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Measure-preserving transformations

X phase space, u probability measure

®:X — R observable (a measurable function, say L?).
Let A be subset of X (event).

w(®) =Jy @ dy is the expectation of @
T:X—X Induces a time evolution

on observables: @& — ®-T

on events: A —>T1(A)

T 1s measure preserving If w(®)= u(d-T) I.e.
WA)=(T (A))
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Birkhoff theorem and ergodicity

Birkhoff theorem: If T preserves the measure p then
with probability one the time averages of the
observables exist (statistical expectations). The
system Is ergodic If these time averages do not
depend on the orbit (statistics and a-priori probability
agree)

5 T poTi@)= 1 Swelz) — fp(dul®

! | Law of large numbers:
~7 WEe0N),Tz) € A} — u(A)  Statistics of orbits =
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Strong vs. weak mixing: on events

 Strongly mixing systems are such that for every E, F we have

W(TE) N F)— u (E) n (F)
as n tends to infinity; the Bernoulli shift is a good example.
Informally, this iIs saying that shifted sets become asymptotically
Independent of unshifted sets.

« \Weakly mixing systems are such that for every E, F we have

W(T(E) N F)— p (E) n (F)
as n tends to infinity after excluding a set of exceptional values of n of
asymptotic density zero.

 Ergodicity does not imply u(T~(E) N F)— u (E) n (F) but says that
this is true for Cesaro averages:
1/n ¥ w(TE) N F)— p (E) p (F)
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Mixing: on observables

Order n correlation coefficient:

cn(p,¥) = [@ap o T dp — [ pdp [bdy

N-1

%_ e, ) — 0

=)=

Ergodicity implies
Mixing requires that e, 1) —

namely ¢ and ¢ ° T become independent of each other as
N—00
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Mixing of hyperbolic automorphisms of the
2-torus (Arnold’s cat)
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v, observables with expectations (y ) and E(o)

2 2 2
o(y) =[E(y )-E(v) ]

The of y,p IS

p(y,p)=covariance(y,p) / (c(y) o(9))
=1 [(y- u(w)(o- 1 (9))]/ (o(y) o(9))
=y o - u(w)u (@)l / (o(v) o(e))

The correlation coefficient varies between -1 and 1 and equals
0 for independent variables but this is only a necessary
condition (e.g. ¢ uniform on [-1,1] has zero correlation with
Its square)



If we have a series of n measurements of X andY written as x(i) and
y(i) wherei=1, 2, ..., n, then the Pearson product-
moment correlation coefficient can be used to estimate the correlation
of X andY . The Pearson coefficient is also known
as the "sample correlation coefficient". The Pearson correlation
coefficient is then the best estimate of the correlation of X
and Y . The Pearson correlation coefficient is written:

. o ZTIQI_HIE_ ﬂZTiJ’i_ZT'ZJ;‘
Toy = (n—1)s8, ./ ) >/
J S8y V’HE:}:.:- (3= x;)° 1”EJr ny]
- (i — T)(yi — )
Y (ﬂ, _ 1)5315?; )
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Correlation between two
observables or series
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Entropy

In information theory, IS @ measure of the uncertainty

associated with a random variable.
Experiment with outcomes A={a,, ..., a,}
probability of obtaining the result a; is p;
0<=pi<=1l, pt+..+p=1

If one of the a;, let us say a, occurs with probability that is close to
1, then in most trials the outcome would be a, . There is not much
Information gained after the experiment

We quantitatively measure the magnitude of ‘being surprised’ as
information = —log (probability)

(magnitude of our perception is proportional to the logarithm of the
magnitude of the stimulus)
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Metric entropy of a partition

Thus the entropy associated to the experiment is

k
H = —2, pilog p;
=1

In view of the definition of information = - log (probability),
entropy Is simply the expectation of information

T

A ={(zy,....zm) ER™ | z; €[0,1], > z; =1}

=1
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Uniqueness of entropy

Definition 4.15A continuous function H™ . A — [0, +oc] is called an
entropy if it has the following properties :
(1) symmetry : Vi, j € {1,...,m} H(m}(pl,...,pif.“,pj,“.,pm) :H(plf“*,pj,l

(2) H ”’”(1 0,....0)=0;
(3) H™(0,pa,....pm) = H™ V(pa,....pm) ¥ m > 2, ¥V (p2,....pm) €

&(m—l} ;

(4) ¥ (p1e....Pm) € A" one has H™) (py.....py) < H™ (%%) where
equality 1s possible if and only if p; = % for alli=1.....m:

(5/] Let (’*’Tllv e T T2 e e w s T w e we s Tppplae s s )Eﬂ.m” f[)?" all (plpm)

e A™) one must have

m“( Tl e s WU T2 - Tpml) = (m}(plf----pm)-l-
e (2, 2.
A

Theorem 4.16 An entropy is necessarily a positive multiple of

H(pis.o . Pm szlobpt.
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Entropy of a dynamical system
(Kolmogorov-Sinal entropy)

GGiven two partitions P and ©Q

Pv Q the join of P and @
BNC where B € O and C € O
T - X — X measure preserving

P-n =PV 'T_lp Voo 'T_(n_l)’}?

1
n—oc N .
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Properties of the entropy

Let T:X—X, S:Y—Y be measure preserving
(T preserves p, S preserves v)
I[fn>1, then h(I™) = nh(T)

If T is invertible, then h(T 1) = h(T)

If S is a factor of T then h(S,v)< h(T,u)
If S and T are isomorphic then h(S,v)=h(T,n)
On XxY one has h(TxS,uxv)= h(T w) X h(S,v)
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Shannon-Breiman-McMillan
theorem

Let &°be a generating partition
Let P(n,Xx) be the element of

n—1

which contains X

s oo 1 he SHANNON-BREIMAN-

L MCMILLAN theorem says that
for ergodic T, for a.e. x one has
h(T,w)=-lim Log u(P(n,x))

N—00 n
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Asymptotic equipartition property

Suppose that P is a finite generating partition of X. For everye > 0 andn > 1
there exist subsets in P,, which are called (n.e)-typical subsets, satisfying the
following:

(i) for every typical subset P, (x)

Q—Tt(h—l—s) < #(Pn(ff)) < 2—?’1(}1—5] ..

(ii) the union of all (n.e)-typical subsets has measure greater than 1 — . and
(iii) the number of (n.)-typical subsets is between (1 —<)2""=2) qnd 2n{h+e),

These formulas assume that the entropy is
measured
In bits, i.e. using the base 2 logarithm
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Entropy of Bernoulli schemes

Let- :V :_:’ 2, Zj\ﬁ' — {1 . :V}E
d(z.y) =27%®Y)  where a(x,y) = inf{|n|. n €Z. z, # yn}

shift o+ 2y — Xy o((@i)icz) = (Ti+1)iez
The topological entropy of (X n,0) is log N
(p1.....pn) € A v({i}) = pi

Definition 4.26 The Bernoulli scheme BS(p1.,..., .pN) is the measurable dynam-

ical system given by the shift map o : X — ZN with the (product) probability

measure ;1 = v on Y y.

Pr0p051t10n 4.27The Kolmogorov-Sinai entropy of the Bernoulli scheme BS(py,....pn)
'I.'S Z‘i:l pl ]'Dgpi,
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Topological Markov chains or
subshifts of finite type

Sa={zeXn,(zsrip1)elVieZ} [ C{l...N}?
Y. 4 is a compact shift invariant subset of X

A = Ar the N x N matrix with entries a;; € {0,1}

a; :{1 -f\:,*ﬁ(z,‘;)el
0 otherwise

The restriction of the shift o to ¥ 4 is denoted o4

A™ = (af}) and @7 > 0 for all .5 (primitive matrix)
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Markov chains

Alexandra

14

34
1i3

24 13
Ante Joachim

1/3

Topological: some moves are allowed and some are not

Metric: any allowed move happens with some fixed probability
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Entropy of Markov chains

Theorem 4.35 (Perron—Frobenius, see [Gan]) If A is primitive then there
exists an eigenvalue A4 > 0 such that :
(i) |Aa| > A for all eigenvalues A # A4 ;
(ii) the left and right eigenvectors associated to A4 are strictly positive and are
unique up to constant multiples :

(iii) Aa is a simple root of the characteristic polynomial of A.

the topological entropy of 04 is logAa (clearly A4 > 1 since all the integers aff; > 0)

Let P = (F;;) be an N x N matrix such that
(1) Pij > 0 for all 7,7, and Piij >0 < Ai; = 1:
(i) Yo Py=1foralli=1.....N:
(iii) P™ has all its entries strictly positive.
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Such a matrix is called a stochastic matriz. Applying Perron—Frobenius
theorem to PP we see that 1 is a simple eigenvalue of P and there exists a normalized
eigenvector p = (p.....pn) € AW such that p; > 0 for all 7 and

N
2 _piPij=p;. Y1<i<N.

a=1

We define a probability measure 2 on ¥ 4 corresponding to P prescribing its value

jﬂ'f“*fjk

foralli € Z, k > 0 and jg,.... 5 € {1,..., N}. It is called the Markov measure
associated to the stochastic matrix P.

on the cylinders :

- the subshift o4 preserves the Markov measure u.
N

hu(ca) = Zl piFij log Bi; hu(oca) < hiop(oa)
b
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Entropy, coding and data
compression

« Computer file= infinitely long binary sequence
* Entropy = best possible compression ratio

* LempeI-Ziv (Compression of individual sequences via variable rate coding, IEEE
Trans. Inf. Th. 24 (1978) 530-536): It does not assume knowledge of
probability distribution of the source and achieves asymptotic
compression ratio=entropy of source
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Let X = {0.1}" and o be a left-shift map.
Define R, to be the first return time of the initial n-block, i.e.,

Ro(x)=min{j > 1:x1...X, = Xj41 ... Xjsn}-

15
—'—

x=]1010[01001101100(1010[---= Ra(x) = 15.

1
The convergence of —log R,(x) to the entropy h was studied in a
n

relation with data compression algorithm such as the Lempel-Ziv
compression algorithm.
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In the 1978 paper, Ziv and Lempel described an algorithm that parses a
string into phrases, where each phrase is the shortest phrase not seen earlier.
This algorithm can be viewed as building a dictionary in the form of
a tree, where the nodes correspond to phrases seen so far. The algorithm is
particularly simple to implement and has become popular as one of the early
standard algorithms for file compression on computers because of its speed
and efficiency. The source sequence is sequentially parsed into strings that have not
appeared so far. For example, if the string is ABBABBABBBAABABAA
..., we parse it as A,B,BA,BB,AB,BBA,ABA,BAA. . . . After every comma,
we look along the input sequence until we come to the shortest string
that has not been marked off before. Since this is the shortest such string, all its
prefixes must have occurred earlier. (Thus, we can build up a tree
of these phrases.) In particular, the string consisting of all but the last bit
of this string must have occurred earlier. We code this phrase by giving
the location of the prefix and the value of the last symbol. Thus, the string
above would be represented as (0,A),(0,B),(2,A),(2,B),(1,B),(4,A),(5,A),
(3A), ....



The Lempel-Ziv data compression algorithm provide a universal
way to coding a sequence without knowledge of source.

Parse a source sequence into shortest words that has not appeared
so far:

1011010100010--- = 1,0,11.01,010,00,10,...

For each new word, find a phrase consisting of all but the last bit,
and recode the location of the phrase and the last bit as the
compressed data.

(000, 1) (000, 0) (001, 1) (010, 1) (100, 0) (010, 0) (001, 0)...
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Theorem (Wyner-Ziv(1989), Ornstein and Weiss(1993))

For ergodic processes with entropy h,

1
lim —log R,(x) = h almost surely.
n—oc N

The meaning of entropy

» Entropy measures the information content or the amount of
randomness.

» Entropy measures the maximum compression rate.

» Totally random binary sequence has entropy log2 = 1. It
cannot be compressed further.
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The entropy of English

Is English a stationary ergodic process? Probably not!

Stochastic approximations to English: as we increase the complexity of
the model, we can generate text that looks like English. The stochastic
models can be used to compress English text. The better the stochastic
approximation, the better the compression.

alphabet of English = 26 letters and the space symbol

models for English are constructed using empirical distributions
collected from samples of text.

E Is most common, with a frequency of about 13%,
least common letters, Q and Z, have a frequency of about 0.1%.
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Relative Frequency

Frequency of letters

In
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Letter

Frequency of letters

In



Construction of a Markov model for
English

The frequency of pairs of letters is also far from uniform:
Q 1s always followed by a U, the most frequent pair is TH,
(frequency of about 3.7%), etc.

Proceeding this way, we can also estimate higher-order conditional
probabilities and build more complex models for the language.

However, we soon run out of data. For example, to build
a third-order Markov approximation, we must compute

p(xi [xi—1,xi—2,x1—3) In correspondence of 27x273 = 531 441 entries for
this table: need to process millions of letters to make accurate estimates
of these probabilities.
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Examples

(Cover and Thomas, Elements of Information Theory, 2nd edition ,
Wiley 2006)

Zero order approximation (equiprobable h=4.76 bits):

XFOML RXKHRJFRJUJ ZLPWCFWKCYJ FFJEYVKCQSGXYD
QPAAMKBZAACIBZLHJIQD

First order approximation (frequencies match):
OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI
ALHENHTTPA OOBTTVA NAH BRL

Second order (frequencies of pairs match): ON IE ANTSOUTINYS ARE T
INCTORE ST BE S DEAMY ACHIN D ILONASIVE TUCOOWE AT
TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE

Third order (frequencies of triplets match): IN NO IST LAT WHEY
CRATICT FROURE BERS GROCID PONDENOME OF
DEMONSTURES OF THE REPTAGIN IS REGOACTIONA OF CRE
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Fourth order approximation (frequencies of quadruplets match, each letter depends
on previous three letters; h=2.8 bits):

THE GENERATED JOB PROVIDUAL BETTER TRANDTHE DISPLAYED
CODE, ABOVERY UPONDULTS WELL THE CODERST IN THESTICAL IT DO
HOCK BOTHE MERG. (INSTATES CONS ERATION. NEVER ANY OF PUBLE
AND TO THEORY. EVENTIAL CALLEGAND TO ELAST BENERATED IN
WITH PIES AS ISWITH THE)

First order WORD approximation (random words, frequencies match):
REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN
DIFFERENT NATURAL HERE HE THE A IN CAME THE TO OF TO EXPERT
GRAY COME TO FURNISHES THE LINE MESSAGE HAD BE THESE.

Second order (WORD transition probabilities match): THE HEAD AND N
FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHARACTER OF
THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS THAT
THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED
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