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Definitions

Stochastic process (univariate): sequence of random variables {Yt; t ∈ N; or t ∈ Z}

Second order process: E[Y2
t ] < +∞ ∀t

Mean µt = E[Yt]

Variance σ2
t = E(Yt − µt)2

Autocovariance γt(k) ≡ Cov(Yt , Yt−k) = E(Yt − µt)(Yt−k − µt−k) hence σ2
t ≡ γt(0)

Autocorrelation

ρt(k) ≡ Corr(Yt, Yt−k) =
γt(k)√

γt(0)γt−k(0)
, −1 ≤ ρt(k) ≤ 1

Partial Autocorrelation at(k) ≡ Corr(Yt, Yt−k|Yt−1, ..., Yt−k+1)
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Stationarity and Ergodicity
Strict stationarity:

(Y1, Y2, ...,Yn)
d
= (Y1+k, Y2+k, ...,Yn+k) for any integer n > 1, k

Weak/second-order/covariance stationarity:

E[Yt] = µ

E[Yt − µ]2 = σ
2
< +∞ (i.e. constant and independent of t)

E[(Yt − µ)(Yt+k − µ)] = γ(|k|) (i.e. independent of t for each k)
⇒ ρ(k) = γ(k)

γ(0) .

Ergodicity

Ergodic in mean: ȳ ≡ 1
T

∑T
t=1 Yt

p
→ E[Yt]

Ergodic in second moments: 1
T

∑T
t=1(Yt − µ)(Yt−k − µ)

p
→ γ(k)

Interpretation:

unconditional mean and variance are constant
mean reversion
shocks are transient
covariance between Yt and Yt−k tends to 0 as k → ∞
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Withe noise

weak (uncorrelated)

E(εt) = 0 ∀t
V(εt) = σ

2 ∀t
Corr(εt, εs) = 0 ∀s 6= t

strong (independence)

εt ∼ I.I.D.(0, σ2)

Gaussian (weak=strong)

εt ∼ N.I.D.(0, σ2)
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Lag operator

the Lag operator is defined as:
LYt ≡ Yt−1

is a linear operator:

L(βYt) = β · LYt = βYt−1

L(Xt + Yt) = LXt + LYt = Xt−1 + Yt−1

and admits power exponent, for instance:

L2Yt = L(LYt) = LYt−1 = Yt−2

LkYt = Yt−k

L−1Yt = Yt+1

Some examples:

∆Yt = Yt − Yt−1 = Yt − LYt = (1 − L)Yt

yt = (θ1 + θ2L)LYt = (θ1L + θ2L2)Yt = θ1Yt−1 + θ2Yt−2

Expression like
(θ0 + θ1L + θ2L2 + ...+ θnLn)

with possibly n = ∞, are called lag polynomial and are indicated as θ(L)
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Moving Average (MA) process

The simplest way to construct a stationary process is to use a lag polynomial θ(L) with∑∞
j=0 θ

2
j < ∞ to construct a sort of “weighted moving average” of withe noises εt, i.e.

MA(q)
Yt = θ(L)εt = εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q

Example, MA(1)
Yt = εt + θεt−1 = (1 + θL)εt

being EYt = 0

γ(0) = EYtYt = E(εt + θεt−1)(εt + θεt−1) = σ2(1 + θ2);

γ(1) = EYtYt−1 = E(εt + θεt−1)(εt−1 + θεt−2) = σ2θ;

γ(k) = EYtYt−k = E(εt + θεt−1)(εt−k + θεt−k−1) = 0 ∀k > 1

and,

ρ(1) =
γ(1)

γ(0)
=

θ

1 + θ2

ρ(k) =
γ(k)

γ(0)
= 0 ∀k > 1

hence, while a withe noise is “0-correlated”, MA(1) is 1-correlated
(i.e. it has only the first correlation ρ(1) different from zero)
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Properties MA(q)

In general for a MA(q) process

Yt = θ(L)εt = εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q

we have

γ(0) = σ2(1 + θ2
1 + θ2

2 + ...+ θ2
q)

γ(k) = σ2
q−k∑

j=0

θjθj+k ∀k ≤ q

= 0 ∀k > q

and

ρ(k) =

∑q−k
j=0 θjθj+k

1 +
∑q

j=1 θ
2
j

∀k ≤ q

= 0 ∀k > q

Hence, an MA(q) is q-correlated and it can also be shown that any stationary q-correlated
process can be represented as an MA(q).

But, given a q-correlated process, is the MA(q) process unique? In general no, indeed it can
be shown that for a q-correlated process there are 2q possible MA(q) with same
autocovariance structure. However, there is only one MA(q) which is invertible .
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Invertibility conditions for MA
first consider the MA(1) case:

Yt = (1 + θL)εt

given the result

(1 + θL)−1 = (1 − θL + θ2L2 − θ3L3 + θ4L4 + ...) =
∞∑

i=0

(−θL)i

inverting the θ(L) lag polynomial, we can write

(1 − θL + θ2L2 − θ3L3 + θ4L4 + ...)Yt = εt

which can be considered an AR(∞) process.

If an MA process can be written as an AR(∞) of this type, such MA representation is said to
be invertible . For MA(1) process the invertibility condition is given by |θ| < 1.

For a general MA(q) process

Yt = (1 + θ1L + θ2L2 + ...+ θqLq)εt

the invertibility conditions are that the roots of the lag polynomial

1 + θ1z + θ2z2 + ...+ θqzq = 0

lie outside the unit circle. Then the MA(q) can be written as an AR(∞) by inverting θ(L).

Invertibility also has important practical consequence in application. In fact, given that the εt

are not observable they have to be reconstructed from the observed Y ’s through the
AR(∞) representation.

Fulvio Corsi ()Introduction to ARMA processes SNS Pisa 8 / 24



Inverting lag polynomials

suppose you want to invert the generic lag polynomial

θ(L) = 1 + θ1L + θ2L2 + ...+ θqLq

i.e. finding the series θ(L)−1 = ϕ0 + ϕ1L + ϕ2L2 + ... such that

(1 + θ1L + θ2L2 + ...+ θqLq)(ϕ0 + ϕ1L + ϕ2L2 + ...) = 1

by matching the coefficients of L0, L1, ...,Li in both sides we can obtain the ϕi recursively

ϕ0 = 1

ϕ1 + ϕ0θ1 = 0 ⇒ ϕ1 = −θ1

ϕ2 + ϕ1θ1 + ϕ0θ2 = 0 ⇒ ϕ2 = θ2
1 − θ2

... = 0 ...

ϕi + ϕi−1θ1 + ...+ ϕ0θi = 0 ...
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Auto-Regressive Process (AR)
A general AR process is defined as

φ(L)Yt = εt

It is always invertible but not always stationary.

Example: AR(1)
(1 − φL)Yt = εt or Yt = φYt−1 + εt

by inverting the lag polynomial (1 − φL) the AR(1) can be written as

Yt = (1 − φL)−1εt =
∞∑

i=0

(φL)iεt =
∞∑

i=0

φiεt−i = MA(∞)

hence the stationarity condition is that |φ| < 1.

From this representation we can apply the general formula of MA to compute γ(·) and ρ(·).
In particular,

ρ(k) = φ|k| ∀k

i.e. monotonic exponential decay for φ > 0 and exponentially damped oscillatory decay for
φ < 0.

In general an AR(p) process

Yt = φ1Yt−1 + φ2Yt−2 + ...+ φpYt−p + εt

is stationarity if all the roots of the characteristic equation of the lag polynomial

1 − φ1z − φ2z2 − ...− φpzp = 0

are outside the unit circle.
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Example: AR(2)

(1 − φ1L − φ2L2)Yt = εt or Yt = φ1Yt−1 + φ2Yt−2 + εt

the roots of the quadratic characteristic equation exceed 1 in absolute value if three conditions
are satisfied:

φ1 + φ2 < 1, φ2 − φ1 < 1 and |φ2| > 1
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State Space Representation of AR(p)
to gain more intuition on the AR stationarity conditions write an AR(p) in its state space form





Yt

Yt−1
...

Yt−p+1




=





φ1 φ2 φ3 . . . φp−1 φp

1 0 0 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . 1 0









Yt−1
Yt−2

...
Yt−p




+





εt

0
...
0





Xt = F Xt−1 + vt

Hence, the expected value of Xt satisfy,

EXt = F Xt−1 and EXt+j = F j+1 Xt−1

is a linear map in Rp whose dynamic properties are given by the eigenvalues of the matrix F.

The eigenvalues of F are given by solving the characteristic equation

λp − φ1λ
p−1 − φ2λ

p−2 − ...− φp−1λ− φp = 0.

Comparing this with the characteristic equation of the lag polynomial φ(L)

1 − φ1z − φ2z2 − ...− φp−1zp−1 − φpzp = 0

we can see that the roots of the 2 equations are such that

z1 = λ−1
1 , z2 = λ−1

2 , ... , zp = λ−1
p
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Partial Autocorrelation Function (PACF)

for an AR(p) process, the k–lag ACF ρk can be interpreted as simple regression

Yt = ρkYt−k + error,

while the k–lag PACF at(k) ≡ Corr(Yt, Yt−k|Yt−1, ...,Yt−k+1) can be seen as a multiple regression

Yt = a1Yt−1 + a2Yt−2 + ...+ akYt−k + error

it can be computed by solving the Yule-Walker system (obtained by multiplying both sides of an
AR(p) model by Yt, Yt−1, ..., taking expectations, and inverting).








a1

a2

..

.
ak








=








γ(0) γ(1) . . . γ(k − 1)
γ(1) γ(0) . . . γ(k − 2)

..

.
..
. . . .

..

.
γ(k − 1) γ(k − 2) . . . γ(0)








−1 






γ(1)
γ(2)

..

.
γ(k)








Importantly, AR(p) processes are “p–partially correlated” ⇒ identification of AR order
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ARMA(p,q)

An ARMA(p,q) process is defined as

φ(L)Yt = θ(L)εt

where φ(L) and θ(L) are pth and qth lag polynomials.

the process is stationary if all the roots of

φ(z) ≡ 1 − φ1z − φ2z2 − ...− φp−1zp−1 − φpzp = 0

lie outside the unit circle and, hence, admits the MA(∞) representation:

Yt = φ(L)−1θ(L)εt

the process is invertible if all the roots of

θ(z) ≡ 1 + θ1z + θ2z2 + ...+ θqzq = 0

lie outside the unit circle and, hence, admits the AR(∞) representation:

εt = θ(L)−1φ(L)Yt
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Estimation of AR models

In time series the data are usually not i.i.d.
⇒ It is then very convenient to use the “prediction–error” decomposition of the likelihood:

L(yT , yT−1, ..., y1; θ) = f (yT |ΩT−1; θ) f (yT−1|ΩT−2; θ) ... f (y1|Ω0; θ)

For example for the AR(1)
yt = φ1yt−1 + εt

the full log-Likelihood can be written as

l(φ) = fY1 (y1;φ)
︸ ︷︷ ︸

marginal 1st obs

+

T∑

t=2

fYt|Yt−1
(yt|yt−1;φ)

︸ ︷︷ ︸

conditional likelihood
under normality OLS=MLE

= fY1 (y1;φ)−
T

2
log(2π)−

T∑

t=1

log σ
2
−

1

2

T∑

t=2

(yt − φyt−1)
2

σ2

Hence, maximizing the conditional likelihood for φ is equivalent to minimize

T∑

t=2

(yt − φyt−1)
2

which is the OLS criteria.

In general for AR(p) process OLS are consistent and, under gaussianity, asymptotically
equivalent to MLE ⇒ asymptotically efficient
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Estimation of MA models

For example, for the MA(1)
yt = θεt−1 + εt

the full log-Likelihood can be written as

l(φ) = fY1 (y1;φ)
︸ ︷︷ ︸

marginal 1st obs

+

T∑

t=2

fYt|Yt−1
(yt|yt−1;φ)

︸ ︷︷ ︸

conditional likelihood

= fY1 (y1;φ) −
T

2
log(2π) −

T∑

t=1

log σ
2 −

1

2

T∑

t=2

(yt − θεt−1)
2

σ2

However, now the ε are not observed, I can only observe y. Hence, we have to recover ε from y by

εt = yt − θεt−1 = (−θ)tε0 +
t∑

i=1

(−θ)iyt−i

as long as the MA is invertible.

So now the minimization of RSS is highly non-linear in θ ⇒ MLE or Non-linear Least Square.

Fulvio Corsi ()Introduction to ARMA processes SNS Pisa 16 / 24



Estimation of ARMA models

For a general ARMA(p,q)

Yt = φ1Yt−1 + ...+ φpYt−p + εt + θ1εt−1 + ...+ θqεt−q

Yt−1 is correlated with εt−1, ..., εt−q ⇒ E[ε|X] 6= 0 ⇒ OLS not consistent.

→ MLE with numerical optimization procedures.
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Optimal Prediction

if the Loss Function of a prediction is a quadratic function of the prediction error
i.e. the Mean Square Error (MSE)

MSE(Ŷt) ≡ E(Yt − Ŷt)
2

then the optimal prediction of Y in terms of past values X is given by the conditional expectation
E(Yt+1|Xt).

Proof:

E[Yt+1 − g(Xt)]
2 = E[Yt+1 − E(Yt+1|Xt) + E(Yt+1|Xt)− g(Xt)]

2

= E[Yt+1 − E(Yt+1|Xt)]
2

+ E[E(Yt+1|Xt)− g(Xt)]
2

+ 2E{[Yt+1 − E(Yt+1|Xt)][E(Yt+1|Xt)− g(Xt)]}︸ ︷︷ ︸
=0

≥ E[Yt+1 − E(Yt+1|Xt)]
2

If the process Y is linear or normally distributed the linear projection Ŷt ≡ P(Yt+1|Xt) = α′X is the
optimal prediction (i.e. the one minimizing the MSE) and α′ = [E(XtX′

t )]
−1E(X′

t Yt+1) ≈ OLS
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Prediction with ARMA models: AR(1) example
with Et(Yt+1) ≡ E(Yt+1|Yt, Yt−1, ..., εt, εt−1, ..., ) and Vart(Yt+1) ≡ Var(Yt+1|Yt, Yt−1, ..., εt, εt−1, ..., )

For the AR(1): Yt = φYt−1 + εt we have

Et(Yt+1) = Et(φYt + εt+1) = φYt

Et(Yt+2) = Et(φ
2Yt + φεt+1 + εt+2) = φ2Yt

Et(Yt+k) = ... = φkYt

with

Vart(Yt+1) = Vart(φYt + εt+1) = σ2

Vart(Yt+2) = Vart(φ
2Yt + φεt+1 + εt+2) = (1 + φ2)σ2

Vart(Yt+k) = ... = (1 + φ2 + φ4 + ...+ φ2(k−1))σ2

Notice that

lim
k→∞

Et(Yt+k) = 0 = E(Yt)

lim
k→∞

Vart(Yt+k) =
∞∑

j=0

φ
2j
σ

2 =
σ2

1 − φ2
= Var(Yt)

In general
Yt+k = {function of future values}

︸ ︷︷ ︸
determine Vart(Yt t+k)

+ {function of past values}
︸ ︷︷ ︸

determine Et(Yt+k)
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Prediction with ARMA models

write the model in its AR(∞) representation:

η(L)(Yt − µ) = εt

then the optimal prediction of Yt+s is given by

E[Yt+s|Yt, Yt−1, ...] = µ+

[
η(L)−1

Ls

]

+

η(L)(Yt − µ) with
[

Lk
]

+
= 0 for k < 0

which is known as Wiener-Kolmogorov prediction formula.

In the case of an AR(p) process the prediction formula can also be written as

E[Yt+s|Yt, Yt−1, ...] = µ+ f (s)
11 (Yt − µ) + f (s)

12 (Yt−1 − µ) + ...+ f (s)
1p (Yt−p+1 − µ)

where f (j)
11 is the element (1, 1) of the matrix F j in the state space representation of AR(p).

The easiest way to compute prediction from AR(p) model is, however, through recursive
methods.
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Wold Theorem

Wold Theorem : any mean zero covariance stationary process can be represented in the form

Yt =
∞∑

j=0

ϕjεt−j

︸ ︷︷ ︸
purely random

+ kj︸︷︷︸
purely determ

where

∑∞
j=0 ϕ

2
j < ∞ and ϕ0 = 1

εt = Yt − P(Yt|Yt−1, Yt−2, ...) are the linear prediction errors

{ϕj} and {εt} are unique

kj is linearly deterministic

εt−j and kj are uncorrelated.
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Box-Jenkins Approach

check for stationarity : if not try different transformation (ex differentiation→ARIMA models)

Identification :

check the autocorrelation (ACF) function: a q-correlated process is an MA(q) model

check the partial autocorrelation (PACF) function: a p-partially-correlated process is
an AR(p) model

Validation : check the appropriateness of the model by some measure of fit.

AIC/Akaike = T log σ̂2
e + 2 m

BIC/Schwarz = T log σ̂2
e + m log T

with σ2
e estimation error variance, m = p + q + 1 n◦ of parameters, and T n◦ of obs

Diagnostic checking of the residuals.
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ARIMA

Integrated ARMA model:

ARIMA(p,1,q) denote a nonstationary process Yt for which the first difference
Yt − Yt−1 = (1 − L)Yt is a stationary ARMA(p,q) process.

⇓
Yt is said to be integrated of order 1 or I(1).

If 2 differentiations of Yt are necessary to get a stationary process i.e.
(1 − L)2Yt

⇓
then the process Yt is said to be integrated of order 2 or I(2).

I(0) indicate a stationary process.
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ARFIMA

The k-difference operator (1 − L)n with integer n can be generalized to a fractional
difference operator (1 − L)d with 0 < d < 1 defined by the binomial expansion

(1 − L)d = 1 − dL + d(d − 1)L2/2!− d(d − 1)(d − 2)L3/3! + ...

obtaining a fractionally integrated process of order d i.e. I(d).

If d < 0.5 the process is cov stationary and admits an AR(∞) representation.

The usefulness of a fractional filter (1 − L)d is that it produces hyperbolic decaying
autocorrelations i.e. the so called long memory. In fact, for ARFIMA(p,d,q) processes

φ(L)(1 − L)dYt = θ(L)εt

the autocorrelation functions is proportional to

ρ(k) ≈ ck2d−1
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