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dguasiperodic moetions. (iue Jan 13, 2 pm- 4 pm Aula Bianchi)
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[lecture 6: The rhythmsof life. (ue Feb 17, 2 pm/- 4 pm Bianchi)

l'ecture 7: Einancial time seres. (ThulFeb 19, 2 pm -4 pm' Dini)

[lecture 8: The efficient markets hypothesis. (Tiue Mar 3, 2 pm - 4 pm Bianchi)

Llecture 9: A random walksdown WallFStreet. (Fhu-Mar
19, 2 pm -4 pm: Dinr)



Seminar [; Waiting times, recurrence times ergodicity, and quasiperiodic
dynamics (D:H: Kim, Suwoen, Kereay ThuJan 22, 2 pm - 4 pm Aula Dinr)

Seminar [1: Symbolization off dynamics. Recurrence rates and entropy. (S.
Galatolo, Universita dit Pisa; Tiue Eeb 10, 2 pm - 4 pm Aula Bianchi)

Seminar [I1; Heart Rate Variability: a statistical' physics point offview: (A.
Facchini, Universita di'Siena; Tiue Feb 24, 2 pm - 4 pm Aula Bianchi')

Seminar IV: Study of: a population model; the Yoccoz-Birkeland model (.
Papini, Universita difSiena; Thu kFeb 26, 2 pm' - 4 pm Aula Dini)

Seminar Vi Scaling laws in economics (G. Bottazzi, Scuola SUperore
Sant/Anna Pisay liue Mar 17, 2 pm' -4 pmiAula Bianchr)

Seminar VI: Complexity, sequence distance and heart rate variability (M.
DeglitEsposti, Universita di'Bologna; Thu Mar 26, 2 pm - 4 pmiAtla Dini’)

Seminar: VII: Forecasting (M. Lippi, Universita di'fRemaj; late april, TIBA)
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What IS an efficent capital
market?

. the prices of: SECUrIties OnServed at any.
time are based on “correct” evaluation of:all mformation
available at that time. Prices “fully reflect” available information.
Jihe prices are always “fair’”, they are good Indicators ofivalue

lihe concept of:market efficiency, had been anticipated at the
DegINNING of:ithe century: Bachelier (1900) writes “past, present
and'even discounted future events are reflected inimarket price;
DU Gften ShoW No apparent relation te: price changes'. And also
“Ifithe market, 1 effect; does not predict Its fluctuations, It does
asSess them as bemag:more or: lessHikely; andthis lrkelineod can
e evaluated mathematically™.



Weak vs. strong efficiency.

Viore formally: a capital' market Is said to be efficient ifit fully and
correctly reflects all relevant information Infdetermining Security
prices. Formally, the market IS said to be efficient With respect to
some Information set, ©; , If:Security prices would be unaffected by,
revealing that infermation to all participants. IMoreover, efficiency
With respect to antinformation set, ©, implies that ItIs impossinle
[0:make econemic profits by trading on the pasis of ©;.

Tihe of:the efficient market hypothesis claims that prices
fully refiect the information implicit In the sequence ofipast PFICES.
Tihe form of:the NyPothesis asserts that prices

reflect all relevant information that 1s publicly available, while the
ofimarket efficiency asserts information that'I1s known
10 any. participant Is reflected in market prices.




Fundamental vs. technicall analysis

maintains that markets may. mMISpPrice a

Security In the short run but that the “correct™ price will eventually.
e reached. Analyzing financial statements, management and
competitive advantages, one can accurately estimate a fair value™
for: the stock. Profits can be made by trading the MISPriced SECUrity.
and then waiting for: the market to recognize its “mistake™ and
[EPrICE e Security.

maintains that all information Is reflected
already. In the Stock price, so fundamental analysis Is a Waste of
time. Tirends ‘are your friend" and sentiment changes predate and
predict trend changes. Investors' emotional reSPeNRSES to Price
moyvements lead to recognizable price chart patterns. Tiechnical
analysis does not care What the ‘value' of:a stock IS. [helr price
predictions are only extrapolations from historical Price patterns.



Strong and semi-strong
efficiency.

Inithe form ofithe EMH a trading strategy.
Incorpoerating current publicly avarlable fundamental information
(Ssuchias financial'statements) and histerical price information
will not systematically, outperform a buy-and-holaistrategy. Share
prices adjust instantaneously torpublicly avarlable new
Information, and Ne EXCESS returns can ke earned By using that
Infermation.

In -form ctficiency share prices refliect all information;,
public and private, fundamentaland-historical, and ne one can
Earn EXCEsS returns.



Weak, semi-strong and strong EMH

* \Weak EMH. “One can not use past price and\volume values
[0 craft Investment strategies that canireliably out perform the
over allimarket."

o Semi=Strong EMKEL “One cannot use publically available
information to to craft Investment strategies that can relialy,
out perform the over all market.*

s Strong EMH:“One cannot use any infermation --- including
material, non-public information --- to to craft mvestment
strategies that can relianly out performithe over allimarker.®
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A probability space is simply a measure space (£, F, P) where the measure P
has the property that it has total mass equal to unity, i.e.

P(Q) = 1.

The underlying space 2 often is referred to as the sample space, and the
elements of the sigma-algebra F are called events.

B.1 Random Variables and Processes
In this section we will discuss random variables and random processes.

Definition B.1 A random variable X is a mapping
X: Q>R

such that X is F-measurable.

Definition B.2 The distribution measure pux for a random variable X is a
measure on (R, B) defined by

px(B)=P({weQ; X(w)e B}), BebB,

px(B) = P(X~!(B)).
The (cumulative) distribution function of X is denoted by Fx and defined by

Fx(z)=P({weQ; X(w)<z}).




Definition B.3 For any X € L'(Q,F,P) its expected value, denoted by
E[X], is defined by

E[X] = /ﬂ X (w) dP(w).

(e o)
EX]= / P(X >t) dt.
For X € L? the variance is defined by 0

Var|X] = E[(x E[X]) ]

Definition B 6 A random process on the probebility space (Q,F,P) is a
mapping

X:R, xQ— R,
such that for each t € Ry the mapping

X(t

is F-measurable. Bjork : “Arbitrage Theory in Continuous

') : Q= R,

Definition B.11 The sigma-algebra o {X} is defined as the smallest sigma-
algebra F such that X is F-measurable.

We will refer to o { X'} as “the sigma-algebra generated by X”. Technically speak-
ing it is the intersection of all sigma-algebras G such that X is G- -measurable,
but we can in fact give a more explicit representation.

Proposition B.12 We have the representation

o{X}={X"'(B); BeB(R)}.



_ 1 l fx— :
f(,r}_g lTexp(—E( - )) (3.1)

This density has two parameters: the mean u and the variance o % of the random
variable. We use the notation X ~ N{u. o~} when X has the above density,

A linear function of a normal variable is also normal, If X ~ N(u. ¢?) and
Y =a -+ bX,then Y ~ N(a+ by, b*a?). In particular, witha = —u /o and
b=1/a,

X —pu

g

X ~Nu.o?) = Z= ~ N0, 1).

We call Z the standard normal distribution. Its d.f. is simply

flz)= exp(—4z7). (3.2)

1
& 2m
and we may denote its c.d.f. by @(z), which has to be evaluated by numerical
methods. The probabilities of outcomes for X within particular ranges can be
calculated from

_Hagxghy=¢(h_#)—m(ﬂ_#)

g o

‘The density of the normal distribution is symmetric about its mean p. Symmetry
ensures that all the odd central moments are zero and therefore the skewness of
the distribution is zero. The second and fourth central moments are respectively
o and 3%, so that all normal distributions have a kurtosis equal to three,

Exponential functions of normal variables are often encountered in finance.
The general result for their expectations is

E[e“X] = explup + %uzr:rz}. (3.3)




lognoermal distrbution

A random variable ¥ has a lognormal distribution whenever log(¥') has a normal
distribution, When log(¥Y) ~ N, o), the density function of ¥ is

] ! IDEE}'}—#)E)
—_ . ; ().
fiy)=14voln EKP( 2( a I e (3.4)

0, y < 0,

From equation (3.3), E|¥"] = exp(nu + %HEEE} for all n. Consequently, the
mean and the variance of ¥ are

El¥Y] =exp(u +307) and var(¥) = exp(2u + o) (exp(a”) — 1.

The mean exceeds the median, namely expig ), reflecting the positive skewness
of this nonsymmetric distribution,



3.3, Stationary Stochastic Processes
Taylor, Asset Price Dynamics, Volatility and Prediction, P.U.P. (2005)

Definitions of ten types of stochastic process,

Table 3.1.

31

A process is..,

If...

Strictly stationary

Stationary

Uncorrelated

Autocorrelated

White noise

Strict white noise

A martingale

A martingale ditfference

Gaussian

Linear

The multivariate distribution function for & consecutive
variables does not depend on the time subscript attached
to the first variable (any k).

Means and variances do not depend on time subscripts,
covariances depend only on the difference between the
two subscripts,

The correlation between variables having different time
subscripts 1s alwavs 0,

It is not uncorrelated.

The variables are uncorrelated, stationary and have mean
equal to 0,

The variables are independent and have 1dentical distribu-
tions whose mean 1s equal to 0,

The expected value of variable ¢, conditional on the infor-
mation provided by all previous values, equals variable
r=1.

The expected value of variable 1, conditional on the infor-
mation provided by all previous values, always equals 0,

All multivariate distributions are multivariate normal,

It 1s a linear combination of the present and past terms
from a strict white noise process,




(Gaussian Process

A process Is called Gaussian ifithe multivariate distribution of
the consecutive Varables (0% 1, Xt 5, -, Xep) IS multivariate
normal for allfmtegers t and k. A stationary Gaussian Process
IS alWway/s strictly stationary/, BeECAUSE then the first- and Second-

order moments completely, determinge the multivariate
distributions.



Why white noise?

Autocovariances hr=cov(X;, X;o ) = E[(X; — ) (X oy — )]

Autocorrelation ofia stationary Process (the variance Is constant)
Po=1,pr = ps

Spectral density function

=2 |1 2i (To)
) w)—zﬂ + P COS(Tw

r=I

Ihe mtegral o1 s(w) from 0:to 27w equals Ay, High values ot s(®)
mignht indicate cyclical benavior With the period of:0ne cycle
equal'to 2/ time units. Eor a white noise the spectral density,
function 1s the same constant for all frequencies @



Definition B.15 Let {X;; t > 0} be a random process, defined on the probabil-
ity space (2, F, P). We then define the sigma-algebra generated by X over
the interval [0,t] by

F* =Xz e<t.

The intuitive interpretation is that “F;* is the information generated by
observing X over the time interval [0,¢]". There is in general no very expli-
cit description of /X, but it is not hard to show that F{X is generated by all
events of the form {X; € B} for all s <t and all Borel sets B.

A S -

Definition B.16 A filtration F = {F;}i>0 on the probability space (2, F, P)
~is an indezed family of sigma-algebras on Q such that

x Bjork : “Arbitrage Theory in Continuous Time”
ft g }-) Vt 2 0'

s<t = FX cFkL.

Given a filtration F as above, the sigma-algebra Foo is defined as




e Two 3igrﬁa-algebms G,H C F are independent if
P(GNH)=P(G)-P(H),

for all G € G and all H € H.

Bjork : “Arbitrage Theory in Continuous Time”

e Two random variables X and Y are independent if the sigma-algebras

o {X} and o {Y'} are independent.
e Two stochastic processes X and Y are independent if the sigma-algebras

o {Xs; t >0} and o {Y;; t >0} are independent.
o An indezed family {G,; v € T} of sigma-algebras, where G, € F for each
v € ' are mutually independent if

P(ﬁ G,,) - f[ P(Gh),

for every finite sub collection Giy,...,Gn where Gi € G, and where
vi # 7 for i # j. The extension to random variables and processes 1s

the obvious one.
Proposition B.21 Suppose that the random variables X and Y are independ-

ent. Assume furthermore that X, Y, and XY are in L'. Then we have

E[X -Y] = E[X]- E[Y]. (B.1)




FTNY ., SRRy ESEED PR, GRS, | N - S ot v

Consider a ﬁxed- i)robability space (2, F, P), andvsuppose that A and B are
events in F with P(B) # 0. We recall the elementary definition of conditional

probability.
Definition B.23 The probability of A, conditional on B is defined by

P(ANB)

55 (B.2)

P(A|B) =

The intuition behind this definition is as follows:

e The probability for any event A is the fraction of the total mass which is
located on A, so :

itrage | P(Q)
ryin e When we condition on B, we know that B has happened. Thus the effect-
nUOUS ive sample space is now B rather than Q. This explains the normalizing

factor in the nominator of (B.2).
e The only part of A that can occur if we know that B has occurred is

precisely AN B.

What we are looking for is now a sensible definition of the object

E[X|4],

where X is a random variable and G is a sigma-algebra included in 7. The
interpretation should be that E[X|G] is “the expectation of X given that we
have access to the information in G”. It is not trivial to formalize this rather
vague notion, so we start with some heuristics.



Definition B.24 Suppose B € F with P(B) > 0, and that X € L* (Q, F,P).
Then “the conditional expectation of X given B” is defined by

E[X|B] = P(B) / X (w) dP(w).

Definition B.25 With assumptions as above, and also assuming that P(A,) >0
for all n, we define E[X|P], “the conditional ezpectation of X given the
wnformation in P” by

rk :
trage K
ry in E[X|P](w) =Y IDa,(w)E[X| An], (B.3)
uous ' n=1
e”’ y
1.€.
EX|P)) = 5 An) / X(w)DPP(w), whenw€ An.  (B.d)

\WWe now: consider-a slightly: more general case, Where We are given a finite
partition &2 = {A;,. . . ;A }. Having access to the information contained in

g21s, according to our earlier discussion, equivalent to: knowing exactly,in
Whichiof: the components{A.: - - A, the outcome lies:

\Withiassumptionsas aboeve; and alse assuming that P(A.)r = 0
for alll n, we define EPX| 7], the conditionall expectation: ofi X given the
information in 2 b

E[X| 2] =X I, EDXIA]




\WWe now: consider-a slightly: more general case, Where We are given a finite

partition: &2 = {A;,. . . ;A }. Having access to the information contained: in &
IS, according to our earlier discussion, equivalent to: knowing exactly in which: of
the components {A;. . . ;A } the outcome lies.

\Withiassumptionsas aboeve; and alse assuming that P(A.)r > 0
for alll n, we define EPX[ 7],

)Y

EDX|77]= X In, EDXIA]

\We now would like to extend this definition to the case When we condition on a
generalic-algebra. Tinis Is not straightforward since We had tojassume P(A,) > 0

Cet (@, % P)be a probability space and X a randomvariable m L (@, 7 P).
[Cet G be asub- c-algebra ofif=and Z a random variable such that

() Z Is G:-measuranle

(in) Forevery G e & it holds that [ Z(w)dP(w) = g X(®)dR(w)

Tihenwe say that Z 1s' the conditional expectation of X given the sigma-

algebra & In that case we denote Z= EPX[ & |



ihe conditional expectation IS
the optimal conditional predictor

Itiswell knoewn: that E[)X] IS the optimal mean square deterministic predictor:
ofi XX Tihe corresponding resultfor conditional expectations Is as follows.

Proposition: et (@, &, P)ibe a probability space, let G be asub- c-algebra
ofifzand et X' e’ a square integrable random variable.

Considerthe problemiof: minimizing: E[(O<=Z)Z]\where Z is allowed to vary
OVEr: the classk of: allt sguare Integrable G:-measurable random variables.
ihe optimal solutionis then giveniby Z= E[X| & |



Infermation flows and: filtrations

[Cet Xt e any: given: stochastic process. In the seguels it willsbe important
1o define “the information generated By X as time goes by.

ihe symbol denotes
or- alternatively “what has happened: to X overthe mterval® [0t] ™.

IT; based” upoen ehservations of: the' trajectory. {X(S); O'=<S = t}, IL IS

POsSIble Lo decide Whether: a given event A has occurred: ornot, then we
write thisas Ae 72X or. say. that “A'Is X -measurable®.

[T the value ofi a given: stochastic variable Z can be completely

determined given olbservations: ofithe trajectony {X(s); Oi<s < t}, thenwe
alsowrite Z e

ITY7 IS/ Stochastic: process: sucht thatwe have Y, e #3° for all't = 0'then we
say. that



[Let (@, £ P, #) e a filtered probability space; and: let X e a random
Process: In continuous or: discrete time:

ihe process X Is an I

1. XIS Ff-adapted.

2. X, e L.t foreacht.

3. Forevery 0 =s=tonehas X. = E[X| 7% |

If: the equality: signiis replaced by = (=) then X'is said tobe a
( ):

Note that the martingale property Is always with respect to: Some given
filtration.

Martingale theory In discrete time IS easy, martingale theory i continuous time
IS rather-complicated : we typically Want our processes to e
(Continue a droite limit a gauche) and the filtration E must have some
regularity properties.

It follows immediately from the definition, that

(e that E P - X |72 ] = O forall s<t



Examples:
1. Tiake Yo any: integrable random variable on: the filteredispace (X, #; P, #)

and define the process X by Xi= E[Y |7 |1, =0

Onia compact mterval [0, T any given martingale M s always
generated by: 1ts finalivalue M+ By the formula M; = E[M+ | 7% ]

2. I1 XU IS a pProcess with independentincrements on(Q; &, P, )
andifialso E X = X | = 0; forall's; t; then X Isa martingale.
S et {Z,,n=12,. . .} be a family ofi independent mtegrable

random variables; and define the discrete time process Xk by
Xo = Y Z: then X Is.a martingale w.r.t. the filtration #*.

lihere IS a close connection: between martingale: theory, the theory. of: con-
Vex functions, and: the theory, of: harmoenic fTUNCtions. TiNe Correspondence Is as
follows:

Martingale theory Convex theory Harmonic theory.
martingale lInear-function narmonic function
submartingale convex function subharmonic function

supermartingale concave function SUPErnarmonic function



EMHE formalization

Under:the EMH the stock price p; already: incorporates all relevant imformation
and'the only:reason for prices to change between time tand time t+11s the arrival
ofinews.

qihe forecast error: IS expected’ to e Zero on: average because prices only.
change onithe artival off “news® whichi itself: 15" a random’ variable.

[ihe statement that'the ferecast erraer-e..; must be Independent on ®; IS KNeWN as
the orthogonality property. If: the forecasting error: Is serially: correlated: then: the
orthogonality: property: Is\violated: e.g. Ifie; follows a first-order-autoregressive
process AR(L) €. =p €+ v, , Where v; IS a (White: noIse): random: element (and
Dy assumption  Isindependent on the Information ®; at time t): Tihe forecast
errore, =p; - Eqqy Py, IS Known: at time t thus; forms part of:®;. Therefore this
peniodss forecast error € has a predictable efiect on next period’s forecast error
£r,, and using (RE) canibe used to forecast future prices, thus vielating EMH.



Diffusions and SDES

[Coosely speaking We say. that a stochastic process X IS a diffusion: 1f: Its

local dynamics can be approximated: by: a stochastic difference equation of
the following type:

X(t + At - X(1) = w(t; X(D) AL+ o (T, X(1) Z(1).

Here Z(t) Isa normally distributed disturbance term Which: IS Independent of:
everything whichrnas happened up to time t; While (v and'c; are given determ-
INIStic: functions. Tihe turtive content IS that; over the time interval

[t, t+ At], the X-process Is driven by two separate terms.

- A locally deterministic velocity: w (t; X(1))" (local arift term)

- A Gaussian disturbance term, amplifiediby: the factor e (t, X(t)) (diffusion
term)



WIEREr Process

A stochastic process W Is called" a I the

rollowing condrtions hold:

1. W(0) = 0.

2. Tihe process W has ndependent Increments, 1Le. Ifi k. <s < t<u then
W) = W(T) andW(S) - W(r) are independent: stochastic variables.

3. Fors < tthe stochastic variable W(t)- W(S) has the Gaussian distribution
N [0; (t-5)7]

4 \\[ has continuous trajector:



Stochastic Integrals

\With probabnlity 1 a VWiener: trajectory. Is nowhnere differentiable

AX(t) = (L, X(D)dt + & (T, X(1)) dW(D),

X(0) = a,

and It Issnow: natural to Iterpret 1t as

X(t) = a+ (s, X(s)) ds+ Iy o(s, X(5)) dW(S)

ihe natural® imterpretation of: the d\W-integral® would'be to view it as a
Riemann=Stieltjes' itegral foreach \W-trajectory, but unfortunately thisIs not
possible since one can show: that the \W-trajectories are of: locally
unbounded\variation. Tihus the stochastic d\VW=integral’ cannot be defined in'a
naive way.

IT; however, we' relax our: demand' that the d\W-integral should" be
defined trajectorywise We can still'proceed. It s m fact pessible to give a

global (I22-)definition: of: these integrals : this: new: ntegral: concept s called
[16 Integral



Approx. 60:06.c.: Lucretius In De rerum:natura
describes Brownian motion of:dust particles in
the air, observed “when sunbeams are
admitted into a burlding and'shed light on Its
shadowy places.”

1827: Robert Brown (a botanist) observes very
irregular trajectories of fine particles
suspendend in a liquid or gas

1900: Louis Bachelier — Brownian motion as a model of price fluctuations on
the Paris stockmarket.

1905: Albert Einstein links Brownian motion to . Einstein recognized
that if the predictions of statistical mechanics were correct, then any particle
Immersed in a "bath" of atoms must basically behave like a very large atom
because it would be in thermodynamic equilibrium with the atoms in the bath.



By energy equipartition the particle's Kinetic energy depends on temperature: for
each degree of freedom the average kinetic energy is kg T/2, where kg is
Boltzmann's constant and T is the temperature of the bath.

For spherical particles of radius r, if the liquid has a coefficient of viscosity Kk,
then the diffusion coefficient is D=RT/(6Nmrkr).

The distribution density function of the suspendend particles is

f(x,0)=n exp[-x?/(4Dt)]/(4nDt),

thus

At room temperature, for particles with r =10-° m suspendend in water the mean
displacement in one minute is approximately 6- 105 m.

This will be later confirmed by Perrin who observed the diffusion experimentally
and used Einstein’s formula for the diffusion coefficients to compute Avogadro’s
number N . The value thus calculated agreed excellently with other values
obtained by entirely different methods in connection with other phenomena. In
this way the discontinuity of matter was proved by him beyond doubt: an
achievement rewarded with the 1926 Nobel Prize.



Brownian motion

1923: Norbert Wiener gives a rigorous construction of the
corresponding measure P on the set € of all continuous
functions on the interval [0, T] . The increments S; —S,,
considered as random variables on the probability space (€2,P),
are Gaussian with means and variances proportional to the
length t —s of the time interval, and that they are independent
for disjoint intervals. If this construction Is carried out on a
logarithmic scale, one obtains geometric Brownian motion, by
now a standard model for the price fluctuation of a liquid

financial asset, which was proposed by P.A. Samuelson in the
1960s.



Uncorrelated processes

Tihe simplest poessible autecorrelation 6CCurs WhAen a Process Is a

[F0r- an uncorrelated process the optimal forecast ofithe variable'Is
simply the unconditional mean:

Uncorrelated processes are often used to model asset returns
PECAUSE they have seme empircal support and they: are
conerent with the efficient markets nypothesis



Taylor, Asset Price Dynamics, Volatility and Prediction, P.U.P. (2005)

34 3. Stochastic Processes: Definitions and Examples

Gaussian white nolse

J

Strict white noise

4 N

White noise «— Stationary martingale difference

J l

Martingale difference

N 4

Uncorrelated, zero mean

Figure 3.1. Relationships between categories of uncorrelated processes, An arrow pointing
from one category to another indicates that all processes inthe former category are also inthe
latter category and the converse is false: some processes in the latter category are not members
of the former category. It 1s assumed that all processes have finite means and variances,



Random walk hypothesis (RVWH)

1St poessibility: returns have independent and identicall distributions (1b1.d:). Tihe
I.1.d. hypothesis IS not very relevant if:we are interested in the predictability. of
returns. It will'be rejected by an appropriate test if:the conditional Variances of
returns have sufficient Variation through time, Ut this may: tell'us nothing about
the predictability ofireturns. Forexample; the statistically significant
autocorrelation i absolute and squared returns rejects the I.1.d. nypothesis But It
does not prove that returns can be predicted. Even if:iwe test and reject the 1.1.d.
nypothesis using the autocorrelations of returns, we still' cannot reject the
hypothesis that returns are uncorrelated at the same significance Ievel.

2ndinossibility: (quite general): replace identical distributions by identical means
and'independent distrbutions by uncorrelated distributions:

Elr |= Elr.. Jlandicov(r; ... ) = Oforall't and'all 7= 0 (RWHL)

One does not even requires stationarity:



[Sinear predictorsiofir:,, are defined By fi ., = o )% e

\When RWHL IS true, the returns process Is uncorrelatediand hence the best linear

prediction ofia future return is Its unconditional' mean, which RVWHL assumes Is a

constant: E[(re.; — fi.1)2] is minimized by the constant predictor given by setting o
= E[r,¢] and all'3; = 0.

Tihe definition' RVWHI does not exclude the possibility that a nonlinear predictor:
IS more accurate than the unconditional expectation.
, namely,

(RWH2)

RWH2 —> RWHI, Whenever returns have finite Variance. \Vost tests of

the random walk hypothesis employ sample autocorrelations and are hence tests
offRWHZ. Tihese tests reject RWH2 whenever they reject RWH1., as we assume
returns have finite Variance.

A stationary, mean for returns appears i the definitions to ensure that the sam-
ple autocorrelations are consistent estimates. AsSet pricing models donot; of
COUISE, require expected returns to be constant through time.



Random walks'and market efficiency:

Tiests of:the random walk Rypothesis can provide msight Into Issues of: market
ctficiency. Nevertheless, random walk tests shoulainot e considereaito be
tests of:the weak-form efficient market hypothesis (EMH).

Eirst, consider: the situation when the RWH Is false. The EMH can then be
true; for'some definitions offmarket efficiency, or It oo may. e false.

For example; conditionaliexpected returns; Efr.; | I; |; could depend on
previous retunns because the asset’s risk premium follows a stationary,
autocorrelated process. Or Efr.; | I; | could be a function of:the conaitional
variance, var(ry., | ')



Random Walks'and market efficiency:

Tihenthe EMH holds, as defined by Jensen
(1978), yet the RWH Is false. For example, returns could follow an MA(L)
Process With' the moving-average parameterso close to zero that net trading
profits are iImpossible. Efficiency might, however, be defined as a fair game for.
excess returns (LLeRoy 1989) and then the EMH will be false whengever.
expected returns are constant and RVWHZ2 IS false.

Second, consider the situation when RWHI IS true. Then there may. exist a
nonlinear: predictor WHICh IS more accurate than prediction using a constant
value and; consequently, (1)) RWHZ2 is false, (1) the EMH can e false using
the ILeRoy definition, (1) the EMHIcan be false for: the Jensen definitionWhen
trading costs are sufficiently low, and (1v) the EMH: canibe false for Fama’s
definition as Jensen inefficiency Implies Fama inefficiency. The existence ofia
successtul'nonlinear predictorwnenRWHI IS true Is, however, a theoretical
possibility which s unlikely to have practical'relevance.



Variance-ratio tests (Lo-MacKinlay)

Tihe variance ofia multi-period return is the sumi ofisingle-period variances When
the RWH IS true. Several tests seek to exploit any: divergence fromithis
prediction, the most important bemg the
(1988). 1o provide some nturtion for: the test, initially suppose that the stochastic
Process generating returns s stationany, With V(1) = var(ry):
T\Wo-period returns are the sum of: two consecutive returns and their vVariance
eguals
\/(2) = Var(r; +1,1) = Var(ry ) #Var(ry, ) $260V(r i) = (212p,)V- (1)
with p; the first-1ag autocorrelation of:one-perioaireturns. fine tWo-period Variance
ratio Is defined by,

VR(2)= V(2)/(2V(1))=1 + p;
[ihe autocorrelation termiis zero when the RWH applies and then the variance
ratio s one. Otherwise, the RWH IS false and'the ratio can be erther more or: less
than one.
Next consider:N-period returns for-any: mteger N = 2.\\hen the RVWH'IS true,
V(N)I= Var(ry e, q st o)1= Var(ny ) s var(re, o) e+ var(r - ) = NV(1)
and‘thus the variance ratio 1siunity for all I\
VR(N) = V(N)/(NV(1))= 1



Variance-ratio tests (Lo-MacKinlay)

\When the RWHIS false, V(IN) equals NV/(1) plus the coyvariance terms between all
pairs of:distinct returns; thus

VI(N) = NV(L) + 255 Dimien™ COVIF g, Fo) = VID)INH2 X5 M Y™ il
[ihe double summation can be simplificd to give the Variance ratio as

VR(N) = 1 +2N= ZI=IN_1 (N_T)pr

Tihe empirical test uses observedireturns to decide Ifia sample estimate of

the variance ratio'is compatible with the theoretical prediction. Tihe test Is;most
lIkely to reject the RWIH When the ratio Is far from one. Tinis happens when a linear
function ofithe first N = lautocorrelations, namely;

(IN= 1)py - (IN=2)p5 22D ) = PN

1S far friom zero. The multiplier: 1s/N =t for p. JAll the multipliers are positive ana
they decrease as the lag Increases. A variance-ratio test IS therefore particularly.
appropriate whenithe alternative to randomness Involves autecorrelations thatall
nave the same sign and that decrease as the lag Increases.

[£.0.; autoregressive models With mean reversion in prices or With trends 1n pPrices
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5.3.2 The Test Statistic

The researcher must first choose a value for N, Indeed, the choice can appear
to be arbitrary, Suppose a set of n observed returns has average r and variance
V(1) = Y (r, = 7)*/(n = 1), An appropriate estimate of V(N) is

n—N+1
Y Gitrei e ey = NP (5.6)

=1

n

V(N) =
(n=N)n=N+1)

and then the sample variance ratio 13

o~

VR(N) = EN} . (5.7)
NV(1)
An apbrobriate estimate of n var(p.) is provided by
n—t
— (Zz'zl’;‘)’;‘ L withs = (= )%, (5.9)
and then an estimate of n var(Vﬁ(N)) is given by
4 A= . |

N = NZ ; (N —1)°b,. (5.10)

The above estimates are consistent when the RWH is true; they thenconverge to the
parameters that they estimate as n increases, Finally. the standardized distribution
of the sample variance ratio,

VR(N) = 1
IN = —F—)
NVun/n

is approximately the standard normal distribution when the RWH is true, This is
an asymptotic result, so the approximation becomes perfect as n — o<,

(5.12)




0.06 - Taylor, Asset Price Dynamics, Volatility and Prediction,

0.04 1
o 002
e - —— Returns
= 0 ~  -=- Rescaled
= L. - 95% lower
5 - 95% upper
o
—0.02
7% [ U U ST | FE SRS S—
080 5 10 15 20 25 30
Time lag (trading days)
Figure 5.1. S&P 100 autocorrelations.
0.08 ;
0.06 1
0.04
g
:g 0.02 1 —— Returns
B 0 ~=-- Rescaled
S ---95% lower
~0.02 ---- 95% upper
—0.04 1
B 5 10 15 20 25 30

Time lag (trading days)
Figure 5.2, Spot DM/$ autocorrelations.




5.7 Random Walk Tests Using Rescaled Returns

Returns do not have constant conditional variances and this is the primary reason
for their autocorrelations having more variability than those calculated from 1.1.d.
processes. The excess variability can often be reduced substantially if we can find
a way to rescale retumns that ensures the rescaled quantities have approximately
constant conditional variances.

5.7.1 Definition
Rescaled retums are defined by

* r_r_F
= 5,20
- 5.20)

with /; aconditional variance for period ¢ calculated from returns observed until
period ¢+ — 1. When the RWH is true for the process generating returns we may
also expect the hypothesis to be true for the process generating rescaled returns,
Whenthe RWH is false, the autocorrelations of the random variables that generate
returns and rescaled returns can differ by important amounts, Reasons for this and




Returns Rescaled returns

Test statistic 2 25 270 3 220
Series from 1991 1o 2000
S&P 100-share S =073 =141 =176 0.17 =092 —-1,58 Taylor, ASS_et P
DM/$ S 073 080 032 1,59 155 14l Dynamics,

\olatility an

Tiventy further series

S&P 500-share S [4.00* 2.66"‘] 0.62 [5.20"‘ 4.46"‘] 1.0 Prediction, P.
S&P 500-share F —1.40 I_-|-4;-—4-7éj —0.75 —0.68 —1,02 (2005)
Coca Cola S =1.24 +233*-205* 0,16 =085 =1.06

General Electric S =092 =193 =127 -0.73 =082 <0.83

General Motors S 057 =126 =075 1.34 =0.20 0.16

FT 100-share S 251% 150 1.68 |3.80"‘ ST 4.30"'|

FT 100-share F =047 =123 =051 72 F :

Glaxo S 356* 1.85 048  (588% 413 224%

Marks & Spencer S 196" 040 —1.44 2,807 1.54 -0.22

Shell S 034 468 410*

Nikkei 225-share S 83 =0, 0,46 |3.57* 2.69% 3,76* I

Treasury bonds F 071 047 048 .73 091 146

3-month sterling bills F 1,21 =030 040 491 4.54* 4.70%

DM/S F =001 004 109 078 148 3.19*

Sterling/$ F LI4 023 046 1.69 071 196

Swiss franc/$ F =055 =057 049 =009 =010 1,43

Yen/$ F =001 055 260* 029 094 3.36%

Gold F —=1.88 =035 =047 -

Corn F 294* 182 233" 470% 3,14 422*

Live cattle F 05 094 =000 052 108 024

The crash week, commencing on 19 October 1987, is excluded from the time series. Stars

identify test values that reject the RWH at the 5% level, for two-tailed tests. The test statistics
are defined by equation (5,12),




