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Asset prices

S&P 500 index from 1982 to 2009
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asset prices are typically integrated of order one processes I(1)
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Asset returns

the standard solution is to take the first difference of prices. Two different type of returns:

1 simple net return

Rt =
Pt − Pt−∆

Pt−∆

2 log return or continuously compounded returns

rt = log Pt − log Pt−∆ = pt − pt−∆

over short horizon ∆, rt is typically small (|rt| << 10%) so that Rt ≈ rt being

1 + Rt = exp(rt) = 1 + rt +
1

2
r2

t + ...

The main advantage of the log return is that a k-period return rt(k) is simply:

rt(k) = pt − pt−k∆ = rt−(k−1)∆ + ...+ rt−∆ + rt

hence multi-period log returns are simply the sum of single-period log returns.
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Asset returns dynamics
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Gaussian noise
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Time changing volatility

Dynamics in the volatility of asset returns has paramount consequences in important finance
applications:

asset allocation

risk management

derivative pricing

What makes volatility change over time? Still unclear.

“event-driven volatility”: different information arrival rate, consistent with EMH

“error-driven volatility”: due to over- and underreaction of the market to incoming information

“price-driven volatility”: endogenously generated by trading activities of heterogeneous
agents ⇒ strong positive correlation between volatility and market presence
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Different volatility notions

Different types of volatility approaches:

Parametric: volatility measure is model-dependent

- Discrete-time: ARCH/GARCH models

- Continuous-time: Stochastic Volatility models

Non-Parametric: volatility measure is model-independent (or model-free)

- Realized Volatility (exploiting the information in High Frequency data)

Different notions of volatility:

ex-ante conditional volatility

spot/instantaneous volatility

ex-post integrated volatility
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Basic Structure and Properties of ARMA model

standard time series models have:

Yt = E[Yt|Ωt−1] + εt

E[Yt|Ωt−1] = f (Ωt−1; θ)

Var [Yt|Ωt−1] = E

[

ε2
t |Ωt−1

]

= σ2

hence,

Conditional mean: varies with Ωt−1
Conditional variance: constant (unfortunately)

k-step-ahead mean forecasts: generally depends on Ωt−1
k-step-ahead variance of the forecasts: depends only on k, not on Ωt−1 (again
unfortunately)

Unconditional mean: constant
Unconditional variance: constant
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AutoRegressive Conditional Heteroskedasticity
(ARCH) model

Engle (1982, Econometrica) intruduced the ARCH models:

Yt = E[Yt|Ωt−1] + εt

E[Yt|Ωt−1] = f (Ωt−1; θ)

Var [Yt|Ωt−1] = E

[

ε2
t |Ωt−1

]

= σ (Ωt−1; θ) ≡ σ2
t

hence,

Conditional mean: varies with Ωt−1
Conditional variance: varies with Ωt−1

k-step-ahead mean forecasts: generally depends on Ωt−1
k-step-ahead variance of the forecasts: generally depends on Ωt−1

Unconditional mean: constant
Unconditional variance: constant
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ARCH(q)

How to parameterize E
[
ε2

t |Ωt−1
]
= σ (Ωt−1; θ) ≡ σ2

t ?

ARCH(q) postulated that the conditional variance is a linear function of the past q squared
innovations

σ2
t = ω +

q
∑

i=1

αiε
2
t−i = ω + α(L)ε2

t−1

Defining vt = ε2
t − σ2

t , the ARCH(q) model can be written as

ε2
t = ω + α(L)ε2

t−1 + vt

Since Et−1(vt) = 0, the model corresponds directly to an AR(q) model for the squared
innovations, ε2

t .

The process is covariance stationary if and only if the sum of the positive AR parameters is
less than 1 i.e.

∑q
i=1 αi < 1. Then, the unconditional variance of εt is

Var(εt) = σ2 = ω/(1 − α1 − α2 − ...− αq).
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ARCH and fat tails

Note that the unconditional distribution of εt has Fat Tail.

In fact, the unconditional kurtosis of εt is

E(ε4
t )

E(ε2
t )

2

where the numerator is

E

[

ε4
t

]

= E

[

E(ε4
t |Ωt−1)

]

= 3E
[

σ4
t

]

= 3[Var(σ2
t ) + E(σ2

t )
2]

= 3[Var(σ2
t )

︸ ︷︷ ︸

>0

+E(ε2
t )

2]

> 3E(ε2
t )

2.

Hence,

Kurtosis(εt) =
E(ε4

t )

E(ε2
t )

2
> 3
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ARCH and fat tails: intuition

rt ∼ N(µ, σt) is a mixture of Normals with different σt ⇒ fatter tails
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AR(1)-ARCH(1)

Example: the AR(1)-ARCH(1) model

Yt = φYt−1 + εt

σ2
t = ω + αε2

t−1

εt ∼ N(0, σ2
t )

- Conditional mean: E(Yt |Ωt−1) = φYt−1

- Conditional variance: E([Yt − E(Yt|Ωt−1)]
2|Ωt−1) = ω + αε2

t−1

- Unconditional mean: E(Yt) = 0

- Unconditional variance: E(Yt − E(Yt))2 = 1
(1−φ2)

ω
(1−α)
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Other characteristics of ARCH(1)

for the ARCH(1) model

Yt = µ+ εt

σ2
t = ω + αε2

t−1

εt ∼ N(0, σ2
t )

we also have:

- Excess kurtosis:

Kurtosis(εt) =
E(ε4

t )

E(ε2
t )

2
= 3

1 − α2

1 − 3α2

kurtosis is equal to 3 iff α = 0

- Stationarity condition for finite variance of ε2 (or for finite kurtosis of ε)

α <
1√
3
≈ 0.577

- Autocorrelation of σt: Corr(σt, σt−h) = αh ⇒ difficult to replicate empirical persistence of σt .

⇒ ARCH(q) models but ...
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GARCH(p,q)

ARCH(q) problem: empirical volatility very persistent ⇒ Large q i.e. too many α’s

Bollerslev (1986, J. of Econometrics) proposed the Generalized ARCH model.

The GARCH(p,q) is defined as

σ2
t = ω +

q
∑

i=1

αi ε
2
t−i +

p
∑

j=1

βj σ
2
t−j = ω + α(L)ε2

t−1 + β(L)σ2
t−1

As before, defining vt = ε2
t − σ2

t , the GARCH(p,q) can be also rewritten as

ε2
t = ω + [α(L) + β(L)] ε2

t−1 − β(L)vt−1 + vt

which defines an ARMA[max(p, q),p] model for ε2
t .
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GARCH(1,1)

By far the most commonly used is the GARCH(1,1):

εt = σtzt with zt ∼ i.i.d.N(0, 1),

σ2
t = ω + α ε2

t−1 + βj σ
2
t−1 with ω > 0, α > 0, β > 0

Stationarity conditions:

being

σ2
t = ω + (αz2

t + β)σ2
t−1

and hence,

E[σ2
t ] = ω + (α + β)E[σ2

t−1]

then the process is covariance stationary iff

α+ β < 1

Unconditional variance:
Var(ε) =

ω

1 − (α + β)
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GARCH(1,1)

By recursive substitution, the GARCH(1,1) may be written as the following ARCH(∞):

σ2
t = ω(1 − β) + α

∞∑

i=1

βi−1ε2
t−i

which reduces to an exponentially weighted moving average filter for ω = 0 and α+ β = 1
(sometimes referred to as Integrated GARCH or IGARCH(1,1)).

Moreover, GARCH(1,1) implies an ARMA(1,1) representation in the ε2
t

ε2
t = ω + (α + β)ε2

t−1 − βvt−1 + vt

From the ARMA(1,1) representation we can guess that

ρh ≡ Corr(σt , σt−h) ≈ (α+ β)h.

The precise calculations give:

ρ1 =
α(1 − β2 − αβ)

1 − β2 − 2αβ
, ρh = (α+ β)ρh−1 for h > 1

Forecasting. Denoting the unconditional variance σ2 ≡ ω(1 − α− β)−1 we have:

σ̂2
t+h|t = σ2 + (α+ β)h−1(σ2

t+1 − σ2)

showing that the forecasts of the conditional variance revert to the long-run unconditional
variance at an exponential rate dictated by α+ β
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Asymmetric GARCH

In standard GARCH model:

σ2
t = ω + αr2

t−1 + βσ2
t−1

σ2
t responds symmetrically to past returns.

The so called “news impact curve” is a parabola
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Empirically negative rt−1 impact more than positive ones → asymmetric news impact curve

GJR or T-GARCH

σ2
t = ω + αr2

t−1 + γr2
t−1Dt−1 + βσ2

t−1 with Dt =

{
1 if rt < 0
0 otherwise

- Positive returns (good news): α
- Negative returns (bad news): α + γ

- Empirically γ > 0 → “Leverage effect”

Exponential GARCH (EGARCH)

ln(σ2
t ) = ω + α

∣
∣
∣
∣

rt−1

σt−1

∣
∣
∣
∣+ γ

rt−1

σt−1
+ βln(σ2

t−1)
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GARCH in mean

In the GARCH-M (Garch-in-Mean) model Engle, Lilien and Robins (1987) introduce the
(positive) dependence of returns on conditional variance, the so called “risk-return tradeoff”.

The specification of the model is:

rt = µ+ γσ2
t + σtzt

σ2
t = ω + αr2

t−1 + βσ2
t−1

Given the inherent noise of financial returns rt, the estimates of γ are often very difficult,
typically long time series are required to find significant results.
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Engle test for heteroscedasticity or ARCH test

The ARCH test of Engle assesses the null hypothesis that a series of residuals εt exhibits no
conditional heteroscedasticity (ARCH effects),

The test is performed by running the following regression

ε2
t = c + a1ε

2
t−1 + a2ε

2
t−2 + ...+ aLε

2
t−L

then computes the Lagrange multiplier statistic T × R2, where T is the sample size and R2 is the
coefficient of determination of the regression.

Under the null, we have that

T × R2 → χ2
L

i.e. the asymptotic distribution of the test statistic is chi-square with L degrees of freedom.
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Estimation

A GARCH process with gaussian innovation:

rt|Ωt−1 ∼ N(µt(θ), σ
2
t (θ))

has conditional densities:

f (rt|Ωt−1; θ) =
1√
2π

σ−1
t (θ) exp

(

− 1

2

(rt − µt(θ))

σ2
t (θ)

)

using the “prediction–error” decomposition of the likelihood

L(rT , rT−1, ..., r1; θ) = f (rT |ΩT−1; θ)× f (rT−1|ΩT−2; θ)× ...× f (r1|Ω0; θ)

the log-likelihood becomes:

log L(rT , rT−1, ..., r1; θ) = −T

2
log(2π)−

T∑

t=1

logσt(θ)−
1

2

T∑

t=1

(rt − µt(θ))

σ2
t (θ)

Non–linear function in θ ⇒ Numerical optimization techniques.

When innovations not Normal → PMLE standard errors (“sandwich form”)
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Stochastic Volatility models (idea)

In ARCH-GARCH models, the variance at time t, σ2
t is completely determined by the

information at time t − 1, i.e. σ2
t it is conditionally deterministic or Ft−1 measurable

Another possibility is to have σ2
t being also a (positive) stochastic process i.e. variance is

also affected by an idiosyncratic noise term ⇒ Stochastic Volatility models

Example: the Heston model

dP(t) = µP(t)dt +
√

h(t)P(t)dWP(t)

h(t) = k(θ − h(t)) + ν
√

h(t)dWh(t) CIR process

where dWP(t) and dWh(t) are two (possibly correlated) Brownian processes.
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