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Lyapunov exponents for interval
maps
e Assume that T Is a piecewise smooth map of 1=[0,1]

By the chain rule we have

n—1
1
_1 o .T'n Tn 1 o Tf TI
—log |T"(x) = T"(y) Z og |

 |If uisan ergodic invariant measure for a.e. x the limit exists
and 1t Is given by

] .
| log [T du

which Is also called the Lyapunov exponent of T
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Expanding maps and Rokhlin
formula

If T Is expanding then It has a unique a.c.1.p.m.
u and the entropy h of T w.r.t. 1 Is equal to the
Lyapunov exponent

1
h =/ log | T"(x)|dpu

0
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Law of large numbers

{Xi} Independent identically distributed random variables
E(X.) =<+

1 n

— > X, > U

L)

Then Xn=

Weak form:

Ve>0 limP(Xn—ule)=1

Strong form: =0

Xn—> Y7 almost surely
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Law of large numbers vs Birkhoff

theorem
Random setting Deterministic setting
X} iid. random variables T:- X > X
E(X) =pn <+ f e L'(X,dg) observable
H Z xi — U are not necessarily independent
1=1
If T ergodic

almost surely 1
=Y foT! > | fdu
N5

almost surely
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Central limit theorem

{X|} independent identically distributed random variables

E(X.) =pn <+ Var(X.)=c° >0

Xt X —nu

n - 0\/ﬁ

Z weak 5 N(0,1)

lim P(Z_ < z) = 12t

L je
N—>o0 \/ﬂ -
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Central limit theorem for
deterministic systems

(X , A ,U,T) ergodic measurable dynamical system
f el?(X,du) jfdy:O

o = [ £2du+23 [ £(f T du
n=1

Analogously to the independent case, we would like to have

\meoT'—>N(01)
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Central limit theorem for
deterministic systems

(X , A ,U,T) ergodic measurable dynamical system
f el?(X,du) jfdy:O

o0
o = | £2du+2) [ f(f-T")du
n=1
Analogously to the independent case, we would like to have

1 < - 1 ¢
P(—=) fol['>22)> e 2dt
(G\/ﬁizzll ) N2 _'[O
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Hypotheses for deterministic CLT

1. Mixing-type condition
c(n, f)::sup;{J f(goT”)dy:jgzdyzl}
> c(n, f) <+
n=0

2. Cohomological equation has no solution
c=0<3Tuc LZ(X,,u)S.t. f =uoT —u

Th P( fol'>72)> e 2t
en N Zl‘, — j
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An example: distribution of Birkhoff
averages for the entropy

. .13 g
h,(T)=[log|T | du=lim =3 log | T'=T"|
=1
KS entropy = Birkhoff average for observable f (X)=log|T"'(X)]

Variance decays as

1

Jn
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Speed of convergence
(Berry-Esseen theorem)

{X|} independent identically distributed random variables
E(X.) =pn <+ Var(X.)=c° >0
E(| X, *) = p <400

X +...+X
- —>N(O.1
By CLT . (0.9

S. Marmi - Dynamics and time series:

Nov 28, 2011 theory and applications - Lecture 7

11



Speed of convergence
(Berry-Esseen theorem)

{X|} independent identically distributed random variables
E(X.) =pn <+ Var(X.)=c° >0
E(| X, *) = p <400

By CLT Fn(X)Z=P£X1+”.+Xn2Xj , 1 J‘e_tz/zdt

G\/ﬁ N2
Moreover
1 F . 0.7056 p
F (X)———— |e /%t <
-5 >
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Topological entropy

Topological entropy represents the exponential growth rate of the
number of orbit segments which are distinguishable with an arbitrarily
high but finite precision. It is invariant under topological conjugacy.
Here the phase space Is supposed to be a compact metric space (X,d)

Definition 4.1 Let S C X, ne€ N and e > 0. S is a (n,z)-spanning set if for
every ¥ € X there exists y € S such that d(f7(z). f/(y)) < e forall 0 < j < n.

hiop(f) = lim limsup —logr(n, ¢) I_—Iere_ r(n, €) Is the mlnlméﬂ
e=0 pstoo N cardinality of a (n, €)-spanning set
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Alternative definition

Let o be an open cover of X and let N(a) be the number of sets
In a finite subcover of o with smallest cardinality

htop(f) = sup Jlim Elon g N (\/ /- af)

X

Here the join aVP of two coversisaVp ={ANB:Aca, Bep }

S. Marmi - Dynamics and time series:

theory and applications - Lecture 7 14

Nov 28, 2011



The variational principle

Let T be a continuous map on X compact Hausdorff: then

hoo(T)= sup h,(T)

ueM (X,T)
(the sup is taken over all invariant Borel probability measures )

Example: Bernoulli schemes

h,(T)=-2_p;log p, <log N=h,,(T)

Remark: the sup need not be achieved (Gurevich, 1969)
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Self-similarity and fractals

A subset A of Euclidean space will be considered a “fractal” when it
has most of the following features:

* Ahas fine structure (wiggly detail at arbitrarily small scales)

« Astoo irregular to be described by calculus (e.g. no tangent space)
« As self-similar or self-affine (maybe approximately or statistically)
« the fractal dimension of A is non-integer

« A may have a simple (recursive) definition

* Ahas a “natural” appearance: “Clouds are not spheres, mountains
are not cones, coastlines are not circles, and bark is not smooth, nor
does lightning travel in a straight line . . .” (B. Mandelbrot)
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Mathematics, shapes and nature
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From http://en.wikipedia.org/wiki/Image:Squarel.jpg
Lichtenberg Figure

High voltage dielectric breakdown within a block of plexiglas creates a beautiful
fractal pattern called a Lichtenberg_figure. The branching discharges ultimately
become hairlike, but are thought to extend down to the molecular level.
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A iffusion-limited a LPLA)-cluster; Copper aggregate formed from
a copper sulfate solution in an‘électrode positiori€eil’ Kevin R. Johnson, Wikipe



http://en.wikipedia.org/wiki/diffusion-limited_aggregation
http://en.wikipedia.org/wiki/diffusion-limited_aggregation
http://en.wikipedia.org/wiki/diffusion-limited_aggregation
http://en.wikipedia.org/wiki/copper_sulfate

Coastlines

Massachusetts Greece
D=1.15 5=1.20



200 km 100 km 50 km

http://upload.wikimedia.org/wikipedia/com
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How long Is a coastline?

415

, Aoents D=1.13

':-.-.$§:=.'.':E=:'.'r:=i || .. I: [ || E EE
R R B R

- Sondh Al [1=1 4

Lag{L{z])

Cernany N=1 1%

—GraiBriain [)=1 24

~Poctemel ~ [)=1.12

Logis)

The answer depends on the scale at which the measurement is
made: if s is the reference length the coastline length L(s) will be
Log L(s) = (1-D) log s + cost
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How long is the coast of Britain?
Statistical self-similarity and fractional dimension
Science: 156, 1967, 636-638
B. B. Mandelbrot

Seacoast shapes are examples of highly involved curves with the
property that - in a statistical sense - each portion can be considered
a reduced-scale image of the whole. This property will be referred to
as ‘“‘statistical self-similarity.” The concept of ““length” is usually
meaningless for geographical curves. They can be considered
superpositions of features of widely scattered characteristic sizes; as
even finer features are taken into account, the total measured length
Increases, and there is usually no clear-cut gap or crossover,
between the realm of geography and details with which geography
need not be concerned.



How long is the coast of Britain?
Statistical self-similarity and fractional dimension
Science: 156, 1967, 636-638
B. B. Mandelbrot

Quantities other than length are therefore needed to discriminate
between various degrees of complication for a geographical
curve. When a curve Is self-similar, it is characterized by an
exponent of similarity, D, which possesses many properties of
a dimension, though it is usually a fraction greater that the
dimension 1 commonly attributed to curves. | propose to
reexamine in this light, some empirical observations in
Richardson 1961 and interpret them as implying, for example,
that the dimension of the west coast of Great Britain is D =
1.25. Thus, the so far esoteric concept of a “random figure of
fractional dimension” is shown to have simple and concrete
applications of great usefulness.



"Box counting” dimension

D=1lm

s—)

log N(s)

log(1/ s)



Coastline Java Applet - Mozilla Firefox
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Box counting (Minkowski) dimension

Let E be a non-empty bounded subset of R" and let N, (E) be the
smallest number of sets of diameter r needed to cover E

* Lower dimension dimg E =liminf_,, log N, (E) / -logr
« Upper dimension dimBE = limsup,_,, log N, (E) / -logr

« Box-counting dimension: if the lower and upper dimension agree
then we define

dim E =1lim_,, log N, (E) / -logr

The value of these limits remains unaltered if N, (E) is taken to be the
smallest number of balls of radius r (cubes of side r) needed to cover
E, or the number of r-mesh cubes that Intersect E



Hausdorff dimension

A finite or countable collection of subsets {U; } of R" is a 6-cover of a
set E if | U; |< o for all i and E is contained in U; U,

HS; (E) =iInf{%; | U, |°, {U,} is aao-cover of E}
s-dimensional Hausdorff measure of E: H® (E) =limy_,, H%; (E)

It is a Borel regular measure on R" , it behaves well under similarities
and Lipschitz maps

The Hausdorff dimension dim, E is HE
the number at which the Hausdorff
measure HS (E) jumps from oo to O

dim, E <dimg E <dimB E

iy r—.-._- *5

1] dirnHE L



Von Koch curve (1904)

L=l L =4 L3

=/\_ N
REETINP R PN & Y

D=log4/log3=1.261859...




Figure 3.6 A cut-out set in the plane. Here, the largest possible disc is removed at each
step. The family of discs removed is called the Apollonian packing of the square, and the
cut-out set remaining is called the residual set, which has Hausdorff and box dimension

about 131 £rom: K. Falconer, Techniques in Fractal Geometry, Wiley 1997
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Sierpinski triangle (1916)

D=log3/log2=1:5849625...



A fractal carpet (zero area)
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A fractal sponge
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Zooming In
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Changing parameters

*The triangle of Sierpinski is the attractor of an iterated
function system (i.f.s).

*The 1.f.s. iIs made of three affine maps (each contracting by a
factor %2 and leaving one of the initial vertices fixed)

«Combining the affine maps with rotations one can change the
shape considerably

90° anticlockwise rotation
about the top vertex

180° rotation about the
same vertex



Hausdorff metric and compact sets

X=[0,1]?
d((x,y),(x’,y’))= |x-x’[+|y-y’| Manhattan metric
# (X)={E compact nonempty subsets of X}

h(E,F)=max(d(E,F),d(F,E))

d(E,F)=maxyecgminyer d(X,y)
d(E,F)#d(F,E)

d(E,F)>0
d(F,E)=0
Theorem: (#(X),h) is a complete metric space
— Cauchy sequences have a limit!
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Contractions and Hausdorff metric

Proposition: if w:X—X is a contraction with Lipschitz constant s then w is also a
contraction on (£ (X),h) with Lipschitz constant s

To each family ¥ of contractions on X one can associate a family of contractions
on (¥ (X),h). By Banach-Caccioppoli to each such ¥ will correspond a
compact nonempty subset &£ of X: the attractor associated to ¥

d(w(E),w(F))=max min d(y,z) = max min d(w(e),w(f))

yeE  zeF eeE  feF
<s max min d(e,f) = s d(E,F)
eeE  feF



lterated function systems

={w,, ..., wy} each w; : X— X is a contraction of constant s;, 0 <s;
<1

Let #°: # (X) > X
w° (E) = U wi(E)

I1<i<N
Then 9#° contracts the Hausdorff metric h with Lipschitz constant s =
max s; . We denote by ~# the corresponding attractor
1<i<N
Given any subset E of X, the iterates %#°"(E) — ~# exponentially fast,
in fact h(#°~(E) , &) =s" asn— o



Self similarity and fractal dimension

If the contractions of the i.f.s. #={w,, ..., w,} are
« Similarities ‘ the attractor - will be said self-similar
« Affine maps ‘ the attractor - will be said self-affine

« Conformal maps (i.e. their derivative is a similarity) then the
attractor #£ will be said self-conformal

If the open set condition is verified, i.e. there exists an open set U

such that w;(U)Nw;(U)=@ If i#j and U; w;(U) is an open
subset of U then the dimension d of the attractor SIS the

unique positive solution of 5,9 + 5,9+ ... + 59 =



