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Measure-preserving transformations 

 X phase space, μ probability measure 

 Φ:X → R observable (a measurable function, say L2 ). 
Let A be subset of X  (event).  

 μ(Φ) = ∫X  Φ dμ is the expectation of Φ 

 T:X→X  induces a time evolution  

  on observables:   Φ → Φ◦T  

       on events:     A →T-1 (A) 

 T is measure preserving if μ(Φ)= μ(Φ◦T) i.e.  
 μ(A)=μ(T-1 (A))         
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Birkhoff theorem and ergodicity  

Birkhoff theorem: if T preserves the measure μ then 
with probability one the time averages of the 
observables exist (statistical expectations). The 
system is  ergodic if these time averages  do not 
depend on the orbit (statistics and a-priori probability 
agree) 

 

 

 Law of large numbers: 
Statistics of orbits =  
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Strong vs. weak mixing: on events 

• Strongly mixing systems are such that for every E, F we have  

     μ(Tⁿ(E) ∩ F)→ μ (E) μ (F)  

 as n tends to infinity; the Bernoulli shift is a good example. 
Informally, this is saying that shifted sets become asymptotically 
independent of unshifted sets. 

 

• Weakly mixing systems are such that for every E, F we have   

      μ(Tⁿ(E) ∩ F)→ μ (E) μ (F)  

 as n tends to infinity after excluding a set of exceptional values of n of 
asymptotic density zero.   

   

• Ergodicity does not imply μ(Tⁿ(E) ∩ F)→ μ (E) μ (F) but says that 
this is true for Cesaro averages:  

         1/n ∑n-1
0 μ(Tj(E) ∩ F)→ μ (E) μ (F) 
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Order n correlation coefficient:  

 

 

 

Ergodicity implies  

 

Mixing requires that 

 

namely φ and φ ◦ Tⁿ become independent of each other as 
n→∞ 

Mixing: on observables 
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Mixing of hyperbolic automorphisms of the 

2-torus (Arnold’s cat) 

Nov 23, 2011 6 
S. Marmi - Dynamics and time series: 
theory and applications - Lecture 6 



ψ,φ observables with expectations (ψ ) and E(φ) 

  

σ(ψ)   =[ E(ψ  )- E(ψ )  ] variance 

 

 

The correlation coefficient of ψ,φ is  

 

ρ(ψ,φ)=covariance(ψ,φ) / (σ(ψ) σ(φ)) 

= μ [(ψ- μ(ψ))(φ- μ (φ))] / (σ(ψ) σ(φ)) 

= μ [ψ φ - μ(ψ)μ (φ)] / (σ(ψ) σ(φ)) 

 

The correlation coefficient varies between -1 and 1 and equals 

0 for independent variables but this is only a necessary 

condition (e.g. φ uniform on [-1,1] has zero correlation with 

its square) 

 
 
 

2 2 2 
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If we have a series of n  measurements of X  and Y  written as x(i)  and 

y(i)  where i = 1, 2, ..., n, then the Pearson product- 

moment correlation coefficient can be used to estimate the correlation 

of X  and Y . The Pearson coefficient is also known 

as the "sample correlation coefficient". The Pearson correlation 

coefficient is then the best estimate of the correlation of X  

and Y . The Pearson correlation coefficient is written: 
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Correlation between two 

observables or series 
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Entropy 
 

In information theory, entropy is a measure of the uncertainty 

associated with a random variable. 

• Experiment with outcomes   A = {a1, ..., ak}   

• probability of obtaining the result ai is  pi 

 0 <= pi <= 1,     p1 + ... +pk = 1 

• If one of the ai, let us say a1 occurs with probability  that is close to 

1, then in most trials the outcome would be a1 . There is not much 

information gained after the experiment 

• We quantitatively measure the magnitude of ‘being surprised’ as 

   information = −log (probability) 

• (magnitude of our perception is proportional to the logarithm of the 

magnitude of the stimulus) 
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Metric entropy of a partition 

Thus the entropy associated to the experiment is  

In view of the definition of information = - log (probability),  

entropy is simply the expectation of information 
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Uniqueness of entropy 
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Entropy of a dynamical system 

(Kolmogorov-Sinai entropy) 

Nov 23, 2011 
S. Marmi - Dynamics and time series: 
theory and applications - Lecture 6 

13 



Properties of the entropy 

Let T:X→X, S:Y→Y be measure preserving  

(T preserves μ, S preserves ν) 

 

If S is a factor of T then h(S,ν)≤ h(T,μ) 

If S and T are isomorphic then h(S,ν)=h(T,μ) 

On XxY one has h(TxS,μxν)= h(T,μ) x h(S,ν) 
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Shannon-Breiman-McMillan 

theorem 

Let P be a generating partition 

Let P(n,x) be the element of  

 

 

 

 

which contains x 

The SHANNON-BREIMAN-

MCMILLAN theorem says that 

for ergodic T, for a.e. x one has  

h(T,μ)= - lim   Log μ(P(n,x)) 

               n→∞        n 

 

P 
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Asymptotic equipartition property  

These formulas assume that the entropy is 

measured  

in bits,  i.e. using  the base 2 logarithm 
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Entropy of Bernoulli schemes 
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Topological Markov chains or 

subshifts of finite type 

(primitive matrix) 
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Markov chains 

Topological: some moves are allowed and some are not 

Metric: any allowed move happens with some fixed probability 
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Entropy of Markov chains 
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Entropy, coding and data 

compression 

• Computer file= infinitely long binary sequence 

• Entropy = best possible compression ratio 

• Lempel-Ziv (Compression of individual sequences via variable rate coding, IEEE 

Trans. Inf. Th. 24 (1978) 530-536): it does not assume knowledge of 

probability distribution of the source and achieves asymptotic 

compression ratio=entropy of source 
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In the 1978 paper, Ziv and Lempel described an algorithm that parses a 
string into phrases, where each phrase is the shortest phrase not seen earlier. 

This algorithm can be viewed as building a dictionary in the form of 
a tree, where the nodes correspond to phrases seen so far. The algorithm is 
particularly simple to implement and has become popular as one of the early 
standard algorithms for file compression on computers because of its speed 

and efficiency. The source sequence is sequentially parsed into strings that have not 
appeared so far. For example, if the string is ABBABBABBBAABABAA 

. . . , we parse it as A,B,BA,BB,AB,BBA,ABA,BAA. . . . After every comma, 
we look along the input sequence until we come to the shortest string 

that has not been marked off before. Since this is the shortest such string, all its 
prefixes must have occurred earlier. (Thus, we can build up a tree 

of these phrases.) In particular, the string consisting of all but the last bit 
of this string must have occurred earlier. We code this phrase by giving 

the location of the prefix and the value of the last symbol. Thus, the string 
above would be represented as (0,A),(0,B),(2,A),(2,B),(1,B),(4,A),(5,A), 

(3,A), . . . . 
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The entropy of English 

Is English a stationary ergodic process? Probably not!  

Stochastic approximations to English: as we increase the complexity of 

the model, we can generate text that looks like English. The stochastic 

models can be used to compress English text. The better the stochastic 

approximation, the better the compression. 

alphabet of English = 26 letters and the space symbol 

models for English are constructed using empirical distributions 

collected from samples of text.  

E is most common, with a frequency of about 13%,  

least common letters, Q and Z, have a frequency of about 0.1%. 
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Source: Wikipedia 

Frequency of letters 
In English 

Frequency of letters  
In Italian 
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Construction of a Markov model for 

English 

The frequency of pairs of letters is also far from uniform:  

Q is always followed by a U, the most frequent pair is TH, 

(frequency of about 3.7%), etc.  

 

Proceeding this way, we can also estimate higher-order conditional 
probabilities and build more complex models for the language.  

 

However, we soon run out of data. For example, to build 

a third-order Markov approximation, we must compute  

p(xi |xi−1,xi−2,xi−3)  in correspondence of 27x27³ = 531 441 entries for 
this table: need to process millions of letters to make accurate estimates 
of these probabilities. 
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Examples  
(Cover and Thomas, Elements of Information Theory, 2nd edition , 

Wiley 2006) 

• Zero order approximation (equiprobable h=4.76 bits):  

 XFOML RXKHRJFFJUJ  ZLPWCFWKCYJ  FFJEYVKCQSGXYD  

QPAAMKBZAACIBZLHJQD 

• First order approximation (frequencies match):  

 OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI 

 ALHENHTTPA  OOBTTVA  NAH BRL 

• Second order (frequencies of pairs match): ON IE ANTSOUTINYS ARE T 

INCTORE ST BE S DEAMY ACHIN D ILONASIVE TUCOOWE AT 

TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE 

• Third order (frequencies of triplets match): IN NO IST LAT WHEY 

CRATICT FROURE BERS GROCID PONDENOME OF 

DEMONSTURES OF THE REPTAGIN IS REGOACTIONA OF CRE 
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• Fourth order approximation (frequencies of quadruplets match, each letter depends 
on previous three letters; h=2.8 bits):  

 THE GENERATED JOB PROVIDUAL BETTER TRANDTHE DISPLAYED 

CODE, ABOVERY UPONDULTS WELL THE CODERST IN THESTICAL IT DO 

HOCK BOTHE MERG. (INSTATES CONS ERATION. NEVER ANY OF PUBLE 

AND TO THEORY. EVENTIAL CALLEGAND TO ELAST BENERATED IN 

WITH PIES AS IS WITH THE ) 

• First order WORD approximation (random words, frequencies match):   

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN 

DIFFERENT NATURAL HERE HE THE A IN CAME THE TO OF TO EXPERT 

GRAY COME TO FURNISHES THE LINE MESSAGE HAD BE THESE. 

• Second order (WORD transition probabilities match): THE HEAD AND IN 

FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHARACTER OF 

THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS THAT 

THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED 
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