + 2m$
 - BIC/Schwarz $= T \log \hat{\sigma}_e^2 + m \log T$
 with σ_e^2 estimation error variance, $m = p + q + 1$ \(n^\circ \) of parameters, and $T n^\circ$ of obs
 - Diagnostic checking of the residuals.
ARIMA

- Integrated ARMA model:

 - ARIMA(p,1,q) denote a nonstationary process Y_t for which the first difference $Y_t - Y_{t-1} = (1 - L)Y_t$ is a stationary ARMA(p,q) process.

 \Downarrow

 Y_t is said to be integrated of order 1 or $I(1)$.

 - If 2 differentiations of Y_t are necessary to get a stationary process i.e. $(1 - L)^2Y_t$

 \Downarrow

 then the process Y_t is said to be integrated of order 2 or $I(2)$.

 - $I(0)$ indicate a stationary process.
The k-difference operator $(1 - L)^n$ with integer n can be generalized to a fractional difference operator $(1 - L)^d$ with $0 < d < 1$ defined by the binomial expansion

$$(1 - L)^d = 1 - dL + d(d - 1)L^2/2! - d(d - 1)(d - 2)L^3/3! + ...$$

obtaining a fractionally integrated process of order d i.e. $I(d)$.

If $d < 0.5$ the process is cov stationary and admits an AR(∞) representation.

The usefulness of a fractional filter $(1 - L)^d$ is that it produces hyperbolic decaying autocorrelations i.e. the so called long memory. In fact, for ARFIMA(p,d,q) processes

$$
\phi(L)(1 - L)^d Y_t = \theta(L) \epsilon_t
$$

the autocorrelation functions is proportional to

$$
\rho(k) \approx ck^{2d-1}
$$