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• Lecture 1: An introduction to dynamical systems and to time series. Periodic and 

quasiperiodic motions. (Tue Jan 13,  2 pm - 4 pm Aula Bianchi)

• Lecture 2: Ergodicity. Uniform distribution of orbits. Return times. Kac inequality

Mixing (Thu Jan 15,  2 pm - 4 pm Aula Dini)

• Lecture 3: Kolmogorov-Sinai entropy. Randomness and deterministic chaos. (Tue Jan 

27,  2 pm - 4 pm Aula Bianchi)

• Lecture 4: Time series analysis and embedology. (Thu Jan 29,  2 pm - 4 pm Dini)

• Lecture 5: Fractals and multifractals. (Thu Feb 12,  2 pm - 4 pm  Dini)

• Lecture 6: The rhythms of life. (Tue Feb 17,  2 pm - 4 pm  Bianchi)

• Lecture 7: Financial time series. (Thu Feb 19,  2 pm - 4 pm  Dini)

• Lecture 8: The efficient markets hypothesis. (Tue Mar 3,  2 pm - 4 pm Bianchi)

• Lecture 9: A random walk down Wall Street. (Thu Mar 

19,  2 pm - 4 pm  Dini)

• Lecture 10: TBA. (Tue Mar 24, 11 am– 1 pm aula ?? Rosario Mantegna)



• Seminar I: Waiting times, recurrence times ergodicity and quasiperiodic
dynamics (D.H. Kim, Suwon, Korea; Thu Jan 22,  2 pm - 4 pm Aula Dini)

• Seminar II: Symbolization of dynamics. Recurrence rates and entropy (S. 
Galatolo, Università di Pisa; Tue Feb 10,  2 pm - 4 pm Aula Bianchi)

• Seminar III: Heart Rate Variability: a statistical physics point of view (A. 
Facchini, Università di Siena; Tue Feb 24,  2 pm - 4 pm Aula Bianchi ) 

• Seminar IV: Study of a population model: the Yoccoz-Birkeland model (D. 
Papini, Università di Siena; Thu Feb 26,  2 pm - 4 pm Aula Dini)

• Seminar V: Scaling laws in economics (G. Bottazzi, Scuola Superiore 
Sant'Anna Pisa; Tue Mar 17,  2 pm - 4 pm Aula Bianchi) 

• Seminar VI: Complexity, sequence distance and heart rate variability (M. 
Degli Esposti, Università di Bologna; Thu Mar 26,  2 pm - 4 pm Aula Dini )

• Seminar VII: Forecasting (M. Lippi, Università di Roma; late april, TBA)



Today‟s bibliography:

S.J. Taylor “Asset price dynamics, volatility and prediction” 

Princeton University Press, Ch. 5

K. Cuthbertson “Quantitative Financial Economics” Chapter 4 

Valuation and 5 The efficient markets hypothesis

Eugene Fama: “Foundations of Finance” Chapter 5: Efficient Capital 

Markets

Tomas Björk: “Arbitrage Theory in Continuous Time” Chapter 4 and 

Appendix B



What is an efficent capital 
market?

An efficient capital market is a market which is efficient in 

processing information: the prices of securities observed at any

time are based on “correct” evaluation of all information 

available at that time. Prices “fully reflect” available information.

The prices are always “fair”, they are good indicators of value

The concept of market efficiency had been anticipated at the 

beginning of the century: Bachelier (1900) writes "past, present 

and even discounted future events are reflected in market price, 

but often show no apparent relation to price changes". And also 

"if the market, in effect, does not predict its fluctuations, it does 

assess them as being more or less likely, and this likelihood can 

be evaluated mathematically". 



Weak vs. strong efficiency

More formally: a capital market is said to be efficient if it fully and 

correctly reflects all relevant information in determining security 

prices. Formally, the market is said to be efficient with respect to 

some information set, Θt , if security prices would be unaffected by 

revealing that information to all participants. Moreover, efficiency 

with respect to an information set, Θt, implies that it is impossible 

to make economic profits by trading on the basis of Θt.

The weak form of the efficient market hypothesis claims that prices 

fully reflect the information implicit in the sequence of past prices. 

The semi-strong form of the hypothesis asserts that prices 

reflect all relevant information that is publicly available, while the 

strong form of market efficiency asserts information that is known 

to any participant is reflected in market prices.  



Fundamental vs. technical analysis

Fundamental analysis maintains that markets may misprice a 

security in the short run but that the "correct" price will eventually 

be reached. Analyzing financial statements, management and 

competitive advantages, one can accurately estimate a “fair value” 

for the stock. Profits can be made by trading the mispriced security 

and then waiting for the market to recognize its "mistake" and 

reprice the security.

Technical analysis maintains that all information is reflected 

already in the stock price, so fundamental analysis is a waste of 

time. Trends 'are your friend' and sentiment changes predate and 

predict trend changes. Investors' emotional responses to price 

movements lead to recognizable price chart patterns. Technical 

analysis does not care what the 'value' of a stock is. Their price 

predictions are only extrapolations from historical price patterns.



Strong and semi-strong 
efficiency

In the semi-strong form of the EMH a trading strategy 

incorporating current publicly available fundamental information 

(such as financial statements) and historical price information 

will not systematically outperform a buy-and-hold strategy. Share 

prices adjust instantaneously to publicly available new 

information, and no excess returns can be earned by using that 

information. Fundamental analysis will not be profitable.

In strong-form efficiency share prices reflect all information, 

public and private, fundamental and historical, and no one can 

earn excess returns. Inside information will not be profitable.



Weak, semi-strong and strong EMH

• Weak EMH. "One can not use past price and volume values

to craft investment strategies that can reliably out perform the 

over all market."

• Semi-Strong EMH. "One cannot use publically available 

information to to craft investment strategies that can reliably 

out perform the over all market."

• Strong EMH. "One cannot use any information --- including 

material, non-public information --- to to craft investment 

strategies that can reliably out perform the over all market."



http://www stat.wharton.upenn.edu/~steele/Courses/434/434index.html

J. Michael Steele course on Financial Time Series

Steele‟s comment on the EMH: 

The second part of the agenda is to open the conversation about the 

Efficient Market Hypothesis (EMH). Everyone seems to know what 

this is all about until someone says --- "great, lets write this out as 

mathematics." 

At that point almost everyone starts to become uneasy. The fact is that 

that there are some hard --- and debatable --- decisions must be made. 

Our first step will be to round up the "usual suspect." We'll then see 

what comes out in the wash. Incidentally, I have collected some 

sources on the EMH that may be useful to you, and you will surely 

have loads of material from your other courses.
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Lognormal distribution



Taylor, Asset Price Dynamics, Volatility and Prediction, P.U.P. (2005)



Gaussian process

A process is called Gaussian if the multivariate distribution of 

the consecutive variables (Xt+1,Xt+2,...,Xt+k) is multivariate 

normal for all integers t and k. A stationary Gaussian process 

is always strictly stationary, because then the first- and second-

order moments completely determine the multivariate 

distributions.



Why white noise?

Autocovariances

Autocorrelation of a stationary process (the variance is constant) 

ρ0 = 1, ρτ = ρ-τ

Spectral density function 

The integral of s(ω) from 0 to 2π equals λ0. High values of s(ω) 

might indicate cyclical behavior with the period of one cycle 

equal to 2π/ω time units.  For a white noise the spectral density 

function is the same constant for all frequencies ω
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We  now  consider a  slightly more general case, where we  are given a  finite 
partition  P = {Al,.  .  .  ,Ak}. Having access to the  information contained  in 

P is, according to our earlier discussion, equivalent to  knowing exactly in 

which of  the components {Al,.  .  .  ,Ak} the outcome lies.

With assumptions as  above, and also assuming that P(An)  >  0 
for  all  n,  we  define  E[X| P ],"the conditional  expectation  of  X  given  the 

information in P "  by 

E[X| P ] = ∑ IAn
E[X| An]
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We  now  consider a  slightly more general case, where we  are given a  finite 
partition  P = {Al,.  .  .  ,Ak}. Having access to the  information contained  in P 
is, according to our earlier discussion, equivalent to  knowing exactly in which of  

the components {Al,.  .  .  ,Ak} the outcome lies.

With assumptions as  above, and also assuming that P(An)  >  0 
for  all  n,  we  define  E[X| P ], the conditional  expectation  of  X  given  the 

information in P by 

E[X| P ] = ∑ IAn
E[X| An]

We now would like to extend this definition to the case when we condition on a 

general σ-algebra. This is not straightforward since we had to assume P(An)  >  0

Let  (Ω, F,  P) be  a  probability space and  X  a  random variable in L1 (Ω, F,  P) . 

Let G be  a sub- σ-algebra  of F and Z  a random variable such that

(i)  Z  is G -measurable

(ii) For every G є G it holds  that ∫G Z(ω)dP(ω) = ∫G X(ω)dP(ω) 

Then we say that Z is  the conditional expectation of X given the  sigma-
algebra G.  In that case we  denote Z= E[X| G ] 



The conditional expectation is
the optimal conditional predictor

It is well known  that E[X]  is  the optimal mean square deterministic predictor 

of  X. The corresponding result for conditional expectations is as follows. 

Proposition:  Let  (Ω, F,  P) be  a  probability space,  let G be  a sub- σ-algebra  

of F and let X  be  a  square integrable random variable.  

Consider the  problem of  minimizing  E[(X-Z)2] where  Z  is  allowed  to vary  
over  the  class  of  all  square  integrable G -measurable  random variables.  

The optimal solution is then given by Z= E[X| G ] 



Information flows and filtrations

Let  X  be  any  given  stochastic process.  In  the  sequel  it  will  be  important  

to  define "the information generated by X" as time goes by. 

The symbol Ft
X denotes the information generated by X  on  the interval [0, t] 

or alternatively "what has happened  to X  over the interval  [0,t] ". 

If, based  upon observations  of  the  trajectory  {X(s);  0 ≤ s ≤ t}, it  is  

possible  to decide whether  a given event A has occurred  or not, then we 
write  this as  Aє Ft

X or  say  that  "A is Ft
X -measurable". 

If  the  value  of  a  given  stochastic  variable  Z  can  be  completely  

determined given observations  of the  trajectory {X(s);  0 ≤ s ≤ t}, then we  
also write Z є Ft

X

If Y  is a stochastic  process  such  that we have Yt є Ft
X for all t ≥ 0 then we  

say that Y  is adapted to the filtration Ft
X



Let (Ω, F,  P, F) be a filtered probability space, and  let  X  be a  random 

process  in continuous or discrete time. 

The  process X  is an F -martingale if 

1. X  is F -adapted. 

2. Xt є L1 for each t. 

3.  For every  0 ≤ s≤t one has Xs = E[Xt | Fs ] 

If  the  equality  sign is replaced  by ≤ (≥) then X is said  to be  a submartingale

(supermartingale). 

Note that the martingale property is always with respect to  some given 

filtration. 

Martingale theory in discrete time is easy, martingale theory in continuous time 

is rather complicated : we  typically want our processes to be codlag

(continue `a droite limit a gauche) and the filtration E must have  some 

regularity properties. 

It follows immediately from the definition, that a martingale  is characterized 

by the property that the conditional expectations of  a forward increment equals 

zero, i.e. that  E  [Xt - Xs | Fs ] =  0  for all s≤t



Examples: 

1. Take  Y   any  integrable random variable on  the filtered space (Ω, F,  P, F) 

and define the process X  by Xt= E[Y | Ft ] , t≥0 

On a  compact  interval [0,  T] any given martingale M  is always 

generated by  its final value MT by  the formula Mt = E[MT | Ft ] 

2. If  X  is a  process with  independent increments on (Ω, F,  P, F) 

and if  also E [Xt - Xs ]  =  0, for all s,  t,  then X  is a martingale. 

3. Let  {Zn , n = 1,2,.  .  .}  be  a  family  of  independent  integrable

random variables, and define the discrete time process X  by 

Xn = ∑i=1
n Zi then X  is a martingale w.r.t.  the filtration F X. 

There  is  a  close connection  between martingale  theory,  the  theory of  con-

vex functions, and  the theory of  harmonic functions. The correspondence is as 

follows: 

Martingale theory  Convex theory  Harmonic  theory 

martingale  linear function  harmonic function 

submartingale convex function  subharmonic function 

supermartingale concave function  superharmonic function



EMH: formalization
Under the EMH the stock price pt already incorporates all relevant information 

and the only reason for prices to change between time t and time t+1 is the arrival 

of news. 

Forecast errors εt+1 = pt+1- Et pt+1 should therefore be zero on average and 

uncorrelated with any information Θt that was available at time t

(RE: rational expectation) pt+1=  Et pt+1 + εt+1 

The  forecast  error  is expected  to be  zero on  average because  prices  only  

change on the  arrival  of  „news‟ which  itself  is  a  random  variable.

The statement that the forecast error εt+1 must be independent on Θt  is known as 

the orthogonality property. If  the forecasting error is serially  correlated  then  the 

orthogonality property  is violated: e.g. if εt follows a first-order autoregressive 

process AR(1) εt+1 =ρ εt + νt , where νt is a  (white  noise)  random  element  (and 

by  assumption  is independent on the information Θt  at time t).  The  forecast  

error εt =pt - Et-1 pt,  is known  at  time t thus  forms part of Θt .  Therefore  this 

period‟s forecast error εt has a predictable effect on next period‟s forecast error 

εt+1 and using (RE) can be used to forecast future prices, thus violating EMH.



Loosely  speaking  we  say  that  a  stochastic  process X  is  a  diffusion  if  its 

local dynamics can be approximated  by  a stochastic difference equation of 

the  following type: 

X(t  + Δt)  - X(t)  = μ (t,  X(t)) Δt + σ (t,  X(t))  Z(t). 

Here  Z(t)  is a normally distributed disturbance term which  is  independent of 

everything which has happened up to time t,  while μ and σ are given determ-

inistic functions.  The  intuitive  content  is  that,  over  the  time  interval 

[t,  t + Δt],  the X-process is driven by  two separate terms. 

- A locally deterministic velocity μ (t,  X(t))  (local drift term)

- A Gaussian disturbance  term, amplified by  the factor σ (t,  X(t))  (diffusion 

term)

Diffusions and SDEs



Wiener process

A  stochastic  process W  is  called  a Wiener  process if  the 

following conditions hold: 

1.  W(0)  =  0. 

2.  The  process W  has  independent  increments,  i.e.  if  r  < s  ≤ t < u  then 

W(u)  - W(t)  and W(s)  - W(r)  are  independent  stochastic  variables. 

3.  For s <  t the stochastic variable W(t)- W(s)  has the Gaussian distribution 

N  [0, (t-s)½]

4. W  has continuous trajectori



Stochastic integrals

With  probability 1 a Wiener trajectory  is nowhere differentiable  

dX(t)  = μ (t,  X(t)) dt + σ (t,  X(t)) dW(t), 

X(0)  =  a, 

and  it  is now  natural to interpret  it as  

X(t)  = a + ∫0

t
μ (s,  X(s)) ds + ∫0

t
σ(s, X(s)) dW(s)

The natural  interpretation of  the dW-integral  would be to view it as a 

Riemann-Stieltjes integral for each W-trajectory, but  unfortunately this is  not  

possible since one  can show  that  the W-trajectories are  of  locally 

unbounded variation. Thus the stochastic dW-integral  cannot be defined in a 

naive way. 

If, however,  we  relax  our  demand  that  the  dW-integral  should  be 

defined trajectorywise we  can still proceed. It is in fact possible to give a 

global (L2-)definition  of  these integrals : this  new  integral  concept is called  

Itô integral



Approx. 60 b.c.: Lucretius in De rerum natura

describes Brownian motion of dust particles in 

the air, observed “when sunbeams are 

admitted into a building and shed light on its 

shadowy places.” 

1827: Robert Brown (a botanist) observes very 

irregular trajectories of fine particles 

suspendend in a liquid or gas

1900:  Louis Bachelier → Brownian motion as a model of price fluctuations on 

the Paris stockmarket.

1905: Albert Einstein  links Brownian motion to diffusion. Einstein recognized 

that if the predictions of statistical mechanics were correct, then any particle 

immersed in a "bath" of atoms must basically behave like a very large atom 

because it would be in thermodynamic equilibrium with the atoms in the bath. 



By energy equipartition the particle's kinetic energy depends on temperature: for 

each degree of freedom the average kinetic energy is kBT/2, where kB is 

Boltzmann's constant and T is the temperature of the bath.

For spherical particles of radius r, if  the  liquid has a  coefficient of  viscosity  k,  

then the diffusion coefficient is D=RT/(6Nπkr). 

The distribution density function of the suspendend particles is

f(x,t)=n exp[-x2/(4Dt)]/(4πDt), 

thus the mean value of the displacement of particles at time t is λ=(2Dt)1/2 

At room temperature, for particles with r =10-6 m suspendend in water  the mean

displacement in one minute is approximately 6∙ 10-6 m. 

This will be later confirmed by Perrin who observed the diffusion experimentally

and used Einstein‟s formula for the diffusion coefficients to compute Avogadro‟s 

number N . The value thus calculated agreed excellently with other values 

obtained by entirely different methods in connection with other phenomena. In 

this way the discontinuity of matter was proved by him beyond doubt: an 

achievement rewarded with the 1926 Nobel Prize.



Brownian motion

1923: Norbert Wiener gives a rigorous construction of the 

corresponding measure P on the set Ω of all continuous 

functions on the interval [0,T] . The increments St −Ss, 

considered as random variables on the probability space (Ω,P), 

are Gaussian with means and variances proportional to the 

length t −s of the time interval, and that they are independent 

for disjoint intervals. If this construction is carried out on a 

logarithmic scale, one obtains geometric Brownian motion, by 

now a standard model for the price fluctuation of a liquid 

financial asset, which was proposed by P.A. Samuelson in the 

1960s.



Uncorrelated processes

The simplest possible autocorrelation occurs when a process is a 

collection of uncorrelated random variables so ρ0 = 1, ρτ = 0 

for all τ>0

For an uncorrelated process the optimal forecast of the variable is 

simply the unconditional mean.

Uncorrelated processes are often used to model asset returns 

because they have some empirical support and they are 

coherent with the efficient markets hypothesis



Taylor, Asset Price Dynamics, Volatility and Prediction, P.U.P. (2005)



Random walk hypothesis (RWH)
1st possibility: returns have independent and identical distributions (i.i.d.). The 

i.i.d. hypothesis is not very relevant if we are interested in the predictability of 

returns. It will be rejected by an appropriate test if the conditional variances of 

returns have sufficient variation through time, but this may tell us nothing about 

the predictability of returns. For example, the statistically significant

autocorrelation in absolute and squared returns rejects the i.i.d. hypothesis but it 

does not prove that returns can be predicted. Even if we test and reject the i.i.d. 

hypothesis using the autocorrelations of returns, we still cannot reject the 

hypothesis that returns are uncorrelated at the same significance level.

2nd possibility (quite general): replace identical distributions by identical means 

and independent distributions by uncorrelated distributions:

E[rt ]= E[rt+τ ] and cov(rt ,rt+τ ) = 0 for all t and all τ> 0 (RWH1)

One does not even requires stationarity.



Linear predictors of rt+1 are defined by ft+1 = α +∑∞
i=0βi rt−i .

When RWH1 is true, the returns process is uncorrelated and hence the best linear 

prediction of a future return is its unconditional mean, which RWH1 assumes is a 

constant:  E[(rt+1 − ft+1)
2] is minimized by the constant predictor given by setting α 

= E[rt+1] and all βi = 0.

The definition RWH1 does not exclude the possibility that a nonlinear predictor

is more accurate than the unconditional expectation. The unconditional mean is the 

best prediction when Samuelson‟s definition of RWH applies, namely,

E[rt+1 | It ]= µ for some constant µ and for all times t and all return histories It ={rt−i

,i ≥ 0} (RWH2)

These conditions are the same as saying that returns have a stationary mean µ and

that the process of excess returns, {rt −µ}, is a martingale difference. 

RWH2 → RWH1, whenever returns have finite variance. Most tests of

the random walk hypothesis employ sample autocorrelations and are hence tests

of RWH1. These tests reject RWH2 whenever they reject RWH1, as we assume

returns have finite variance.

A stationary mean for returns appears in the definitions to ensure that the sam-

ple autocorrelations are consistent estimates. Asset pricing models do not, of

course, require expected returns to be constant through time. 



Random walks and market efficiency

Tests of the random walk hypothesis can provide insight into issues of market

efficiency. Nevertheless, random walk tests should not be considered to be 

tests of the weak-form efficient market hypothesis (EMH).

First, consider the situation when the RWH is false. The EMH can then be 

true, for some definitions of market efficiency, or it too may be false. Prices 

can fully reflect the information in past prices, and thus the EMH holds, as 

defined by Fama (1976, 1991), when the RWH is false. 

For example, conditional expected returns, E[rt+1 | It ], could depend on 

previous returns because the asset‟s risk premium follows a stationary, 

autocorrelated process. Or E[rt+1 | It ] could be a function of the conditional 

variance, var(rt+1 | It ). 



Random walks and market efficiency

Another possibility is that some linear predictor is more accurate than 

prediction using a constant value but transaction costs exceed gross, risk-

adjusted payoffs from trading. Then the EMH holds, as defined by Jensen 

(1978), yet the RWH is false. For example, returns could follow an MA(1) 

process with the moving-average parameter so close to zero that net trading 

profits are impossible. Efficiency might, however, be defined as a fair game for 

excess returns (LeRoy 1989) and then the EMH will be false whenever 

expected returns are constant and RWH2 is false.

Second, consider the situation when RWH1 is true. Then there may exist a

nonlinear predictor which is more accurate than prediction using a constant 

value and, consequently, (i) RWH2 is false, (ii) the EMH can be false using 

the LeRoy definition, (iii) the EMH can be false for the Jensen definition when 

trading costs are sufficiently low, and (iv) the EMH can be false for Fama‟s

definition as Jensen inefficiency implies Fama inefficiency. The existence of a 

successful nonlinear predictorwhenRWH1 is true is, however, a theoretical 

possibility which is unlikely to have practical relevance.



Variance-ratio tests (Lo-MacKinlay)
The variance of a multi-period return is the sum of single-period variances when 

the RWH is true. Several tests seek to exploit any divergence from this 

prediction, the most important being the variance-ratio test of Lo and MacKinlay

(1988). To provide some intuition for the test, initially suppose that the stochastic 

process generating returns is stationary, with V(1) = var(rt ). 

Two-period returns are the sum of two consecutive returns and their variance 

equals 

V(2) = var(rt +rt+1) = var(rt )+var(rt+1)+2cov(rt ,rt+1) = (2+2ρ1)V (1), 

with ρ1 the first-lag autocorrelation of one-period returns.The two-period variance 

ratio is defined by

VR(2) = V(2)/(2V(1))= 1 + ρ1

The autocorrelation term is zero when the RWH applies and then the variance

ratio is one. Otherwise, the RWH is false and the ratio can be either more or less 

than one.

Next consider N-period returns for any integer N ≥ 2.When the RWH is true,

V(N) = var(rt + rt+1 +···+rt+N−1) = var(rt ) + var(rt+1) +···+ var(rt+N−1) = NV(1)

and thus the variance ratio is unity for all N:

VR(N) = V(N)/(NV(1))= 1



When the RWH is false, V(N) equals NV(1) plus the covariance terms between all 

pairs of distinct returns; thus

V(N) = NV(1) + 2∑i=1
N−1 ∑j=i+1

N cov(rt+i−1,rt+j−1) = V(1)[N+2 ∑i=1
N−1 ∑j=i+1

N ρj−i]

The double summation can be simplified to give the variance ratio as

VR(N) = 1 +2N-1 ∑τ=1
N−1 (N-τ)ρτ

The empirical test uses observed returns to decide if a sample estimate of

the variance ratio is compatible with the theoretical prediction. The test is most 

likely to reject the RWH when the ratio is far from one. This happens when a linear 

function of the first N − 1autocorrelations, namely 

(N − 1)ρ1 + (N − 2)ρ2 +∙∙∙+ 2ρN−2 + ρN−1

is far from zero. The multiplier is N −τ for ρτ .All the multipliers are positive and 

they decrease as the lag increases. A variance-ratio test is therefore particularly 

appropriate when the alternative to randomness involves autocorrelations that all 

have the same sign and that decrease as the lag increases. 

E.g.: autoregressive models with mean reversion in prices or with trends in prices

Variance-ratio tests (Lo-MacKinlay)
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