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Inverse problem  

Inverse problem: given ε>0 and a target (fractal) set T can one 

find an i.f.s F such that the corresponding attractor A is ε-close 

to T  w.r.t. the Hausdorff distance h? 

 

Collage Theorem (Barnsley 1985) Let ε>0 and let TϵH (X) be 

given. If the i.f.s. F  = {w1, …, wN}  is such that  

    h(U1≤i≤N wi(T) , T  ) < ε 

then  

    h(T , A) < ε / (1-s) 

where s is the Lipschitz constant of F 
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Fractal image compression ? 

The Collage Theorem tells us that to find an i.f.s. whose attractor 

“looks like” a give set one must find a set of contracting maps 

such that the union (collage) of the images of the given set 

under these maps is near (w.r.t. Hausdorff metric) to the 

original set. 

 

The collage theorem sometimes allows incredible compression 

rates of images (of course with loss). It can be especially 

useful when the information contained in details is not 

considered very very important 
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Fractal image compression ! 

The topselling multimedia encyclopedia Encarta, published by 
Microsoft Corporation, includes on one CDROM seven thousand 
color photographs which may be viewed interactively on  a 
computer screen. The images are diverse; they  are of buildings, 
musical instruments, people's  faces, baseball bats, ferns, etc. What 
most users  do not know is that all of these photographs are  based 
on fractals and that they represent a (seemingly magical) practical 
success of mathematics.  

JUNE 1996 NOTICES OF THE AMS 657  

Fractal Image Compression by Michael F. Barnsley  

e.g: Barnsley’s fern: can be encoded with 160 bytes= 4*10*4 

 4 maps 10 parameters (each parameter using 4 bytes) 
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From M. Barnsely 
SUPERFRACTALS 
Cambridge 
University Press 
2006 
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From M. Barnsely 
SUPERFRACTALS 
Cambridge University Press 
2006 
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LEFT: the original digital image of Balloon, 512 pixels by 512 pixels, with 256  

gray levels at each pixel.  RIGHT: shows the same image after fractal compression.  

The fractal transform file is approximately one fifth the size of  the original. 

JUNE 1996 NOTICES OF THE AMS 657  Fractal Image Compression by Michael F. Barnsley  
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Fractal graphs of functions 

Many interesting fractals, both of theoretical and practical 

importance, occur as graphs of functions. Indeed many time 

series have fractal features, at least when recorded over fairly 

long time spans: examples include wind speed, levels of 

reservoirs, population data and some financial time series 

market (the famous Mandelbrot cotton graphs) 

 

Weierstrass nowhere differentiable continuous function: 

  f(t)=Σ1≤k≤∞  λ
(s-2)k sin (λk  t)          1<s<2, λ>2 

 

The graph of f has box dimension s for λ large enough. 
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s=1.3, λ=1.5 

s=1.5, λ=1.5 

s=1.1, λ=1.5 

s=1.7, λ=1.5 

From “Fractal Geometry”, K. Falconer, p. 164-165  
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Fractal 

graphs and 

i.f.s. 
(from K. Falconer,  

Fractal Geometry, Wiley  

(2003) 
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Self-affine curves defined by the two affine transformations that 

map the triangle p1pp2 onto p1q1p and pq2p2 respectively. In (a) 

the vertical contraction of both transformations is 0.7 giving 

dim graph f = 1.49, and in (b) the vertical contraction of both 

transformations is 0.8, giving dim graph f = 1.68 

 

from K. Falconer, Fractal Geometry, Wiley (2003) 
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Probabilistic i.f.s.  

F  = {w1, …, wN}, wi : X→ X contraction of constant si, 0 ≤ si <1 

       (p1,…,pN) probability vector 0 ≤ pi ≤ 1, p1+…+pN =1 

Iteration: at each step with probability pi  one applies wi 

i.f.s.: k iterates of a point → Nk  points   W  :  H  (X) → X  

                W   (E) = U1 wi(E)   

Probabilistic i.f.s.: k iterates of a point → k points  

Theorem: each probabilistic i.f.s. has a unique Borel probability 
invariant measure μ with support = A   

Invariance: μ(E)= Σ1≤i≤N piμ(wi
-1(E)) for all Borel sets E, equivalently 

∫X g(x)dμ(x)= Σ1≤i≤N pi ∫X g(wi(x))dμ(x) for all continuous functions g 
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Probabilistic i.f.s.  

If M   denotes the space of Borel probability measures on X 

endowed with the metric 

 d(ν1,ν2)=sup{| ∫X g(x)dν1 (x)-∫X g(x)dν2 (x)|, g Lipschitz, Lip(g) ≤1} 

Then a probabilistic i.f.s. acts on measures as follows 

  Lp,w ν= Σ piν◦wi
-1    

And  by duality acts con continuos functions g:X→ R 

   ∫X g(x)d(Lp,w ν)(x)= Σ1≤i≤N pi ∫X g(wi(x))dν(x) 

 

It is easy to verify that  

  d(Lp,w ν1 , Lp,w ν2 ) ≤ s d(ν1,ν2) 

from which the previous theorem follows Nov 30, 2011 
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Multifractal analysis of measures 

Local dimension (local Hölder exponent) of a measure μ at a point x:  

 dimloc μ(x)=limr→0 log μ(B(x,r))/log r  (when the limit exists) 

α>0, Eα ={xϵX, dimloc μ(x)= α} 

For certain measures μ the sets Eα may be non-empty over a range of  

values of α: multifractal measures 

multifractal spectrum (singularity spectrum) of the multifractal 

measure μ: is the function α→f(α)=dim Eα 
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http://classes.yale.edu/fractals/MultiFractals/MFGaskSect/MFG
askSectMv.gif 
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K. Falconer, Techniques in 

Fractal geometry 

P=(0.8,0.05,0.15) 
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The Legendre transform of f(α) 

F  = {w1, …, wN}, wi : X→ X contraction of constant si, 0 ≤ si <1 

       (p1,…,pN) probability vector 0 ≤ pi ≤ 1, p1+…+pN =1 

The dimension d of the attractor A   is the solution of the equation 

    s1
d + s2

d + … + sN
d  =1 

The singularity spectrum α→f(α) of a probabilistic i.f.s. is  the 
Legendre transform of the function q→τ(q) obtained solving 
the functional equation 

  p1
q s1

τ(q)+p2
q s2

τ(q)+…+pN
q sN

τ(q)=1 
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The singularity spectrum α→f(α) of a probabilistic i.f.s. is  the 

Legendre transform of the function q→τ(q) 
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Fundamentals of investing  

Investment returns are strongly related to their risk level 
 
Usually and loosely risk is quantified using volatility (standard deviation) 
 
U.S. Treasury bills /bonds (short/long term bonds 1month-1year / 2-30 years ): very 
safe (until now…) and very low/medium yield. Most of the price uncertainty for 
longer term bonds comes from the effect of inflation 
T.I.P. :  inflation indexed bonds which guarantee a positive real return  
Stocks: risky but higher returns (on the long run…). Companies sell shares of stock 
to raise capital: they ``go public'' by agreeing to sell a certain number of shares on 
an exchange. Each share represents a given fraction of the ownership of the 
company. 
Certain stocks pay dividends, cash payments reflecting profits returned to 
shareholders. Other stocks reinvest all returns back into the business. 
In principle, what people will pay for a stock reflects the health of its current 
business, future prospects, and expected returns. But the current price of a stock is 
completely determined by what people are willing to pay for it. If there were no 
differences of opinion as to the value of a stock, there would be no trading. 
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Financial markets 

An exchange is a place where buyers and sellers trade securities such as stocks, 
bonds, options, futures, and commodities. 
 
Each stock is typically traded on a particular exchange. Each exchange has 
different rules about the qualifications of companies which can be listed on 
it.Exchanges also differ in the rules by which they match buyers to sellers. The 
exact trading rules and mechanisms can have a significant impact on the price one 
gets for a given security. 
 
The strength of an exchange's rules and their enforcement impacts 
the confidence of investors and their willingness to invest. 
Exchanges provide liquidity, the ability to buy and sell securities quickly, 
inexpensively, and at fair market value. 
In general, the more trading that occurs in a security, the greater its liquidity. 

 

Nov 30, 2011 28 
S. Marmi - Dynamics and time series: 
theory and applications - Lecture 8 



Bonds, Commodities and 

Currencies 
Bond markets trade bonds (``loans'') made to governments and companies. Bond prices vary 
according to the term (length of time) of the loan, the interest rate and payment schedule, the 
financial strength of the borrowing party, and the returns available from other investments. 
Commodities are types of goods which can be defined so that they are largely 
indistinguishable in terms of quality (e.g. orange juice, gold, cotton, pork bellies). 
Commodities markets exist to trade such products, from before they are produced to the 
moment of shipping. Agricultural futures sell the right to buy a certain amount of a 
commodity at a particular price at a particular point in the future. The existence of 
agricultural futures gives suppliers and consumers ways to protect themselves from 
unexpected changes in prices. 
The prices of agricultural commodities are affected by changes in supply and demand 
resulting from weather, political, and economic forces. 
Currency Markets: The largest financial markets by volume trade different types of currency, 
such as dollars, Euros, and Yen. 
The spot price gives the cost of buying a good now, while futures permit one to buy the right 
to buy or sell goods at fixed prices at some future date. 
Typically, each seller has a buy and sell price for a given currency, and makes their money 
from the spread between these two prices. 
Ideally the demand for buying equals selling, or else the prices must change. 
Currency markets are used to (a) acquire funds for international trade, (b) hedge against risks 
of currency fluctuations, (c) speculate on future events. 
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Stock prices and indices 

Stock indices are typically weighted averages of the prices of the 

component stocks. Usually the weights are proportional to the 

market capitalization= (price of a share)*(number of existing 

shares)  of the stock.  

The same formulae as before are used to calculate returns from 

index levels. Very often dividends are excluded from the 

index.  

Dow Jones Industrial Average: 30 U.S. stocks (corresponding to 

30 leading companies), price weighted 

S&P500: 500 U.S. stocks, capitalization weighted 

Stoxx 600: 600 european stocks, capitalization weighted 
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Stocks, bonds, bills and inflation in 

the UK from 1900 to 2007 
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Annualized real (after inflation) returns 

of bonds and stocks: 1900-2007 

 

Nov 30, 2011 32 
S. Marmi - Dynamics and time series: 
theory and applications - Lecture 8 



Stock market crashes (before 

2008) 
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Volatility of stocks 

During the period 1900-2007,  UK’s standard deviation of 19.8% 

places it alongside  the US (20.0%) at the lower end of the risk 

spectrum. The highest volatility markets were Germany (32.3%),  

Japan (29.8%), and Italy (28.9%), reflecting the impact of wars 

and inflation.  
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Chicago Board Options Exchange Volatility Index, a popular 

measure of the implied volatility of S&P500 index options. A high 

value corresponds to a more volatile market and therefore more 

costly options, which can be used to defray risk from volatility. If 

investors see high risks of a change in prices, they require a greater 

premium to insure against such a change by selling options. Often 

referred to as the fear index, it represents one measure of the 

market's expectation of volatility over the next 30 day period.  
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Daily returns of General Motors 

(1950-2008) 
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Volatility clustering 

Time series plots of returns display an important feature that is 
usually called volatility clustering. This empirical phenomenon 
was first observed by Mandelbrot (1963), who said of prices that 
“large changes tend to be followed by large changes—of either 
sign—and small changes tend to be followed by small 
changes.”Volatility clustering describes the general tendency for 
markets to have some periods of high volatility and other periods 
of low volatility. High volatility produces more dispersion in 
returns than low volatility, so that returns are more spread out 
when volatility is higher. A high volatility cluster will contain 
several large positive returns and several large negative returns, 
but there will be few, if any, large returns in a low volatility 
cluster. 
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Daily returns of GM after normalization by 

short-term (25 days) volatility  
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S&P500 1950-early 2008 
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http://www.nytimes.com/2009/12/31/business/31stox.html?th&emc=th 

http://alfaobeta.blogspot.com 

Nov 30, 2011 
S. Marmi - Dynamics and time series: 
theory and applications - Lecture 8 

40 



Speculation and hedging 

Speculators are investors who deliberately assume the risk of a loss, 

in return for the uncertain possibility of a reward. They  bet on 

future events. For example, they will buy a stock because they think 

it will go up. 

 

Hedgers are investors who trade so as to reduce their exposure to 

risk. For example, they will both buy and short a stock 

simultaneously. 
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The economic benefit of speculation 

The well known speculator Victor Niederhoffer, describes the benefits of speculation: 
“Let's consider some of the principles that explain the causes of shortages and 
surpluses and the role of speculators. When a harvest is too small to satisfy 
consumption at its normal rate, speculators come in, hoping to profit from the scarcity 
by buying. Their purchases raise the price, thereby checking consumption so that the 
smaller supply will last longer. Producers encouraged by the high price further lessen 
the shortage by growing or importing to reduce the shortage. On the other side, when 
the price is higher than the speculators think the facts warrant, they sell. This reduces 
prices, encouraging consumption and exports and helping to reduce the surplus.” 
 
Another service provided by speculators to a market is that by risking their 
own capital in the hope of profit, they add liquidity to the market and make it easier 
for others to offset risk, including those who may be classified as hedgers and 

arbitrageurs. 
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Arbitrage 

Arbitrage is a trading strategy which takes advantage of two or 

more securities being inconsistently priced relative to each other. 

In financial and economics theory arbitrage is the practice of 

taking advantage of a price differential between two or 

more markets or assets: striking a combination of matching deals 

that capitalize upon the imbalance, the profit being the difference 

between the prices. When used by academics, an arbitrage is a 

transaction that involves no negative cash flow  at any 

probabilistic or temporal state and a positive cash flow in at least 

one state; in simple terms, a risk-free profit.  

Advanced arbitrage techniques involve sophisticated 

mathematical analysis and rapid trading. 
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More arbitrage and market 

efficiency 
The classical joke on arbitrage and market efficiency: A finance 
professor and a normal person go on a walk and the normal 
person sees a 100$ bill lying on the street. When the normal 
person wants to pick it up, the finance professor says: 
‘Don’t try to do that! It is absolutely impossible that there is a 
100$ bill lying on the street. Indeed, if it were lying on the street, 
somebody else would already have picked it up before you’ (end 
of joke). 
How about financial markets? There it is already much more 
reasonable to assume that there are no 100 bills lying around 
waiting to be picked up. We shall call such opportunities of 
picking up money that is ‘lying around’ arbitrage possi- 
bilities. Let us illustrate this with an easy example. 
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Stock Returns 

 Let pt be a representative price for a stock in period t (final 
transaction price or final quotation during the period). Assume that 
the buyer pays the seller immediately for stock bought .  
Let dt be the present value of dividends, per share, distributed to 
those people who own stock during period t . On almost all days 
there are no dividend payments → dt = 0. Sometimes dividend 
payments are simply ignored, so then dt = 0 for all days t . 
Three price change quantities appear in empirical research: 
r∗t = pt + dt − pt-1     
r′t = (pt + dt − pt-1)/ pt-1,   simple net return (arithmetic) 
rt = log(pt + dt ) − log pt-1.   log returns (geometric) 
The return measures rt and r′t are very similar numbers, since 
1 + r′t =  exp(rt) = 1 + rt + ½ rt

2 + … 
and very rarely are daily returns outside the range from −10% to 
10%. It is common to assume that single-period geometric returns 
follow a normal distribution. 
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Historical arithmetic and geometric annual returns for the Norwegian and U.S. 
stock market (1970-2002). The historical annual volatilities in the two markets are 
very different: 18% for the U.S. market and 44% for the Norwegian market. From 
“Statistical modelling of financial time series: An introduction” K. Aas, X. 
Dimakos (2004)  http://www.nr.no/files/samba/bff/SAMBA0804.pdf  
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Statistical distribution of returns 

In real world data analysis, not 

only are the true mean and 

standard deviations unknown 

but the type of distribution that 

generated the observed returns 

(if any) is also unknown. 

 

A simple test for normality is 

orovided by the studentized 

range SR: given a random 

variable xi one defines 

    SR= (max xi – min xi)/σ 

It depends heavily on the 

extreme observations 
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Stylized facts and volatility. A bibliography: 

 

 R. Cont “Empirical properties of asset returns: stylized 

facts and statistical issues” Quantitative Finance 1 (2001) 

223–236 
 http://www.proba.jussieu.fr/pageperso/ramacont/papers/empirical.pdf 

 

 S.J. Taylor “Asset Price Dynamics, Volatility, and 

Prediction” Princeton University Press (2005). Chapters 2 

and 4 

 

 Steven Skiena CSE691 Computational Finance class at 

Stony Brook: http://www.cs.sunysb.edu/~skiena/691/ 
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Stylized facts (R. Cont, Quantitative Finance (2001)) 

1. Absence of autocorrelations: (linear) autocorrelations of asset returns 

are often insignificant, except for very small intraday time scales (≈ 20 

minutes) for which microstructure effects come into play. 

2. Heavy tails: the (unconditional) distribution of returns seems to 

display a power-law or Pareto-like tail, with a tail index which is finite, 

higher than two and less than five for most data sets studied. In 

particular this excludes stable laws with infinite variance and the 

normal distribution. However the precise form of the tails is difficult to 

determine. 

3. Gain/loss asymmetry: one observes large drawdowns in stock prices 

and stock index values but not equally large upward movements 
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Autocorreletion of daily returns and of their absolute values. The black 

line is the best power law fit of the absolute values autocorrelations 
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DJIA: daily 

return at day i 

vs. return at 

day i-1, 5000 

days 

(approximately 

1988-2008) 
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Theoretical and observed frequency of 

outliers in the history of 15 stockmarkets  

 

Estrada, Javier: Black Swans and Market Timing: How Not to Generate Alpha.  
Available at SSRN: http://ssrn.com/abstract=1032962  
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Distribution of returns of DJIA stocks: from 

“Foundations of Finance”, Fama (1976) 
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4. Aggregational Gaussianity: as one increases the time scale Δt over 
which returns are calculated, their distribution looks more and more 
like a normal distribution. In particular, the shape of the distribution is 
not the same at different time scales. 
5. Intermittency: returns display, at any time scale, a high degree of 
variability. This is quantified by the presence of irregular bursts in time 
series of awide variety of volatility estimators. 
6. Volatility clustering: different measures of volatility display a 
positive autocorrelation over several days, which quantifies the fact that 
high-volatility events tend to cluster in time. 
7. Conditional heavy tails: even after correcting returns for volatility 
clustering (e.g. via GARCH-type models), the residual time series still 
exhibit heavy tails. However, the tails are less heavy than in the 
unconditional distribution of returns. 

Stylized facts (R. Cont, Quantitative Finance (2001)) 
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8. Slow decay of autocorrelation in absolute returns: the 

autocorrelation function of absolute returns decays slowly as a 

function of the time lag, roughly as a power law with an exponent 

β ∈ [0.2, 0.4]. This is sometimes interpreted as a sign of long- 

range dependence. 

9. Leverage effect: most measures of volatility of an asset are 

negatively correlated with the returns of that asset. 

10. Volume/volatility correlation: trading volume is correlated 

with all measures of volatility. 

11. Asymmetry in time scales: coarse-grained measures of 

volatility predict fine-scale volatility better than the other way 

round. 

Stylized facts (R. Cont, Quantitative Finance (2001)) 
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Volatility clustering and leverage effect 
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An autoregressive conditional heteroscedasticity (ARCH, Engle 

(1982)) model considers the variance of the current error term to be a 

function of the variances of the previous time period's error terms. 

ARCH relates the error variance to the square of a previous period's 

error. It is employed commonly in modeling financial time series that 

exhibit time-varying volatility clustering, i.e. periods of swings 

followed by periods of relative calm.  
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