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Lyapunov exponents for interval 

maps 
• Assume that T is a piecewise smooth map of I=[0,1] 

• By the chain rule we have 

 

 

• If μ is an ergodic invariant measure for a.e. x the limit exists 

and it is given by 

 

 

 which is also called the Lyapunov exponent of T 
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Expanding maps and Rokhlin 

formula 

 If T is expanding then it has a unique a.c.i.p.m. 

μ and the entropy h of T w.r.t. μ is equal to the 

Lyapunov exponent 
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Law of large numbers 

            independent identically distributed random variables 
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Law of large numbers vs Birkhoff 

theorem 

Random setting Deterministic setting 
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Central limit theorem 

}{ iX  independent identically distributed random variables 
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Central limit theorem for 

deterministic systems 

                       ergodic measurable dynamical system 
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Central limit theorem for 

deterministic systems 

                       ergodic measurable dynamical system 
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Hypotheses for deterministic CLT 

1. Mixing-type condition                      

 

 

 

2. Cohomological equation has no solution 
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An example: distribution of Birkhoff 

averages for the entropy 
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Speed of convergence 

(Berry-Esseen theorem) 
}{ iX  independent identically distributed random variables 
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Speed of convergence 

(Berry-Esseen theorem) 
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Topological entropy 

Topological entropy represents the exponential growth rate of the 

number of orbit segments which are distinguishable with an arbitrarily 

high but finite precision. It is invariant under topological conjugacy.  

Here the phase space is supposed to be a compact metric space (X,d)  

Here r(n, ) is the minimal 

cardinality of a (n, )-spanning set 
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Alternative definition  

 Let α be an open cover of X and let N(α) be the number of sets 

in a finite subcover of α with smallest cardinality 

 

 

Here the join αVβ of two covers is αVβ  = { A∩B : Aϵ α, B ϵ β } 
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The variational principle 

(the sup is taken over all invariant Borel probability measures ) 

Let T be a continuous map on X compact Hausdorff: then 

Example: Bernoulli schemes  
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Self-similarity and fractals 

A subset A of Euclidean space will be considered a “fractal” when it 
has most of the following features: 

 

• A has fine structure (wiggly detail at arbitrarily small scales) 

• A is too irregular to be described by calculus (e.g. no tangent space) 

• A is self-similar or self-affine (maybe approximately or statistically) 

• the fractal dimension of A is non-integer 

• A may have a simple (recursive) definition 

• A has a “natural” appearance: “Clouds are not spheres, mountains 
are not cones, coastlines are not circles, and bark is not smooth, nor 
does lightning travel in a straight line . . .”  (B. Mandelbrot) 
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self-similar  
fractals  

self-affine  
fractals  

From: K. Falconer, Techniques in Fractal Geometry, Wiley 1997 
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self-conformal  
fractals 

Statistically  
self-similar 

fractals 

From: K. Falconer, Techniques in Fractal Geometry, Wiley 1997 
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Source: Wikipedia 
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Source: Wikipedia 
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Mathematics,  shapes and nature 
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http://classes.yale.edu/fractals/Panorama/Nature/NatFracGallery/Gallery/Gallery.html 
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From http://en.wikipedia.org/wiki/Image:Square1.jpg 
Lichtenberg Figure 
High voltage dielectric breakdown within a block of plexiglas creates a beautiful  
fractal pattern called a Lichtenberg_figure. The branching discharges ultimately 
 become hairlike, but are thought to extend down to the molecular level.  
Bert Hickman, http://www.teslamania.com 
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A diffusion-limited aggregation (DLA) cluster. Copper aggregate formed from  
a copper sulfate solution in an electrode position cell. Kevin R. Johnson, Wikipedia 
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Coastlines 

Massachusetts    Greece   

D=1.15 D=1.20 Nov 28, 2011 
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http://upload.wikimedia.org/wikipedia/com
mons/2/20/Britain-fractal-coastline-

combined.jpg 

200 km    100 km    50 km   
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How long is a coastline? 

The answer depends on the scale at which the measurement is  

made:  if s is the reference length the coastline length L(s) will be 

Log L(s) = (1-D) log s + cost 
(Richardson 1961, Mandelbrot Science 1967) 
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How long is the coast of Britain?  

Statistical self-similarity and fractional dimension  

Science: 156, 1967, 636-638  

B. B. Mandelbrot  

 Seacoast shapes are examples of highly involved curves with the 

property that  - in a statistical  sense - each portion can be considered 

a reduced-scale image of the whole. This property will be referred to  

as ‘‘statistical self-similarity.’’  The concept of ‘‘length’’ is usually 

meaningless for geographical curves. They  can be considered 

superpositions of features of widely scattered characteristic sizes; as 

even finer features are taken into account, the total measured length 

increases, and there is usually no clear-cut gap or  crossover, 

between the realm of geography and details with which geography 

need not be concerned.  
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Quantities other than length are therefore needed to discriminate 

between various degrees of  complication for a geographical 

curve. When a curve is self-similar, it is characterized by an 

exponent of  similarity, D, which possesses many properties of 

a dimension, though it is usually a fraction greater that the 

dimension 1 commonly attributed to curves. I propose to 

reexamine in this light, some empirical  observations in 

Richardson 1961 and interpret them as implying, for example, 

that the dimension of the  west coast of Great Britain is D = 

1.25. Thus, the so far esoteric concept of a  ‘‘random figure of 

fractional  dimension’’ is shown to have simple and concrete 

applications of great usefulness.  

 

How long is the coast of Britain?  

Statistical self-similarity and fractional dimension  

Science: 156, 1967, 636-638  

B. B. Mandelbrot  
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“Box counting” dimension 
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s N(s) 

25 47 

20 67 

15 100 

10 159 

5 386 

Log N(s) = -D log s + cost 

 
http://www.physionet.org/tutorials/epn/program/coastline.htm 
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Box counting (Minkowski) dimension 

Let E be a non-empty bounded subset of Rn and let Nr (E) be the 
smallest number of sets of diameter r needed to cover E 

• Lower dimension   dimB E = liminfr→0  log Nr (E) / -logr 

• Upper dimension    dimB E = limsupr→0  log Nr (E) / -logr 

 

• Box-counting dimension: if the lower and upper dimension agree 
then we define 

    dim E = limr→0 log Nr (E) / -logr 

 

The value of these limits remains unaltered if Nr (E) is taken to be the 
smallest number of balls of radius r (cubes of side r) needed to cover 
E, or the number of r-mesh cubes that intersect E  
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Hausdorff dimension  
A finite or countable collection of subsets {Ui } of Rn  is a δ-cover of a 

set E if | Ui |< δ for all i and E is contained in Ui Ui   

Hs
δ  (E) = inf {Σi | Ui |

s , {Ui } is a a δ-cover of E} 

s-dimensional Hausdorff measure of E: Hs
  (E) =limδ→0 H

s
δ  (E)  

It is a Borel regular measure on Rn  , it behaves well under similarities 
and Lipschitz maps 

 

The Hausdorff dimension dimH E is  

the number at which the Hausdorff  

measure Hs
  (E) jumps from ∞ to 0 

 

dimH E ≤ dimB E ≤ dimB  E 
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Von Koch curve (1904) 

D=log4/log3=1.261859... 
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From: K. Falconer, Techniques in Fractal Geometry, Wiley 1997 
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Sierpinski triangle (1916) 

D=log3/log2=1.5849625... Nov 28, 2011 
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A fractal carpet (zero area) 

D=3log2/log3=1.892789... Nov 28, 2011 
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A fractal sponge 
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Zooming in  
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Changing parameters 

90° anticlockwise rotation 
about the top vertex 

•The triangle of Sierpinski is the attractor of an iterated 
function system (i.f.s). 

•The i.f.s. is made of three affine maps (each contracting by a 
factor ½ and leaving one of the initial vertices fixed) 

•Combining the affine maps with rotations one can change the 
shape considerably 

180° rotation about the 

same vertex Nov 28, 2011 
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Hausdorff metric and compact sets 

        F 
   E 

X=[0,1]² 

d((x,y),(x’,y’))= |x-x’|+|y-y’|   Manhattan metric 

H  (X)={E compact nonempty subsets of X} 

h(E,F)=max(d(E,F),d(F,E)) 

d(E,F)=maxx∈Eminy∈F d(x, y)        

d(E,F)≠d(F,E) 

d(E,F)>0 

d(F,E)=0 

Theorem: (H  (X),h) is a complete metric space  

→ Cauchy sequences have a limit! 
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Contractions and Hausdorff metric 

Proposition: if w:X→X is a contraction with Lipschitz constant s then w is also a 
contraction on (H (X),h) with Lipschitz constant s 

 

To each family F of contractions on X one can associate a family of contractions 
on (H (X),h). By Banach-Caccioppoli to each such F  will correspond a 
compact nonempty subset A  of X: the attractor associated to F 

d(w(E),w(F))=max min d(y,z) = max min d(w(e),w(f))  
   yϵE      zϵF        eϵE      fϵF    

   ≤ s max min d(e,f) = s d(E,F)  
              eϵE      fϵF  
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Iterated function systems 

F  = {w1, …, wN} each wi : X→ X is a contraction of constant si, 0 ≤ si 

<1 

 

Let W  :  H  (X) → X  

      W   (E) = U wi(E)   
                              1≤i≤N   

Then W  contracts the Hausdorff metric h with Lipschitz constant s = 
max si  . We denote by A  the corresponding attractor 

                1≤i≤N 

Given any subset E of X, the iterates W  ⁿ(E) → A  exponentially fast, 

in fact h(W  ⁿ(E) , A ) ≈ sⁿ    as n → ∞  
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Self similarity and fractal dimension 

If the contractions of the i.f.s. F  = {w1, …, wN}  are 

• Similarities              the attractor A  will be said self-similar 

• Affine maps              the attractor A  will be said self-affine 

• Conformal maps (i.e. their derivative is a similarity) then the 
attractor A  will be said self-conformal 

 

If the open set condition is verified, i.e. there exists an open set U 
such that wi(U)∩wj(U)=Ø if i≠j and Ui wi(U)  is an open 
subset of U then the dimension d of the attractor A is the 

unique positive solution of s1
d + s2

d + … + sN
d  =1 
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