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• Lecture 1: An introduction to dynamical systems and to time series. Periodic and 

quasiperiodic motions. (Tue Jan 13,  2 pm - 4 pm Aula Bianchi)

• Lecture 2: Ergodicity. Uniform distribution of orbits. Return times. Kac inequality

Mixing (Thu Jan 15,  2 pm - 4 pm Aula Dini)

• Lecture 3: Kolmogorov-Sinai entropy. Randomness and deterministic chaos. (Tue Jan 

27,  2 pm - 4 pm Aula Bianchi)

• Lecture 4: Time series analysis and embedology. (Thu Jan 29,  2 pm - 4 pm Dini)

• Lecture 5: Fractals and multifractals. (Thu Feb 12,  2 pm - 4 pm  Dini)

• Lecture 6: The rhythms of life. (Tue Feb 17,  2 pm - 4 pm  Bianchi)

• Lecture 7: Financial time series. (Thu Feb 19,  2 pm - 4 

pm  Dini)

• Lecture 8: The efficient markets hypothesis. (Tue Mar 3,  2 pm - 4 pm Bianchi)

• Lecture 9: A random walk down Wall Street. (Thu Mar 19,  2 pm - 4 pm  Dini)

• Lecture 10: A non-random walk down Wall Street. (Tue Mar 24, 2 pm – 4 pm 

Bianchi)



• Seminar I: Waiting times, recurrence times ergodicity and quasiperiodic
dynamics (D.H. Kim, Suwon, Korea; Thu Jan 22,  2 pm - 4 pm Aula Dini)

• Seminar II: Symbolization of dynamics. Recurrence rates and entropy (S. 
Galatolo, Università di Pisa; Tue Feb 10,  2 pm - 4 pm Aula Bianchi)

• Seminar III: Heart Rate Variability: a statistical physics point of view (A. 
Facchini, Università di Siena; Tue Feb 24,  2 pm - 4 pm Aula Bianchi ) 

• Seminar IV: Study of a population model: the Yoccoz-Birkeland model (D. 
Papini, Università di Siena; Thu Feb 26,  2 pm - 4 pm Aula Dini)

• Seminar V: Scaling laws in economics (G. Bottazzi, Scuola Superiore 
Sant'Anna Pisa; Tue Mar 17,  2 pm - 4 pm Aula Bianchi) 

• Seminar VI: Complexity, sequence distance and heart rate variability (M. 
Degli Esposti, Università di Bologna; Thu Mar 26,  2 pm - 4 pm Aula Dini )

• Seminar VII: Forecasting (M. Lippi, Università di 
Roma; late april, TBA)



Today‘s bibliography:

R. Cont ―Empirical properties of asset returns: 

stylized facts and statistical issues‖ Quantitative 

Finance 1 (2001) 223–236
http://www.proba.jussieu.fr/pageperso/ramacont/papers/empirical.pdf

S.J. Taylor ―Asset Price Dynamics, Volatility, and 

Prediction‖ Princeton University Press (2005). 

Chapters 2 and 4

Steven Skiena CSE691 Computational Finance class 

at Stony Brook: 

http://www.cs.sunysb.edu/~skiena/691/

http://www.proba.jussieu.fr/pageperso/ramacont/papers/empirical.pdf


Free sources of financial time
series

finance.yahoo.com U.S. and European stocks, 

many indices

www.federalreserve.gov/releases/ Currencies, etc.

www.crbtrader.com/ Commodities

www.sgindex.com/ various quantitative indexes

www.djindexes.com/ various indexes

http://www.crbtrader.com/
http://www.sgindex.com/
http://www.djindexes.com/


Fundamentals of investing

Investment returns are strongly related to their risk level

Usually and loosely risk is quantified using volatility (standard deviation)

U.S. Treasury bills /bonds (short/long term bonds 1month-1year / 2-30 years ): 

very safe (until now…) and very low/medium yield. Most of the price 

uncertainty for longer term bonds comes from the effect of inflation

T.I.P. : inflation indexed bonds which guarantee a positive real return 

Stocks: risky but higher returns (on the long run…). Companies sell shares of 

stock to raise capital: they ``go public'' by agreeing to sell a certain number of 

shares on an exchange. Each share represents a given fraction of the ownership 

of the company.

Certain stocks pay dividends, cash payments reflecting profits returned to 

shareholders. Other stocks reinvest all returns back into the business.

In principle, what people will pay for a stock reflects the health of its current 

business, future prospects, and expected returns. But the current price of a stock 

is completely determined by what people are willing to pay for it. If there were 

no differences of opinion as to the value of a stock, there would be no trading.





Financial markets

An exchange is a place where buyers and sellers trade securities such as stocks, 

bonds, options, futures, and commodities.

Each stock is typically traded on a particular exchange. Each exchange has 

different rules about the qualifications of companies which can be listed on 

it.Exchanges also differ in the rules by which they match buyers to sellers. The 

exact trading rules and mechanisms can have a significant impact on the price one 

gets for a given security.

The strength of an exchange's rules and their enforcement impacts 

the confidence of investors and their willingness to invest.

Exchanges provide liquidity, the ability to buy and sell securities quickly, 

inexpensively, and at fair market value.

In general, the more trading that occurs in a security, the greater its liquidity.



Bonds, Commodities and 
Currencies
Bond markets trade bonds (``loans'') made to governments and companies. 

Bond prices vary according to the term (length of time) of the loan, the interest 

rate and payment schedule, the financial strength of the borrowing party, and 

the returns available from other investments.

Commodities are types of goods which can be defined so that they are largely 

indistinguishable in terms of quality (e.g. orange juice, gold, cotton, pork 

bellies). Commodities markets exist to trade such products, from before they 

are produced to the moment of shipping. Agricultural futures sell the right to 

buy a certain amount of a commodity at a particular price at a particular point 

in the future. The existence of agricultural futures gives suppliers and 

consumers ways to protect themselves from unexpected changes in prices.

The prices of agricultural commodities are affected by changes in supply and 

demand resulting from weather, political, and economic forces.

Currency Markets: The largest financial markets by volume trade different 

types of currency, such as dollars, Euros, and Yen.

The spot price gives the cost of buying a good now, while futures permit one 

to buy the right to buy or sell goods at fixed prices at some future date.



Stock prices and indices

Stock indices are typically weighted averages of the prices of the 

component stocks. Usually the weights are proportional to the 

market capitalization= (price of a share)*(number of existing 

shares)  of the stock. 

The same formulae as before are used to calculate returns from 

index levels. Very often dividends are excluded from the 

index. 

Dow Jones Industrial Average: 30 U.S. stocks (corresponding to 

30 leading companies), price weighted

S&P500: 500 U.S. stocks, capitalization weighted

Stoxx 600: 600 european stocks, capitalization weighted



Stocks, bonds, bills and inflation
in the UK from 1900 to 2007



Annualized real (after inflation) returns
of bonds and stocks: 1900-2007



Stock market crashes (before
2008)



Volatility of stocks

During the period 1900-2007,  UK‘s standard deviation of 19.8% 

places it alongside  the US (20.0%) at the lower end of the risk 

spectrum. The highest volatility markets were Germany (32.3%),  

Japan (29.8%), and Italy (28.9%), reflecting the impact of wars 

and inflation. 



Chicago Board Options Exchange Volatility Index, a popular 

measure of the implied volatility of S&P500 index options. A high 

value corresponds to a more volatile market and therefore more 

costly options, which can be used to defray risk from volatility. If 

investors see high risks of a change in prices, they require a greater 

premium to insure against such a change by selling options. Often 

referred to as the fear index, it represents one measure of the 

market's expectation of volatility over the next 30 day period. 

http://en.wikipedia.org/wiki/Volatility_(finance)


Daily returns of General Motors
(1950-2008)



Volatility clustering

Time series plots of returns display an important feature that is 

usually called volatility clustering. This empirical phenomenon 

was first observed by Mandelbrot (1963), who said of prices that 

―large changes tend to be followed by large changes—of either 

sign—and small changes tend to be followed by small 

changes.‖Volatility clustering describes the general tendency for 

markets to have some periods of high volatility and other periods 

of low volatility. High volatility produces more dispersion in 

returns than low volatility, so that returns are more spread out 

when volatility is higher. A high volatility cluster will contain 

several large positive returns and several large negative returns, 

but there will be few, if any, large returns in a low volatility 

cluster.



Daily returns of GM after normalization
by short-term (25 days) volatility



S&P500 1950-early 2008
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Speculation and hedging

Speculators are investors who deliberately assume the risk of a loss, 

in return for the uncertain possibility of a reward. They  bet on 

future events. For example, they will buy a stock because they think 

it will go up.

Hedgers are investors who trade so as to reduce their exposure to 

risk. For example, they will both buy and short a stock 

simultaneously.



The economic benefit of speculation

The well known speculator Victor Niederhoffer, describes the benefits of 

speculation:

―Let's consider some of the principles that explain the causes of shortages and 

surpluses and the role of speculators. When a harvest is too small to satisfy 

consumption at its normal rate, speculators come in, hoping to profit from the 

scarcity by buying. Their purchases raise the price, thereby checking consumption 

so that the smaller supply will last longer. Producers encouraged by the high price 

further lessen the shortage by growing or importing to reduce the shortage. On the 

other side, when the price is higher than the speculators think the facts warrant, 

they sell. This reduces prices, encouraging consumption and exports and helping 

to reduce the surplus.‖

Another service provided by speculators to a market is that by risking their 

own capital in the hope of profit, they add liquidity to the market and make it 

easier for others to offset risk, including those who may be classified 

as hedgers and arbitrageurs.

http://en.wikipedia.org/wiki/Victor_Niederhoffer
http://en.wikipedia.org/wiki/Victor_Niederhoffer


Arbitrage

Arbitrage is a trading strategy which takes advantage of two or 

more securities being inconsistently priced relative to each other. 

In financial and economics theory arbitrage is the practice of 

taking advantage of a price differential between two or 

more markets or assets: striking a combination of matching deals 

that capitalize upon the imbalance, the profit being the difference 

between the prices. When used by academics, an arbitrage is a 

transaction that involves no negative cash flow at any 

probabilistic or temporal state and a positive cash flow in at least 

one state; in simple terms, a risk-free profit. 

Advanced arbitrage techniques involve sophisticated 

mathematical analysis and rapid trading.



More arbitrage and market 
efficiency

The classical joke on arbitrage and market efficiency: A finance

professor and a normal person go on a walk and the normal 

person sees a 100$ bill lying on the street. When the normal 

person wants to pick it up, the finance professor says:

‗Don‘t try to do that! It is absolutely impossible that there is a 

100$ bill lying on the street. Indeed, if it were lying on the street, 

somebody else would already have picked it up before you‘ (end 

of joke).

How about financial markets? There it is already much more 

reasonable to assume that there are no 100 bills lying around 

waiting to be picked up. We shall call such opportunities of 

picking up money that is ‗lying around‘ arbitrage possi-

bilities. Let us illustrate this with an easy example.



Stock Returns
Let pt be a representative price for a stock in period t (final

transaction price or final quotation during the period). Assume that 

the buyer pays the seller immediately for stock bought . 

Let dt be the present value of dividends, per share, distributed to 

those people who own stock during period t . On almost all days 

there are no dividend payments → dt = 0. Sometimes dividend 

payments are simply ignored, so then dt = 0 for all days t .

Three price change quantities appear in empirical research:

r∗t = pt + dt − pt-1    

r′t = (pt + dt − pt-1)/ pt-1, simple net return (arithmetic)

rt = log(pt + dt ) − log pt-1. log returns (geometric)

The return measures rt and r′t are very similar numbers, since

1 + r′t =  exp(rt) = 1 + rt + ½ rt
2 + …

and very rarely are daily returns outside the range from −10% to 

10%. It is common to assume that single-period geometric returns 

follow a normal distribution.



Historical arithmetic and geometric annual returns for the Norwegian and U.S. 

stock market (1970-2002). The historical annual volatilities in the two markets are 

very different: 18% for the U.S. market and 44% for the Norwegian market. From 

―Statistical modelling of financial time series: An introduction‖ K. Aas, X. 

Dimakos (2004) http://www.nr.no/files/samba/bff/SAMBA0804.pdf

http://www.nr.no/files/samba/bff/SAMBA0804.pdf
http://www.nr.no/files/samba/bff/SAMBA0804.pdf
http://www.nr.no/files/samba/bff/SAMBA0804.pdf
http://www.nr.no/files/samba/bff/SAMBA0804.pdf
http://www.nr.no/files/samba/bff/SAMBA0804.pdf


Multiperiod returns

The multiperiod log return is simply the sum of the log returns.

Multiplying simple net returns them gives the return over a longer

period (we ignore dividends for simplicity):

1 + r′t[k] = pt/ pt-k = Πj=0
k-1 pt-j/ pt-j-1 = Πj=0

k-1  (1+r′t-j)

Over k periods the growth rate of the asset is the  geometric mean

of the returns

R[t,k] = (Πj=0
k-1  (1+r′t-j))

1/k -1



The appropriate frequency of observations in a price series 

depends on the data available and the questions that interest a 

researcher. The time interval between prices ought to be 

sufficient to ensure that trade occurs in most intervals and it is

preferable that the volume of trade is substantial.Very often, 

selecting daily prices will be both appropriate and convenient. 

The additional information increases the power of hypothesis 

tests, it improves volatility estimates, and it is essential for 

evaluations of trading rules. The number of observations in a time 

series of daily prices should be sufficient to permit powerful tests 

and accurate estimation of model parameters. Experience shows 

that at least four years of daily prices (more than 1000 

observations) are often required to obtain interesting results; 

however, eight or more years of prices (more than 2000 

observations) should be analyzed whenever possible. 



Statistical analysis of a time series: 
moments of the probability distribution



Taylor, Asset

Price Dynamics, 

Volatility and 

Prediction, P.U.P.

(2005)



Lognormal distribution



Higher moments: simmetry of
the distribution and fat tails

• Skewness: measures simmetry of the data 
about the mean (third moment)

• Kurtosis: peakedness of the distribution
relative to the normal distribution (hence
the -3 term)

• Leptokurtic distribution (fat tailed): has
positive kurtosis



Correlation between two data series

ψ,υ random variables with expectations μ(ψ ) and μ(υ) 

σ(ψ)   =[ (μ(ψ2 )- μ(ψ )2 ] variance

The correlation coefficient of ψ,υ is

ρ(ψ,υ)=covariance(ψ,υ) / (σ(ψ) σ(υ))

= μ [(ψ- μ(ψ))(υ- μ (υ))] / (σ(ψ) σ(υ))

= μ [ψ υ - μ(ψ)μ (υ)] / (σ(ψ) σ(υ))

The correlation coefficient varies between -1 and 1 and equals 0 

for independent variables but this is only a necessary condition

(e.g. υ uniform on [-1,1] has zero correlation with its square)



Sample correlation coefficient
between two finite series of data



Autocorrelation function



Stationarity
• Stationarity: all parameters of the data series statistical distribution 

must be time-independent

• Weak-stationarity: we only require that the first two moments 

(mean and variance) are constant

• Parameters can for example be moments of the probability 

distribution, but also  coefficients in differential equations or 

autoregressive processes.



Tests of stationarity

• Moving window analysis: Divide a long time series in 

shorter windows and analyze these short windows 

separately.

• For example split the series into two parts, compute 

mean and variance and compare (remember that the 

standard error will be σ/√N)



Taylor, Asset Price Dynamics, Volatility and Prediction, P.U.P. (2005)



Gaussian process

A process is called Gaussian if the multivariate distribution of 

the consecutive variables (Xt+1,Xt+2,...,Xt+k) is multivariate 

normal for all integers t and k. A stationary Gaussian process 

is always strictly stationary, because then the first- and second-

order moments completely determine the multivariate 

distributions.



Why white noise?

Autocovariances

Autocorrelation of a stationary process (the variance is constant) 

ρ0 = 1, ρτ = ρ-τ

Spectral density function 

The integral of s(ω) from 0 to 2π equals λ0. High values of s(ω) 

might indicate cyclical behavior with the period of one cycle 

equal to 2π/ω time units.  For a white noise the spectral density 

function is the same constant for all frequencies ω



Non-stationarity of financial 
series
Many credible models for returns are stationary. Equity prices 

and exchange rates, however, are not characterized by 

stationary processes. The conclusion should not be surprising.

Inflation increases the expectations of future prices for many 

assets. Thus the first moment changes. Deflating prices could 

provide constant expected values. Even then, however, the 

variances of prices are likely to increase as time progresses.

This is always the case for a random walk process. If Pt

represents either the price or its logarithm and if the first

difference Zt = Pt − Pt−1 has positive variance and is 

uncorrelated with Pt−1, then

var(Pt ) = var(Pt−1 + Zt ) = var(Pt−1) + var(Zt )> var(Pt−1),

so that the variances depend on the time t . 



Uncorrelated processes

The simplest possible autocorrelation occurs when a process is a 

collection of uncorrelated random variables so ρ0 = 1, ρτ = 0 

for all τ>0

For an uncorrelated process the optimal forecast of the variable is 

simply the unconditional mean.

Uncorrelated processes are often used to model asset returns 

because they have some empirical support and they are 

coherent with the efficient markets hypothesis



Taylor, Asset Price Dynamics, Volatility and Prediction, P.U.P. (2005)



Statistical distribution of returns

In real world data analysis, 

not only are the true mean

and standard deviations

unknown but the type of

distribution that generated the 

observed returns (if any) is

also unknown.

A simple test for normality is

orovided by the studentized

range SR: given a random

variable xi one defines

SR= (max xi – min xi)/σ

It depends heavily on the 

extreme observations



Stylized facts (R. Cont, Quantitative Finance (2001))

1. Absence of autocorrelations: (linear) autocorrelations of asset 

returns are often insignificant, except for very small intraday time 

scales (≈ 20 minutes) for which microstructure effects come into 

play.

2. Heavy tails: the (unconditional) distribution of returns seems to 

display a power-law or Pareto-like tail, with a tail index which is 

finite, higher than two and less than five for most data sets 

studied. In particular this excludes stable laws with infinite

variance and the normal distribution. However the precise form 

of the tails is difficult to determine.

3. Gain/loss asymmetry: one observes large drawdowns in stock 

prices and stock index values but not equally large upward 

movements



Autocorreletion of daily returns and of their absolute values. The black

line is the best power law fit of the absolute values autocorrelations

y = 0.3697x-0.225

R² = 0.935
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DJIA: daily

return at day i 

vs. return at 

day i-1, 5000 

days
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Distribution of returns of DJIA stocks: from
“Foundations of Finance”, Fama (1976)





4. Aggregational Gaussianity: as one increases the time scale Δt 

over which returns are calculated, their distribution looks more 

and more like a normal distribution. In particular, the shape of the 

distribution is not the same at different time scales.

5. Intermittency: returns display, at any time scale, a high degree 

of variability. This is quantified by the presence of irregular 

bursts in time series of awide variety of volatility estimators.

6. Volatility clustering: different measures of volatility display a 

positive autocorrelation over several days, which quantifies the 

fact that high-volatility events tend to cluster in time.

7. Conditional heavy tails: even after correcting returns for 

volatility clustering (e.g. via GARCH-type models), the residual 

time series still exhibit heavy tails. However, the tails are less 

heavy than in the unconditional distribution of returns.

Stylized facts (R. Cont, Quantitative Finance (2001))



8. Slow decay of autocorrelation in absolute returns: the 

autocorrelation function of absolute returns decays slowly as a 

function of the time lag, roughly as a power law with an exponent 

β ∈ [0.2, 0.4]. This is sometimes interpreted as a sign of long-

range dependence.

9. Leverage effect: most measures of volatility of an asset are 

negatively correlated with the returns of that asset.

10. Volume/volatility correlation: trading volume is correlated 

with all measures of volatility.

11. Asymmetry in time scales: coarse-grained measures of 

volatility predict fine-scale volatility better than the other way 

round.

Stylized facts (R. Cont, Quantitative Finance (2001))
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Volatility clustering and leverage effect



An autoregressive conditional heteroscedasticity (ARCH, Engle 

(1982)) model considers the variance of the current error term to be a 

function of the variances of the previous time period's error terms. 

ARCH relates the error variance to the square of a previous period's 

error. It is employed commonly in modeling financial time series that 

exhibit time-varying volatility clustering, i.e. periods of swings 

followed by periods of relative calm. 



Taylor, Asset Price Dynamics, Volatility and Prediction, P.U.P. (2005)



Taylor, Asset Price Dynamics, Volatility and Prediction, P.U.P. (2005)


