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Inverse problem

Inverse problem: given £>0 and a target (fractal) set 7°can one
find an i.f.s #such that the corresponding attractor #Zis e-close
to 7 w.r.t. the Hausdorff distance h?

Collage Theorem (Barnsley 1985) Let £>0 and let Je# (X) be
given. If the i.f.s. #={w,, ..., wy} Is such that

U snWi(9), T) <e
then

h(T, #) < e/ (1-5)
where s is the Lipschitz constant of #



Fractal IiImage compression ?

The Collage Theorem tells us that to find an 1.f.s. whose attractor
“looks like” a give set one must find a set of contracting maps
such that the union (collage) of the images of the given set
under these maps is near (w.r.t. Hausdorff metric) to the
original set.

The collage theorem sometimes allows incredible compression
rates of images (of course with loss). It can be especially
useful when the information contained in details is not
considered very very important



Fractal image compression !

The topselling multimedia encyclopedia Encarta, published by
Microsoft Corporation, includes on one CDROM seven thousand
color photographs which may be viewed interactively on a
computer screen. The images are diverse; they are of buildings,
musical instruments, people's faces, baseball bats, ferns, etc. What
most users do not know is that all of these photographs are based
on fractals and that they represent a (seemingly magical) practical
success of mathematics.

JUNE 1996 NOTICES OF THE AMS 657

Fractal Image Compression by Michael F. Barnsley

e.g: Barnsley’s fern: can be encoded with 160 bytes= 4*10*4
4 maps 10 parameters (each parameter using 4 bytes)
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Figure 3. This shows the result of applying fractal compression and decompression to the image dis played in

Figure 2, Original 512 x 512 grayscale image, with 256 gray levels for each pixel before fractal compression. Figure 2.
© Louisa Barns ley.

ression - Motices Ams [1936) 54,192mm  Page: "3" 3of B ompression - Motices Ams [1936) Page: "4" 4 of &

LEFT: the original digital image of Balloon, 512 pixels by 512 pixels, with 256
gray levels at each pixel. RIGHT: shows the same image after fractal compression.

The fractal transform file is approximately one fifth the size of the original.
JUNE996NOTICES OF THE AI\?ItSWSV‘ W@m‘aﬁl alfrﬁaqe @féﬁ@pression by Michael F. Barnsjey
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Fractal graphs of functions

Many interesting fractals, both of theoretical and practical
Importance, occur as graphs of functions. Indeed many time
series have fractal features, at least when recorded over fairly
long time spans: examples include wind speed, levels of
reservoirs, population data and some financial time series
market (the famous Mandelbrot cotton graphs)

Welerstrass nowhere differentiable continuous function:
f()=2 0o A2 siN (WX 1) 1<s<2, A>2

The graph of f has box dimension s for A large enough.
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1 Ey 2

Figure 11.3 Stages in the construction of a self-affine curve F. The affine transforma-

Fractal

graphs anc

.f.S.

(from K. Falconer,

tions §; and S; map the generating triangle pypp> onto the triangles pig, p and pg: p2. Fractal Geometry, WI I‘

respectively, and transform vertical lines to vertical lines. The rising sequence of polyg-
onal curves Ey, E|.... are given by E,_| = §|(E;) U S:(E,) and provide increasingly
good approximations to F (shown in figure 11.4(a) for this case)

Sit,x)=0/m+(G—1/m, a;t +c;x + b;).

Thus the §; transform vertical lines to vertical lines, with the vertical strip 0 <
t < | mapped onto the strip (i — 1)/m € t < i/m. We suppose that

l/m < ¢; <1 (11.9)

so that contraction in the r direction is stronger than in the x direction.
Let py=(0.b /(1 —¢y)) and p, = (1. (am +bw)/(1 —cyn)) be the fixed
points of §; and §,,,. We assume that the matrix entries have been chosen so that

1: = 1: ":: ] ":: — .
Si(Pm) = Six1(pi S. Marn(ﬁil—“Dyj!naﬁr"ﬁigs1 andltzllme series: (11.10)

Nov 30, 2011 theory and applications - Lecture.8
so that the segments [S;(pi), Si(pn)] join ﬁlp {0 form a polygonal curve E;. To

(2003)

10



P P2

Self-affine curves defined by the two affine transformations that
map the triangle p,pp, onto p,q,p and pg,p, respectively. In (a)
the vertical contraction of both transformations is 0.7 giving
dim graph f = 1.49, and in (b) the vertical contraction of both
transformations is 0.8, giving dim graph f = 1.68

from K. Falconer, Fractal.GGeometry, Wiley.(2003)
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Probabilistic I.f.s.

F={w,, ..., Wy}, W; : X— X contraction of constant s;, 0 <s; <1
(P4,...,PyN) Probability vector 0 <p; <1, p;+...+py=1
Iteration: at each step with probability p; one applies w;
i.f.s.: k iterates of a point — N¥ points #7: # (X) —» X
W’ (E) = Uy wi(E)
Probabilistic 1.f.s.: Kk iterates of a point — k points

Theorem: each probabilistic i.f.s. has a unique Borel probability
invariant measure p with support = &%

Invariance: p(E)= X,y pir(w;1(E)) for all Borel sets E, equivalently
fx g(x)du(x)=Z, 4\ Pi JX g(w;(x))du(x) for all continuous functions g



Probabilistic I.f.s.

If Z{ denotes the space of Borel probability measures on X
endowed with the metric
d(vy,vo)=sup{| Ix g(x)dv; (X)-Ix g(x)dv, (X)|, g Lipschitz, Lip(g) <1}
Then a probabilistic 1.f.s. acts on measures as follows

Loy v=2 pivew;
And Dby duality acts con continuos functions g:X— R

Ix 9OAA(Lp,0 V)(X)= Z1cion PiIx 9Wi(X))dv(X)

It is easy to verify that
d(Lp,W Vi, I—p,w V,) < s d(vy,vy)

fromewhich the previous theotent follows



Multifractal analysis of measures

Local dimension (local Holder exponent) of a measure p at a point X:
dim,,. w(x)=lm,__,log u(B(x,r))/log r (when the limit exists)

>0, E ={xeX, dim;,. u(x)= a}

For certain measures p the sets E, may be non-empty over a range of

values of a: multifractal measures

multifractal spectrum (singularity spectrum) of the multifractal
measure p: is the function a—f(a)=dim E_

S. Marmi - Dynamics and time series: 14
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With equal probabiities, the Eandom Algonthin for the IFS with these rules

otz 9) = (2, 712) + (0, 112)|[Tus, ) = (2, 972 + (112, 172)
Ty(x v) = (22, 7/2) To(x, v) = (2, /2) + (112, 0)

fills in the unit square uniformly.
The pictures below were generated with these probabiities
14 =|:|.1, Fa=pa=pra= 0=

successive pictures show mcrements of 25000 points. “With enough patience, the whele square will fill in, but some regions fill in more quickly than others
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will e in each of the squares with address 2, 3, and 4.

with address 12, and 50 on.

Multifractals

Variable Probability Histograms
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Higher tterates are easter to understand wsually.

of the points, and so on.

Nov 30, 2011

Here we show the first four generations, with the height of the box in a region representing the fraction of the pomts m that region.
Al the pictures have been adjusted to have the same height, whereas square 4 has 0.3 of the pomts, square 44 has 0.0% of the points, square 444 has 0.027

» G- F

[T altri Prefes

The probabilities of applying each transformation represent the fraction of the total number of tterates in the region determined by the transformation.
TWith the ITFS and probabilities of the last example, i a typical picture about 001 of the points will lie in the square with addresz 1, and about 0.3 of the points

Arouing in the same way, about 0.01 = 0.1%0.1 of the points will lie in the square with address 11, about 0.02 = 0.1%0 3 of the points will lie in the square

16
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2o agamn the height represents the fraction of the points landing m that region.
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http://classes.yale.edu/fractals/MultiFractals/MFGaskSect/MFG
askSectMv.gif

Nov 30, 2011 S. Marmi - Dynamics and time series:
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Different Probabilities, Another Example

In thiz example, we mtroduce more variabidity in the probabdities:
p1 =02, =025, pa =025, and py = 0.3

Among other things, the number of values of the probabiibes of regions mereases more rapadly.

=maller regions hawe smaller probabiities; if these graphs weren't rescalled vertically they would appear to become closer and closer to a flat surface of heig
0. Cliclz here for an anmmnation of the first four tterates, all drawn to the same vertical scale.

For each region we expect that
prob scales as (side length)30Mme POWet

=o matead of lething the heyght of the graph represent the probabality of the region, now we assign height Log(prob)Logiside length) to the region.
EBecause the probability measures the fraction of the pomnts that eccupy a region, we think of this ratio as a dimension.
EBemng wiewed at the resolution of the side length of the region, this 15 a coarse Holder exponent; it 15 also called the coarse dinension.

20
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Multifractals

Local Holder Exponents

Talring limits as the side length of the regions go to zero, the coarse Holder exponent can be refined to the local Holder exponent (or roughness) at (xz, v) is
dipo%9) = b, > iy Log(Probliy.. i) Log(2 ™)
where Probily.. 1) 15 the probabiity priy )™ ... *priy,), f () les i the square with address 1.1,
The walue for a square of finite length address 12 called the coarse Holder exponent. So the local Holder exponent of a point (3, v) 12 the limit as I -= infinity of
the coarse Holder exponents of the length N address squares containing (x, ¥).
Mow define
Eatpta = (%, ¥ dyp(x, y) = alpha},
the collection of all points of the fractal hawing local Holder exponent alpha.
As alpha takes on all values of the local Holder exponent, we decompose the fractal into these sets Egopo.
Here are examples, Ealpha (alpha = column height) for the lowest value of alpha (on the leff), two mtermediate values, and the highest value.

Chick here for an animation scanning through all the walues of alpha, from lowest to highest, resolved to boxes have side length 1124

EBecause each local Holder exponent alpha is the exponent for a power law, a multiftactal is a process exhibiting scaling for a range of different power laws.
The multifractal structure 15 revealed by plothing dim(Ealphaj as a function of alpha.

(In general, a dimension more subtle than the box-counting dimension must be used. "We ignore thiz complication here.)

g T 3 Mostra tutti i download. ..
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Click here for an ammation scantng through all the values of alpha, from lowest to lughest, resolved to boxes have side length 1124

Because each local Holder exponent alpha 1 the exponent for a power law, a multifractal 15 a process exhibiting scaling for a range of different powe
The multifractal structure 12 revealed by plotting dﬁn{Eﬂpha) as a fiunction of alpha.

{In general, a dimension more subtle than the box-countng dimension must be used. We 1gnore this complication here )

This graph 15 called the falpha) curve.

Here 15 the f{alpha) curve for the example with py = 0.2, py =py =025, and py = 0.3,
At least i thiz example, sets Eﬂlpha for the lowest and hughest values of alpha reduce to points in the lnut, hence have dimension flalpha) = 0. This 13
represented m the left and right endpoints of the curve Iying on the x-ass.

f(alpha)
2__

A37 4.

This result 15 dertved under more general condiions in a later section.

Feturn to Multifractals.
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The Legendre transform of f(a)

F={w,, ..., Wy}, w; : X— X contraction of constants;, 0 <s, <1
(P4, ..,Py) Probability vector 0 <p; <1, p;+...+py =1
The dimension d of the attractor + is the solution of the equation
S0+ 80+ ..+ =
The singularity spectrum a—f(a) of a probabilistic i.f.s. Is the

Legendre transform of the function g—t(q) obtained solving
the functional equation

P, SlT(Q)+p2q SZT(Q)—|—. P SNT(Q):]_
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6P, For each point (g, ©(q)) say the slope of the tangent line 12 -o. That 18, o= -dofdq.
Eenormalization T ( q)
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Chaos

o f(a@) = 7(q) +ac\

Smchror?ization q
of Chaotic (q, T(Cl))

Proceszes

7. Multhfactals

A, Unecual i -
Probabilities Line of Slope

7B Histoorams
7C Another -0 =y - a0 - g

This tangent line passes through the pomt (g, ©(q)) and the pomt {0, v). Consequently,

Exarnple Solving for v,

7D, Local v =gt g
Dirmnensions Call this w-walue o)

7E. Multifractals Ho) = qet oy
from IFS
JF. f{a) curves

|T"G. a) from | v

Eeturn to Multdfractals from IFS.
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The singularity spectrum o—f(a) of a probabilistic i.f.s. Is the
Legendre transform of the function g—1(q)
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Fundamentals of investing

Investment returns are strongly related to their risk level
Usually and loosely risk is quantified using volatility (standard deviation)

U.S. Treasury bills /bonds (short/long term bonds 1month-1year / 2-30 years ): very
safe (until now...) and very low/medium yield. Most of the price uncertainty for
Ionger term bonds comes from the effect of inflation

T.I.P. . inflation indexed bonds which guarantee a positive real return

Stocks: risky but higher returns (on the long run...). Companies sell shares of stock
to raise capital: they ""go public" by agreeing to sell a certain number of shares on
an exchange. Each share represents a given fraction of the ownership of the
company.

Certain stocks pay dividends, cash payments reflecting profits returned to
shareholders. Other stocks reinvest all returns back into the business.

In principle, what people will pay for a stock reflects the health of its current
business, future prospects, and expected returns. But the current price of a stock is
completely determined by what people are willing to pay for it. If there were no
differences of opinion as to the value of a stock, there would be no trading.




Analisi dei rendimenti degli indici S&P500, Lehman Long Term Government
Bonds, MSCI Europe Australasia Far East, FTSE North American Real Estate
Investment Trusts e Goldman Sachs Commodities Index dal 1973 al 2007.
Tratto da “The case for multi-asset investing. Combining asset classes to
enhance risk/ireturn potential”, Jennison Dryden-Prudential Investment
disponibile online al link :
http:/iwww.jennisondryden.comiview/upload?docURL=/WDocs/45FBI E8429
86A540852573E2006BA8CB8/$File/|D2065MukltipleClass.pdf&docType=pdf
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Financial markets

An exchange is a place where buyers and sellers trade securities such as stocks,
bonds, options, futures, and commodities.

Each stock is typically traded on a particular exchange. Each exchange has
different rules about the qualifications of companies which can be listed on
It.Exchanges also differ in the rules by which they match buyers to sellers. The
exact trading rules and mechanisms can have a significant impact on the price one
gets for a given security.

The strength of an exchange's rules and their enforcement impacts

the confidence of investors and their willingness to invest.

Exchanges provide liquidity, the ability to buy and sell securities quickly,
Inexpensively, and at fair market value.

In general, the more trading that occurs in a security, the greater its liquidity.



Bonds, Commodities and
currencies

trade bonds (" loans") made to governments and companies. Bond prices vary
according to the term (length of time) of the loan, the interest rate and payment schedule, the
financial strength of the borrowing party, and the returns available from other investments.

are types of goods which can be defined so that they are largely
indistinguishable in terms of quality (e.g. orange juice, gold, cotton, pork bellies).
Commodities markets exist to trade such products, from before they are produced to the
moment of shipping. Agricultural futures sell the right to buy a certain amount of a
commodity at a particular price at a particular point in the future. The existence of
agricultural futures gives suppliers and consumers ways to protect themselves from
unexpected changes in prices.
The prices of agricultural commodities are affected by changes in supply and demand
resulting from weather, political, and economic forces.

The largest financial markets by volume trade different types of currency,

such as dollars, Euros, and Yen.
The spot price gives the cost of buying a good now, while futures permit one to buy the right
to buy or sell goods at fixed prices at some future date.
Typically, each seller has a buy and sell price for a given currency, and makes their money
from the spread between these two prices.
Ideally the demand for buying equals selling, or else the prices must change.
Currency markets are used to (a) acquire funds for international trade, (b) hedge against risks
of currency fluctuations, (c) speculate on future events.



Stock prices and indices

Stock indices are typically weighted averages of the prices of the
component stocks. Usually the weights are proportional to the
market capitalization= (price of a share)*(number of existing
shares) of the stock.

The same formulae as before are used to calculate returns from
Index levels. Very often dividends are excluded from the
Index.

Dow Jones Industrial Average: 30 U.S. stocks (corresponding to
30 leading companies), price weighted

S&P500: 500 U.S. stocks, capitalization weighted
Stoxx 600: 600 european stocks, capitalization weighted



Stocks, bonds, bills and inflation In
the UK from 1900 to 2007

Figure 4: Cumulative returns on UK asset classes in nominal terms, 1900—2007

Index value (start-1900 = 1.0; log scale)

100,000
—— Equities 9.7% per year
Bonds 5.3% per year
10,000 Bills 5.0% per year
--------- Inflation 4.0% per year
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Annualized real (after inflation) returns
of bonds and stocks: 1900-2007

Figure 5: Real returns on equities versus bonds internationally, 1900-2007
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Stock market crashes (before
2008)

GLOBAL INVESTMENT RETURNS BOOK 2008

Figure 6: Extremes of equity market history, 1900-2007
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Volatility of stocks

During the period 1900-2007, UK’s standard deviation of 19.8%
places it alongside the US (20.0%) at the lower end of the risk
spectrum. The highest volatility markets were Germany (32.3%),
Japan (29.8%), and Italy (28.9%), reflecting the impact of wars

and inflation.



Chicago Board Options Exchange Volatility Index, a popular
measure of the implied volatility of S&P500 index options. A high
value corresponds to a more volatile market and therefore more
costly options, which can be used to defray risk from volatility. If
Investors see high risks of a change in prices, they require a greater
premium to insure against such a change by selling options. Often
referred to as the fear index, it represents one measure of the
market's expectation of volatility over the next 30 day period.

Jun 2006 : mm “¥Ix 13.08
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http://en.wikipedia.org/wiki/Volatility_(finance)

Dalily returns of General Motors
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Volatility clustering

Time series plots of returns display an important feature that is
usually called volatility clustering. This empirical phenomenon
was first observed by Mandelbrot (1963), who said of prices that
“large changes tend to be followed by large changes—of either
sign—and small changes tend to be followed by small
changes.””Volatility clustering describes the general tendency for
markets to have some periods of high volatility and other periods
of low volatility. High volatility produces more dispersion in
returns than low volatility, so that returns are more spread out
when volatility is higher. A high volatility cluster will contain
several large positive returns and several large negative returns,
but there will be few, if any, large returns in a low volatility
cluster.



Dally returns of GM after normalization by
short-term (25 days) volatility

Nov 30, 2011 theory and applications - Lecture 8
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S&P500 1950-early 2008
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The Difference a Year Makes In March, the stock market was on track to have its worst year ever. Gains since then tumed 2009 into one of the best years this decade, though one of the
broadest measures of the market, the Standard & Poor’s 500-stock index, still remains 28 percent below its October 2007 peak.

S.& P. 500 returns mm Changeinprices == Dividends

+40%

Percent below peak Bis Bogs
At peak ' W'HY H'ﬂ 17' |" ) |17 —
20% - | ’
Dec. 30
40 iz -28%
60 - March 9
~57%
= 1930s 1940s 19508 1960s 1970s 1980s 1990s 20008
Source: Bloomberg
http://www.nytimes.com/2009/12/31/business/31stox.html?th&emc=th
http://alfaobeta.blogspot.com
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Speculation and hedging

are investors who deliberately assume the risk of a loss,
In return for the uncertain possibility of a reward. They bet on
future events. For example, they will buy a stock because they think

it will go up.

are investors who trade so as to reduce their exposure to
risk. For example, they will both buy and short a stock
simultaneously.



The economic benefit of speculation

The well known speculator Victor Niederhoffer, describes the benefits of speculation:
“Let's consider some of the principles that explain the causes of shortages and
surpluses and the role of speculators. When a harvest is too small to satisfy
consumption at its normal rate, speculators come in, hoping to profit from the scarcity
by buying. Their purchases raise the price, thereby checking consumption so that the
smaller supply will last longer. Producers encouraged by the high price further lessen
the shortage by growing or importing to reduce the shortage. On the other side, when
the price is higher than the speculators think the facts warrant, they sell. This reduces
prices, encouraging consumption and exports and helping to reduce the surplus.”

Another service provided by speculators to a market is that by risking their
own capital in the hope of profit, they add liquidity to the market and make it easier
for others to offset risk, including those who may be classified as hedgers and

arbitrageurs.


http://en.wikipedia.org/wiki/Victor_Niederhoffer
http://en.wikipedia.org/wiki/Victor_Niederhoffer

Arbitrage

IS a trading strategy which takes advantage of two or
more securities being inconsistently priced relative to each other.
In financial and economics theory arbitrage is the practice of
taking advantage of a price differential between two or
more markets or assets: striking a combination of matching deals
that capitalize upon the imbalance, the profit being the difference
between the prices. When used by academics, an arbitrage is a
transaction that involves no negative cash flow at any
probabilistic or temporal state and a positive cash flow in at least
one state; in simple terms, a
Advanced arbitrage technigues involve sophisticated
mathematical analysis and rapid trading.



More arbitrage and market
efficiency

The classical joke on arbitrage and market efficiency: A finance
professor and a normal person go on a walk and the normal
person sees a 100$ bill lying on the street. When the normal
person wants to pick it up, the finance professor says:

‘Don’t try to do that! It is absolutely impossible that there 1s a
100% bill lying on the street. Indeed, if it were lying on the street,
somebody else would already have picked it up before you’ (end
of joke).

How about financial markets? There it is already much more
reasonable to assume that there are no 100 bills lying around
waiting to be picked up. We shall call such opportunities of
picking up money that is ‘lying around’ arbitrage possi-

bilities. Let us illustrate this with an easy example.



Stock Returns

Let p, be a representative price for a stock in period t (final
transaction price or final quotation during the period). Assume that
the buyer pays the seller immediately for stock bought .

Let d, be the present value of dividends, per share, distributed to
those people who own stock during period t . On almost all days
there are no dividend payments — d, = 0. Sometimes dividend
payments are simply ignored, so then d, = O for all days t .

Three price change quantities appear in empirical research:

"= P+ i~ Pry

.= (p; + di — Pr.y)/ Prg, simple net return (arithmetic)
r.=log(p;+ d;) — log p.4. log returns (geometric)

The return measures r, and r', are very similar numbers, since
1+r,=exp(r)=1+r+%r2+ ...

and very rarely are daily returns outside the range from —10% to
10%. It 1Is common to assume that single-period geometric returns
follow a normal distribution.



Norway

1.0

0.5

Geometric return
0.0

0.5

.5 0.0 0.5 1.0 15
Arithmetic return

USA

Geometric return
0.1 0.3

0.1

0.3

Historical arithmetic and geometric annual returns tor the Norwegian and U.S.
stock market (1970-2002). The historical annual volatilities in the two markets are
very different: 18% for the U.S. market and 44% for the Norwegian market. From
“Statistical modelling of financial time series: An introduction” K. Aas, X.

Dimakos (2004) nttp:/iwww.nr.no/files/samba/bff/SAMBAQS04.
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Statistical distribution of returns

Fractiles SR {p, T) of the Distribution of the Studentized Range in Samples
of Size T from a Normal Population

In real world data analysis, NGsizeor

LOWER PERCENTAGE UPPER PERCENTAGE SIZE OF

SAMPLE POINTS (p} POINTS (p) SAMPLE
on|y are the true mean and T 005 01 025 050 10 80 95 975 99 99 T
- - 1997 1999 2000 2,000 2.000 3
standard deviations unknown 2409 2420 2430 2445 2447 4
1 I 1 - 2712 2753 2782 2803 2813 5
but the type of distribution the 212 28 2 e e 6
3.143 3222 3.282 3.338 3.369 7
generated the observed return: 3308 3399 3471 3543 3585 8
if is al K 3449 3552 3634 3.720 3.772 9
(I any) IS alSO unknown. 10 247 251 259 267 277 357 368 3.777 3875 3935 10
1 253 258 266 274 284 368 380 3903 4012 4.079 "
12 259 265 273 280 291 378 391 401 4134 4.208 12
- - - 13 265 270 278 28B86 297 387 400 4M 4,244 4325 13
ASlmpIe test for nOrmallty IS 14 270 275 283 291 302 395 409 421 434 443 14
- - 15 275 280 288 296 307 402 417 420 443 453 15
orovided by the studentized 16 280 285 293 301 313 409 424 437 451 462 16
. = 17 284 290 298 3.06 3.7 415 4.1 444 453 4869 17
range SR: glven a random 18 288 2984 302 310 321 421 438 451 466 477 18
: . 19 292 298 306 314 326 427 443 457 473 484 19
variable x. one defines 20 295 301 310 318 329 432 449 463 479 491 20
! . 30 322 327 337 346 358 470 489 506 626 539 30
SR: (ma)( X:— Min X-)/G 40 341 346 357 366 379 49 515 6534 554 569 40
I | 50 357 361 372 382 394 516 535 554 577 591 50
60 369 374 385 385 407 529 550 570 593 6.09 60
It depends heaVIIy on the 80 388 393 405 415 427 551 573 593 618 6.35 80
: 100 402 400 420 431 444 568 590 611 636 6.54 100

extreme observations

150 430 436 447 459 472 596 6.18 639 664 6.84 150
200 450 456 467 478 480 615 638 659 685 7.03 200
500 506 5.13 525 537 549 672 694 715 742 760 500
Nov 30, 2011 S. Megooi - Dy5usoniEs5anG 68nesJoricss92 711 7.33 754 780 7.99 1000
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Stylized facts and volatility. A bibliography:

R. Cont “Empirical properties of asset returns: stylized
facts and statistical 1ssues” Quantitative Finance 1 (2001)

223-236

http://www.proba.jussieu.fr/pageperso/ramacont/papers/empirical.pdf

S.J. Taylor “Asset Price Dynamics, Volatility, and
Prediction” Princeton University Press (2005). Chapters 2
and 4

Steven Skiena CSE691 Computational Finance class at
Stony Brook: http://www.cs.sunysb.edu/~skiena/691/


http://www.proba.jussieu.fr/pageperso/ramacont/papers/empirical.pdf

Styllzed faCtS (R. Cont, Quantitative Finance (2001))

1. . (linear) autocorrelations of asset returns
are often insignificant, except for very small intraday time scales (= 20
minutes) for which microstructure effects come into play.

2. . the (unconditional) distribution of returns seems to
display a power-law or Pareto-like tail, with a tail index which is finite,
higher than two and less than five for most data sets studied. In
particular this excludes stable laws with infinite variance and the
normal distribution. However the precise form of the tails is difficult to
determine.

3. . one observes large drawdowns in stock prices
and stock index values but not equally large upward movements



Autocorreletion of and of their absolute values. The black
line Is the best power law fit of the absolute values autocorrelations
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Theoretical and observed frequency of
outliers in the history of 15 stockmarkets

Exhibit 4: Outliers — Expected and Observed

Thus exhubit shows, for the indexes and sample peniods in Exhibat 2, the expected (Exp) and observed (Obs) mumber
of dady retnrns three standard deviations (3D below and above the anthmetic mean retuon (AR); the ratio betwreen
the nmumber of these chserved and expected retnrns; and the total number of expected (TE) and chserved (TO]
returns mose than three SDs away from the mean “Exp’ figuses are rounded to the nearest integer.

Lower Tal Upper Tail
AMarket AM-3-5D Exp Obs Ramo AM+3SD Ezp Obs Ranoe TE TO Rato
Anstralia 246% 17 T3 44 252% 17 33 32 33 126 38
Canada —248% 11 73 6.9 255% 11 43 41 21 116 55
France -311% 13 79 6.2 319% 13 51 48 25 140 353
Germany =351% 1o &5 5.3 357% 16 76 48 32 161 51
Hong E:;::uﬂg -553% 12 77 6.2 567% 12 80 6.5 25 137 64
Ttaly -382% 12 Tl 6.0 391% 12 45 40 24 119 30
Japan =312% 19 132 68 319% 19 112 538 39 244 63
New Zealand -251% 12 6l 49 256% 12 57 46 25 118 47
Singapore -312% 14 90 64 318% 14 80 6.1 28 176 6.3
Spain 322 11 32 48 3.31% 11 Gl 5.6 22 113 52
Switzerland -274% 13 101 79 279% 13 62 48 26 163 64
Tarwan —455% 15 103 68 4.63% 15 g1 53 30 184 60
Thailand —440%% 10 &2 6.0 448% 10 g1 T8 21 143 69
UK 300% 13 @9 5.3 307% 13 L 16 26 129 50
USA -335% 28 180 64 340% 28 173 61 56 333 6.3
ﬂ.‘ir‘erage -3.39% 14 87 0.0 3.47% 14 To 5.2 29 1la3 5.0

Nov 30, 2011 Estrada, Javier: B|ackﬁﬁ%ﬂ%@%‘ﬁ{gﬁiﬁﬁ%&!%@fﬂ to Generate Alpha. 52
Available at N:ah&pa:wassrﬁ.é)ons1/al?5§f:rz%'c1.e= 032962



Distribution of returns of DJIA stocks: from
“Foundations of Finance”, Fama (1976

TABLE 1.2
Fregquency Distributions for Daily Returns on Dow-Jdones Industrials

INTERVALS INTERVALS
B - 1080/ < A-150R) < Hﬁ—;-ﬂf:ﬂ'ﬁi‘;
A- A - 1.0sR1 <R-=1, .
R{Rm.'mm H{Rsnd'm and A< R- 2/ A< R - iR A< A - 45R) A< A - Bl
a R ' " nd and
- Sl B+ 10sR) < R+ 1EAA) < and and a
nﬂ Esfﬁ:; ni}?ﬂs i:l.:m A< A+ SR A< i+ 20R) R >+ Ll A> R+ 3R A > R+ 4R R = A+ BslR)
Exna:wd " Acwal Expected " Actual Expected  Actual Expected  Actual Expected  Actual Expected  Actual Expected  Actual Expected  Actual
. i no. e no. ™, Lii=5 1L . . na, no.
::‘. = vy "y -y . e i8) 19 iha) 1 IF] "a (14) {15} L
7 2
Allied Chemical 1,223 4BB 5 852 366.5 343 2248 183 107.7 94 55.5 55 :; i? .g: ; .ﬁ? :
Alcoa 1,190 4558 21 366.6 343 218.7 172 1048 85 ;;’ :: bt - o 0 poadd :
American Can 1,219 486.9 602 365.1 338 2241 157 , 1074 62 e - bt - P . oot .
AT&T 1,219 466.9 710 365.1 785 224.1 131 107.4 :7 oo o b b4 - : Sota :
Amarican Tobaces 1,783 4914 Ba2 284.4 an 2358 138 1;:-? 32 o o bt o P 1 P N
Anaconds 1,183 456.9 513 357.4 3s 219.3 204 :05_3 % i o i - e a b007 .
Bethlahem Steel 1,200 4596 575 3895 207 2206 180 . " b o ie bt b . poasd .
Chrysler 1,682 B48.0 736 506.9 493 .0 250 13:; - e ot e . 8 p ot 1
Du Pant 1,243 478.1 539 3724 363 2285 195 toa1 o st e b 3 o8 3 2007 >
Eastman Kodak 1.23 4742 546 3709 s 18 b 149.2 11 7.0 a7 4.6 22 11 5 0010 1
General Electric 1,693 B48 4 784 507.2 479 311.2 222 oo " e 2 i b 0 3 . 1
General Foods 1,408 5363 632 421.8 423 2588 154 1??-_4 0 553 2 1a 13 o9 & .DDEIMD: 3
General Motars 1,446 553.8 682 433.2 396 2658 203 102 4 T 528 57 31 10 P a 0007 2
Goodyest 1,162 4450 530 3481 a3 213.6 164 4 - -
International I8 o8 4 2007 .
Harvester 1,200 450.6 529 358.5 365 2206 182 1057 61 54.6 63 12
International . . D007 o
Nickel 1,243 4761 587 3724 62 2285 148 1095 12 56.5 73 34 16 03 &
International 5 o
np..: I 1447 554.2 643 4315 442 266.0 190 | 1275 ':‘ :-: :i :g :5: gg : .momr °
Johns Manville 1,205 4615 526 361.0 363 2215 163 ::3 pit e e a: » s 3 poess .
Owens 1llingis 1,237 4737 591 3706 323 2774 8e Pl b o o s o pos . : 2
Procter & Gamble 1,447 £54.2 726 4315 389 266.0 m 127 P st poot o pe o .mmur .
Sears 1,236 473.4 666 70,3 305 277.2 144 108.9 58 . : 4
Srandard Ol . 0 .
iCalifornial 1,693 648.4 76 5072 458 .2 33 1492 ik o 95 4.6 14 M 5 00
Standard Oil . , ,
(New Jersey) 1,156 4428 582 346.3 314 2126 130 1018 10 62.5 51 g ; :; -g; : 000 z
Swift & Co. 1,448 8538 672 433.2 409 265 8 194 1274 85 658 86 X e e : -wmﬂﬂm :
Texaco 1,158 4439 533 347.3 am 2130 164 102.1 95 52.7 56 ::} . o : pessd 0
Union Carbide 1,118 4281 466 336.0 338 2065 178 8.5 &4 0.9 &7 by . p ; hoo:r 1
United Aircraft 1,200 4506 550 I50.5 348 2706 165 . 1057 T 546 ﬂ: 3.2 . _os : pd :
U S, Steal 1,200 4586 435 3655 337 22006 219 105.7 a0 548 B . . p : ol ’
Westinghouse 1,448 5546 636 4338 474 266.1 m | 1276 gf ::-3 '?.-é g-: b s ; s 2
Woolwarth 1,445 5535 T8 4329 265.6 170 . ; s - .
" JEJ - ICsaRe—trreseriess
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Table 1.2, constructed from Tables 1 and 3 of Fama (1965), shows fre-
quency distributions for continuously compounded daily returns for each of
the 30 stocks of the Dow-Jones Indusirial Average, for time periods that
vary slightly from stock to stock but which usually run from about the end
of 1957 to September 26, 1962. Column (1) of the table shows the number

The obvious finding in Table 1.2 is that the frequency distributions of the
daily returns have more observations both in their central portions and in
their extreme tails than are expected from normal distributions. For every
stock the actual number of daily retums within .5 sample standard deviations
from the sample mean return is greater than the expected number. Every
stock also has more observations beyond three standard deviations from its
mean return than would be expected with normal distributions; all but one
have more beyond four standard deviations; and all but three have more
beyond two standard deviations.

In more vivid terms, if daily returns are drawn from normal distributions,
for any stock a daily return greater than four standard deviations from the
mean is expected about once every 50 years. Daily retums this extreme are
observed about four times every five years. Similarly, under the hypothesis
of normality, for any given stock a daily return more than five standard de-
viations from the mean daily return should be observed about once every

00 years. Such obsesvations sgemicdenoceurcabout every three to four
VEars, theory and applications - Lecture 8

54



Sty“ZGd faCtS (R. Cont, Quantitative Finance (2001))

4. . as one increases the time scale At over
which returns are calculated, their distribution looks more and more
like a normal distribution. In particular, the shape of the distribution is
not the same at different time scales.

B. : returns display, at any time scale, a high degree of
variability. This is quantified by the presence of |rregular bursts in time
series of awide varlety of volatility estimators.

6. . different measures of volatility display a
positive autocorrelation over several days, which quantifies the fact that
high-volatility events tend to cluster in time.

1. . even after correcting returns for volatility
clustering (e.g. via GARCH- -type models), the residual time series still
exhibit heavy tails. However, the tails are less heavy than in the
unconditional distribution of returns.




Styl |Zed faCtS (R. Cont, Quantitative Finance (2001))

8. . the
autocorrelation function of absolute returns decays slowly as a
function of the time lag, roughly as a power law with an exponent
B € [0.2, 0.4]. This is sometimes interpreted as a sign of long-
range dependence.

9. . most measures of volatility of an asset are
negatively correlated with the returns of that asset.

10. . trading volume is correlated
with all measures of volatility.

11. . coarse-grained measures of
volatility predict fine-scale volatility better than the other way
round.



Volatility clustering and leverage effect
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An autoregressive conditional heteroscedasticity (ARCH, Engle
(1982)) model considers the variance of the current error term to be a
function of the variances of the previous time period's error terms.
ARCH relates the error variance to the square of a previous period's
error. It is employed commonly in modeling financial time series that
exhibit time-varying volatility clustering, i.e. periods of swings
followed by periods of relative calm.



