ARCH and GARCH models

Fulvio Corsi

SNS Pisa

5 Dic 2011

Fulvio Corsi ARCH and GARCH models SNS Pisa 5 Dic 2011 1/21



Asset prices

S&P 500 index from 1982 to 2009
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asset prices are typically integrated of order one processes (1)
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Asset returns

the standard solution is to take the first difference of prices. Two different type of returns:

0 simple net return
_ Pt—Pi_a

Rt
Pi—a

@ log return or continuously compounded returns

re=1logPt —logPi_a =pt — pr—a
over short horizon A, ry is typically small (rt] << 10%) so that Ry = rt being

1
1+R(:exp(rt):l+rt+5rt2+...

The main advantage of the log return is that a k-period return r¢(Kk) is simply:

(k) = pt — Pt—ka = M—(k—1)A + - +Tt—a + 1t
hence multi-period log returns are simply the sum of single-period log returns.
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Asset returns dynamics

USD/CHE 19892001
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Time changing volatility

Dynamics in the volatility of asset returns has paramount consequences in important finance
applications:

@ asset allocation
@ risk management
@ derivative pricing
What makes volatility change over time? Still unclear.
@ “event-driven volatility”: different information arrival rate, consistent with EMH

@ “error-driven volatility”: due to over- and underreaction of the market to incoming information

@ “price-driven volatility”: endogenously generated by trading activities of heterogeneous
agents = strong positive correlation between volatility and market presence
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Different volatility notions

Different types of volatility approaches:

@ Parametric: volatility measure is model-dependent
- Discrete-time: ARCH/GARCH models

- Continuous-time: Stochastic Volatility models

@ Non-Parametric: volatility measure is model-independent (or model-free)

- Realized Volatility (exploiting the information in High Frequency data)
Different notions of volatility:
@ ex-ante conditional volatility
@ spot/instantaneous volatility

@ ex-post integrated volatility
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Basic Structure and Properties of ARMA model

@ standard time series models have:
Yi = E[Y| Q1] + et
E[Vi|Q—1] = (—1;0)
Var [Yi| 1] = E[&\Qt_l] =o?
hence,

@ Conditional mean: varies with Q;_1
@ Conditional variance: constant (unfortunately)

@ k-step-ahead mean forecasts: generally depends on €21
@ k-step-ahead variance of the forecasts: depends only on k, not on ;_1 (again
unfortunately)

@ Unconditional mean: constant
@ Unconditional variance: constant
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AutoRegressive Conditional Heteroskedasticity

(ARCH) model

@ Engle (1982, Econometrica) intruduced the ARCH models:

Yo = E[Vt|Q—a] + et
EVi{ Q1] = f (Qt-1;0)

Ver [Yi]Q 1] = B[ 1] = 0 (2 1;0) = o

hence,

@ Conditional mean: varies with Q;_1
@ Conditional variance: varies with Q;_1

@ k-step-ahead mean forecasts: generally depends on Q;_;
@ k-step-ahead variance of the forecasts: generally depends on ;1

@ Unconditional mean: constant
@ Unconditional variance: constant
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@ How to parameterize E[e2|Q—1] = o (Q—1;6) = 02 ?

@ ARCH(q) postulated that the conditional variance is a linear function of the past q squared

innovations
q

ol =w+ Zai & =wtall)é
i=1

@ Defining vt = ¢ — o7 , the ARCH(q) model can be written as
E=w+a(l) | +w
Since E;_1(w) = 0, the model corresponds directly to an AR(g) model for the squared
innovations, 7.
@ The process is covariance stationary if and only if the sum of the positive AR parameters is

less than 1i.e. 31 ; aj < 1. Then, the unconditional variance of e is

Var(et) = 0 =w/(1— g — ap — ... — agq).
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ARCH and fat tails

@ Note that the unconditional distribution of ¢; has Fat Tail.

In fact, the unconditional kurtosis of ¢ is

where the numerator is

Hence,

Kurtosis(et) =

Fulvio Corsi

ARCH and GARCH models

B(ef)
E(ef)?

E[E(1%-1)]

3E [a{‘]

3\Var (of) + E(of)?]

3Var (of) +E(¢f)?]
——

>0
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ARCH and fat tails: intuition

Low Volatility

1 -

1
-4 -3 -2 -1 0 1 2 3 4 5 ©6

re ~ N(u, ot) is a mixture of Normals with different oy = fatter tails
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AR(1)-ARCH(1)

@ Example: the AR(1)-ARCH(1) model

i = ¢Yieate
? = wrad,

e ~ N (Oy Utz)

- Conditional mean: E(Y;|Qt—1) = ¢Yi—1
- Conditional variance: E([Y; — E(Yt|Q—1)]?|Q1—1) = w + a€® |
- Unconditional mean: E(Y;) =0

1

. ' . s “
- Unconditional variance: E(Y; — E(\t))* = T Tow
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Other characteristics of ARCH(1)

for the ARCH(1) model

Yt = pte
atz = w+taeg

e ~ N (Oy Utz)

we also have:

- Excess kurtosis:

E
Kurtosis| = =3
(et) 5
kurtosis is equal to 3 iff a =0

- Stationarity condition for finite variance of €2 (or for finite kurtosis of )

1
a< —= ~ 0577
V3

- Autocorrelation of or: Corr (o1, or_n) = o' = difficult to replicate empirical persistence of ot.
= ARCH(qg) models but ...
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GARCH(p,q)

@ ARCH(q) problem: empirical volatility very persistent = Large g i.e. too many a’s

@ Bollerslev (1986, J. of Econometrics) proposed the Generalized ARCH model.

The GARCH(p,q) is defined as

q p
o=t d o+ YA ot = o)+ AL s
i=1 j=1

@ As before, defining v = ¢ — of, the GARCH(p,g) can be also rewritten as
€ =w+aL)+BL)] e —BLvi—1+w

which defines an ARMA[max(p, g),p] model for €?.
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GARCH(1,1)

@ By far the most commonly used is the GARCH(1,1):

€& = otk with 7t ~ i.i.d.N(O7 l)7

o2 = wtae +Fot, wth w>0a>08>0

@ Stationarity conditions:

being

of =w+ (oF + B)ot 4

and hence,

E[of] = w + (a + B)E[of_]

then the process is covariance stationary iff

a+p8<1

@ Unconditional variance: w
Var(e) = ——
O=1"+p
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GARCH(1,1)

@ By recursive substitution, the GARCH(1,1) may be written as the following ARCH(c0):
o2 =w(l-8 -l—ozZB' 12

which reduces to an exponentially weighted movmg average filterforw =0anda+B8=1
(sometimes referred to as Integrated GARCH or IGARCH(1,1)).

@ Moreover, GARCH(1,1) implies an ARMA(1,1) representation in the €?
€ =w+(a+B)ed | — Pvu_1+Ww

@ From the ARMA(1,1) representation we can guess that
= Corr(ot, o1—n) ~ (a + B)M.
The precise calculations give.

a(l— B2 - ap)
— sy = _ for h>1
p1 157 208 ph= (a+ B)pnh—1
@ Forecasting. Denoting the unconditional variance 02 = w(1 — a — 8)~1 we have:

2
Ut+h\t =0+ (a+pB)" (Ut+1 —09)
showing that the forecasts of the conditional variance revert to the long-run unconditional
variance at an exponential rate dictated by o + 3
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Asymmetric GARCH

News Impact Curve

8|

@ In standard GARCH model: — asymmetric GARCH

of =w+arly +fofy

=y

o? responds symmetrically to past returns.

conditional variance
N

Ny

The so called “news impact curve” is a parabola

0 5
standardized lagged shocks

@ Empirically negative ri_1 impact more than positive ones — asymmetric news impact curve

@ GJR or FGARCH

. 1 if rt<O0
o2 = wHard +yw2 D1+ Bo%, with D= { 0 otherwise
- Positive returns (good news): «
- Negative returns (bad news): o +

- Empirically v > 0 — “Leverage effect”

@ Exponential GARCH (EGARCH)
M—1

Ot—1

r—
+y==L 4 BIn(o? ;)
Ot—1

In(ed) =w+a
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GARCH in mean

@ In the GARCH-M (Garch-in-Mean) model Engle, Lilien and Robins (1987) introduce the
(positive) dependence of returns on conditional variance, the so called “risk-return tradeoff”.

@ The specification of the model is:

It w+ Wotz + otz
of = wtart,+pot,

@ Given the inherent noise of financial returns ry, the estimates of ~ are often very difficult,
typically long time series are required to find significant results.
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Engle test for heteroscedasticity or ARCH test

The ARCH test of Engle assesses the null hypothesis that a series of residuals e exhibits no
conditional heteroscedasticity (ARCH effects),

The test is performed by running the following regression

etz =C+ a15t271 + azet{z + ...+ aLEtz_L

then computes the Lagrange multiplier statistic T x R?, where T is the sample size and R? is the
coefficient of determination of the regression.

Under the null, we have that

T><R2—>XE

i.e. the asymptotic distribution of the test statistic is chi-square with L degrees of freedom.

Fulvio Corsi ARCH and GARCH models SNS Pisa 5 Dic 2011 19/21



@ A GARCH process with gaussian innovation:
re| Q1 ~ N(ut(0), o7 (0))

@ has conditional densities:

f(reQ—1;0) = 1@)

1
R ) ex —
NS p( 2 o2(0)
@ using the “prediction—error”  decomposition of the likelihood
L(rrsrr—1, s 1150) = F(r7|Qr-2;0) X F(rr—1[Qr—2;0) X ... X F(r1Q0;0)

the log-likelihood becomes:

re — (6
logL(rr,rr—1,..,1150) = —= '09 (2m) Z'Ogm(e ) Z “27?0;5))
25 o

@ Non-linear function in # = Numerical optimization techniques.

@ When innovations not Normal — PMLE standard errors (“sandwich form”)

Fulvio Corsi ARCH and GARCH models SNS Pisa 5 Dic 2011 20/21



Stochastic Volatility models (idea)

@ In ARCH-GARCH models, the variance at time t, o is completely determined by the
information at timet — 1, i.e. Utz it is conditionally deterministic or 7;_; measurable

@ Another possibility is to have o being also a (positive) stochastic process i.e. variance is
also affected by an idiosyncratic noise term = Stochastic Volatility models

@ Example: the Heston model

dP(t) = wuP()dt+ /hO)PE)dWP(t)
h(t) = k@ —h)+vv/h{t)dW'(t)  CIR process

where dWF (t) and dW"(t) are two (possibly correlated) Brownian processes.
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