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Stochastic process (univariate): sequence of random variables {Y;; t € N;or t € Z}

(]

©

Second order process: E[Y?] < 400Vt
@ Mean ut = E[Yy]

@ Variance o? = E(Y; — ut)?

@ Autocovariance v (k) = Cov(Yt, Yi_k) = E(Yt — pt) (Ye—k — f1t—k) hence of = v(0)
@ Autocorrelation
(k)
p(K) =Corr (Y, Vi) = ————=, -1<pK <1
1t (0)1—«(0)
@ Partial Autocorrelation a;(k) = Corr (Yt, Yi—k|Yi—1, .-, Yi—k+1)
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Stationarity and Ergodicity

@ Strict stationarity:

(Y1,Y2, ..., Yn) 4 (Y1+k, Yo4k; ---7Yn+k) for any integer n> 1k

@ Weak/second-order/covariance stationarity:
o EMi|=p
o E[Y; — u]? = 0% < 40 (i.e. constant and independent of t)
9 E[(Y:r — p) (Yesk — )] = v(|K]) (i-e. independent of t for each k)

K
= p(k) = 2.

@ Ergodicity

o Ergodicinmean:y= 137 Y B E[v
o Ergodic in second moments: 1 S (Ye— ) (Yek — p) 25k

@ Interpretation:
@ unconditional mean and variance are constant
@ mean reversion
@ shocks are transient
@ covariance between Y; and Y;_x tendsto O as k — oo
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@ weak (uncorrelated)

o E(G{) =0 Vvt
9 V(&) = o? vt
@ Corr(et,e) =0 Vs#t

@ strong (independence)
9 ¢ ~1.1.D.(0,0%)

@ Gaussian (weak=strong)
9 ¢ ~ N.I.D.(0, %)
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@ the Lag operator is defined as:

LYt = Y1
@ is a linear operator:
L) = B LYt=pYi1
LX+Y) = LX+LYi=X_1+Yi-1

@ and admits power exponent, for instance:

LY = L(LY)=LYr1=Y2
LY = Y
LYy = Y

@ Some examples:
At = Y1—Ya1=Yr—-L%i=(1-L)V;
W (61 + 02L)LY: = (011 + 02L2)Ye = 01 Vi1 + 02Yi_2

@ Expression like
(B0 4 611 + 6212 + ... 4 6,L")

with possibly n = oo, are called lag polynomial and are indicated as 6(L)
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Moving Average (MA) process

The simplest way to construct a stationary process is to use a lag polynomial 6(L) with
Zj"io 9j2 < oo to construct a sort of “weighted moving average” of withe noises ¢, i.e.

@ MA(Q)
Yt = 0(L)et = et + 0161 + O2er—2 + ... + Oqet—q

@ Example, MA(1)
Y= et + Oet_1 = (1 + 9L)6t

being EY; =0
v(0) = EYtYi = E(et + Oe—1)(et + Oei—1) = 0'2(1+ 02);
Y1) = EVYi_1=E(a+ 0 1)(c 1+ 0e_2) = o%6;
¥k = EYtYi—k = E(et 4+ Oer—1)(et—k + Oet—k—1) =0  Vk>1
and,
v(1) 6
1) = 12 _
P ~(0) ~ 1+ 62
(K
pk) = 0 wk>1
7(0)

@ hence, while a withe noise is “0O-correlated”, MA(1) is 1-correlated
(i.e. it has only the first correlation p(1) different from zero)
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Properties MA(Q)

@ In general for a MA(q) process

Yt = 0(L)et = et + O1et—1 + O2er_2 + ... + Oget—q

we have
(0) = o*(1+02+05+...+03)
q—k
k) = o> 66 Yk<q
j=0
=0 vk > q
and
S5 016 4k
p) = ——g 5 Vk<q
143, 07
= 0 vk >q

@ Hence, an MA(q) is g-correlated and it can also be shown that any stationary g-correlated
process can be represented as an MA(q).

@ But, given a g-correlated process, is the MA(q) process unique? In general no, indeed it can
be shown that for a g-correlated process there are 29 possible MA(q) with same
autocovariance structure. However, there is only one MA(q) which is invertible .
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Invertibility conditions for MA

@ first consider the MA(1) case:
Yi = (14 6L)et
given the result

(146" =@ —0L+06%2% - 053 +0*L% + Z( L)l

inverting the (L) lag polynomial, we can write
(1—0L+ 022 - Pl +0*L + . )i =«
which can be considered an AR(co) process.

If an MA process can be written as an AR(co) of this type, such MA representation is said to
be invertible . For MA(1) process the invertibility condition is given by 6| < 1.

@ For a general MA(q) process
= (14 61L + 022 4 ... + LDt
the invertibility conditions are that the roots of the lag polynomial
140124 6.2 + ...+ 047 =0
lie outside the unit circle. Then the MA(q) can be written as an AR(co) by inverting 6(L).

@ Invertibility also has important practical consequence in application. In fact, given that the e
are not observable they have to be reconstructed from the observed Y’s through the
AR(o0) representation.
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Inverting lag polynomials

suppose you want to invert the generic lag polynomial

O(L) =14 1L + 05L2 4 ... 4 OLY

i.e. finding the series #(L) = = wg + p1L + w2L? + ... such that

(L4 01L + 0212 + ...+ 0gLY (o + o1l + ol 2+ ..) =1
by matching the coefficients of L%, L1, ..., L' in both sides we can obtain the ¢; recursively
Yo =

p1+ ot =
w2 + w101 + pob2

= @1 =—01
= =02 -0,

Il
o o o o r

@i + pi—101 + ... + o
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Auto-Regressive Process (AR)

@ A general AR process is defined as
d(L)Yr = et
It is always invertible but not always stationary.
@ Example: AR(1)
1-¢L)t=e of Yr=¢Yi_1+e
by inverting the lag polynomial (1 — ¢L) the AR(1) can be written as

Yi=(1-¢L) ta=> (L)'= dlec_i =MA(c)
i=0 i=0

hence the stationarity condition is that |¢| < 1.

From this representation we can apply the general formula of MA to compute ~(-) and p(-).
In particular,
p(k) = vk
i.e. monotonic exponential decay for ¢ > 0 and exponentially damped oscillatory decay for
¢ <O.
@ In general an AR(p) process
Yi=p1Vi—1+ ¢2Vi—2+ ... + PpYi—p + €t
is stationarity if all the roots of the characteristic equation of the lag polynomial
1—¢1z— 7 — ... —p? =0
are outside the unit circle.
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Example: AR(2)

Q- —pl®)Yi=e o  Yi= Y1+ b2V 2+ e
the roots of the quadratic characteristic equation exceed 1 in absolute value if three conditions
are satisfied:
p1+¢2<l,  ga—¢1<1 and [fp] >1

e ]
© 02 +4d, = 0
= : 1 2
real‘roots
S g o e
[Te) .
o 4 :
! complex:roots
<
! T T T T T
-2 -1 0 1 2
1
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State Space Representation of AR(p)

to gain more intuition on the AR stationarity conditions write an AR(p) in its state space form

Yt $1 P2 Pz ... Pp-1 Pp Yi-1 €t

Yio1 1 0 o ... 0 0 Yi_» 0

. = . . . . . . + | .

Yi_pi1 0 0 0 ... 1 0]/[Y, 0
Xt = F Xi—1 + w

Hence, the expected value of X; satisfy,
EXi=FX_1 and EXj=F*1X_4
is a linear map in RP whose dynamic properties are given by the eigenvalues of the matrix F.

The eigenvalues of F are given by solving the characteristic equation

AP AP AP gy A —p = O
Comparing this with the characteristic equation of the lag polynomial ¢(L)
1— 12— ¢pZ2 — . — pp_122 L —p? = 0

we can see that the roots of the 2 equations are such that

-1 -1 -1
=X, =X, o =X
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Partial Autocorrelation Function (PACF)

for an AR(p) process, the k—lag ACF pk can be interpreted as simple regression

Yt = pkYi—k + error,

while the k—lag PACF a; (k) = Corr(VYt, Yi—k|Yi—1, -.., Yi—k+1) can be seen as a multiple regression
Yi=a Vi1 +aYi_2 + ... + &Yk + error

it can be computed by solving the Yule-Walker system (obtained by multiplying both sides of an
AR(p) model by Vi, Y;_1, ..., taking expectations, and inverting).

& ~(0) ~(1) oyk=1 7 1y
& (1) ~(0) oo v(k=2) ~(2)
a yk=1) k=2 ... (0 ~(K)

Importantly, AR(p) processes are “p—partially correlated” = identification of AR order
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ARMA(p,q)

@ An ARMA(p,q) process is defined as
S(L)Yi = O(L)er

where ¢(L) and (L) are p™ and g lag polynomials.

@ the process is stationary if all the roots of
V@D =1— 12— ¢pZ — . —pp_1Z P —pp? = 0
lie outside the unit circle and, hence, admits the MA(co) representation:

Yi = p(L) " H0(L)er

@ the process is invertible if all the roots of
02 =1+ 612+ 02+ .. +6"2 = 0
lie outside the unit circle and, hence, admits the AR(co) representation:

e =0(L) (L)t
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Estimation of AR models

@ In time series the data are usually not i.i.d.
= It is then very convenient to use the “prediction—error” decomposition of the likelihood:

LY, ¥r—1, - Y1;0) = F(y7|Qr—1;0) F(yr—1|Q71-2;0) ... T(¥1]Q0;6)
@ For example for the AR(1)
= P1¥i—1 + €t
the full log-Likelihood can be written as

T

]
—
1(6) = oy 045 9) + D iy ORIV 9) = fy (025 9) — 7 log(2m) ~Stego" Z“ Yoo)”
N——" t=2 t=1 =
marginal 13 obs N ———

conditional likelihood
under normality OLS=MLE

Hence, maximizing the conditional likelihood for ¢ is equivalent to minimize

T

D o — ¢ye-1)?

t=2

which is the OLS criteria.

@ In general for AR(p) process OLS are consistent and, under gaussianity, asymptotically
equivalent to MLE = asymptotically efficient

Fulvio Corsi Introduction to ARMA processes SNS Pisa 15/24



Estimation of MA models

For example, for the MA(1)

Yt = Oet—1 + €t
the full log-Likelihood can be written as
u 1 (i — 961 1)
1(¢) = fv, (Y15 0) +me\q 1 MilYe—1;8) = v (i 6) — 5 |09(2‘ff) > logo? — 3 S —
N — t=2 t=1 t=2

N——— -
~—
conditional likelihood

marginal 1% obs

However, now the ¢ are not observed, | can only observe y. Hence, we have to recover ¢ from y by

t
=Y —Oe_1=(—0)'eo+»_ (—0)yi
i=1

as long as the MA is invertible.

So now the minimization of RSS is highly non-linear in 6 = MLE or Non-linear Least Square.
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Estimation of ARMA models

@ For a general ARMA(p,q)

Y = ¢1Yt—1 + ...+ ¢th_p + et + 916t_1 + ...+ qut_q
Yi—1 is correlated with €;_1, ..., ei—q = E[¢|X] # 0 = OLS not consistent.

— MLE with numerical optimization procedures.
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Optimal Prediction

if the Loss Function of a prediction is a quadratic function of the prediction error
i.e. the Mean Square Error (MSE)

MSE(V) = E(Yt — 11)?

then the optimal prediction of Y in terms of past values X is given by the conditional expectation
E(Yi41|Xt).
Proof:

E[Yiy1— 90X = E[Yip1 — E(YepalX) + E(YepalX) — 9(X0)]?
= E[Yi1— ]E(YtJrl‘Xt)}z
[

+  E[E(Yer1lX) — g(%)]?

+ 2B{[Yer1 — B(Yera[XO][E(Yey %) — (X0}
=0

> E[Yip1— (Ve |X))

If the process Y is linear or normally distributed the linear projection ¥; = P(Yi+1|Xt) = /X is the
optimal prediction (i.e. the one minimizing the MSE) and o = [E(X¢X{)] "E(X{Yi+1) ~ OLS
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Prediction with ARMA models: AR(1) example

with Et(Yiy1) = E(Yiy1| Ve, Yio1, .00y €, €021, ..., ) @nd Vary(Yep1) = Var(Yga|Ye, Vi1, .o e, €21, .00y )
For the AR(1): Yt = ¢Y;_1 + €t we have

Et(Yi41) = Et(oYr + er41) = oMy
Ec(Yir2) = Ei(¢?Yi+ derr + er) = 92V
E(Yi4k) = = oY%t
with
Vart(Yi41) = Vare(éYi + ery1) =o°
Vare(Yer2) = Var(¢®Yi 4 derir + eg2) = (14 ¢?)o?
Vari(Yepk) = =1+ ¢*+ ¢+ ...+ ¢*D)o?
Notice that
JmE(Yp) = 00 = E(W)
oo 2
. g
Jim Van(Ye) = gq@az == Var (Y;)
In general

Yi+k = {function of future values} + {function of past values}

determine Vary(Yit+k) determine  Et(Yy«)
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Prediction with ARMA models

@ write the model in its AR(co) representation:

(LMt —p) = e

@ then the optimal prediction of Yis is given by

n(L)~t

E[Yoersl¥e, Yeo1, -] = i+ [ E

} L)Y — p)  with [Lk] =0 for k<O
+ +
which is known as Wiener-Kolmogorov prediction formula.

@ In the case of an AR(p) process the prediction formula can also be written as
E[¥erslYe, Yimt, o] = s 1) (= 1) + 15 (Yima = 1) + o+ £ (iepyn — )

where flq) is the element (1, 1) of the matrix F 1 in the state space representation of AR(p).

@ The easiest way to compute prediction from AR(p) model is, however, through recursive
methods.
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Wold Theorem

Wold Theorem : any mean zero covariance stationary process can be represented in the form

oo
Ye= D gjej + K
j=0 ~~

N purely determ
purely random

where
) Ejozoocpjz <ooand gy =1
@ ¢ =Yy — P(Mt|Yi—1, Yi—2, ...) are the linear prediction errors
@ {y;} and {et} are unique
@ ki is linearly deterministic

@ ¢_j and kj are uncorrelated.
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Box-Jenkins Approach

@ check for stationarity :if not try different transformation (ex differentiation—ARIMA models)

@ Identification :
@ check the autocorrelation (ACF) function: a g-correlated process is an MA(q) model

@ check the partial autocorrelation (PACF) function: a p-partially-correlated process is
an AR(p) model

@ Validation : check the appropriateness of the model by some measure of fit.
@ AIC/Akaike = TlogsZ +2m
@ BIC/Schwarz = Tlogé3 +mlog T
with 2 estimation error variance, m = p 4 q -+ 1 n° of parameters, and T n° of obs
@ Diagnostic checking of the residuals.
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ARIMA

@ Integrated ARMA model:

o ARIMA(p,1,q) denote a nonstationary process Y; for which the first difference
Yt — Yi—1 = (1 — L)Y; is a stationary ARMA(p,q) process.

4

Yt is said to be integrated of order 1 or 1(1).
o If 2 differentiations of Y; are necessary to get a stationary process i.e.
(1-L)*Y,
4

then the process VY is said to be integrated of order 2 or 1 (2).

@ |(0) indicate a stationary process.
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ARFIMA

@ The k-difference operator (1 — L)" with integer n can be generalized to a fractional
difference operator (1 — L)% with 0 < d < 1 defined by the binomial expansion

(1-09%=1-dL+d(d—1)L%/2 —d(d—1)(d —2)L3/3 + ...

obtaining a fractionally integrated process of order d i.e. 1(d).
@ If d < 0.5the process is cov stationary and admits an AR(co) representation.

@ The usefulness of a fractional filter (1 — L)9 is that it produces hyperbolic decaying
autocorrelations i.e. the so called long memory. In fact, for ARFIMA(p,d,q) processes

$L)(L— L) = 6(L)ex
the autocorrelation functions is proportional to

p(k) ~ k-1
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