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[Lecture 13 An introduction to: dynamical systems and to time series. Perodic and

guasiperiodic motions. (iue Jan 13, 2 pm - 4 pm Aulal Bianchi)

[lecture 2 Ergodicity. Uniferm distribution: of: orbits. Return times. Kac inequality: Mixing
(Fhudanids, 2 pm -4 pm Aula Dinr)

[.ecture 3: Koelmogorov-Sinai' entropy. Randomness and deterministic chaos. (iue Jan 27,
2.pm - 4 pm Aula Bianchi)

['ecture 4: lime series analysis and embedolegy. (huJani29, 2 pm - 4 pm Dini)

llecture 55 Eractals and multifractals. (hurEenrl2, 2 pm: -
4 pm; Dinr)

[lecture 6: Tihe rhythms of:life. (Niue Feb 17, 2 pm -4 pm  Bianchi)

[.ecture 7: Financial time series. (Thu Feb 19, 2'pmi-4 pm  Dini)

[lecture 8: lihe efficient markets hypothesis. (liue Mar 3, 2'pmi- 4 pm Bianchi)
['ecture 9: A random walk:down Wall'Street. (ihu Mar 19, 2 pm - 4 pm. Dini)
[ecture 10: A non-random walk-down Wall'Street. (iue Mar24, 2:pm — 4 pm Bianchi)



Seminar [; Waiting times, recurrence times ergodicity, and quasiperiodic
dynamics (D:H: Kim, Suwoen, Kereay ThuJan 22, 2 pm - 4 pm Aula Dinr)

Seminar [1: Symbolization off dynamics. Recurrence rates and entropy. (S.
Galatolo, Universita dit Pisa; Tiue Eeb 10, 2 pm - 4 pm Aula Bianchi)

Seminar [I1; Heart Rate Variability: a statistical' physics point offview: (A.
Facchini, Universita di'Siena; Tiue Feb 24, 2 pm - 4 pm Aula Bianchi')

Seminar IV: Study of: a population model; the Yoccoz-Birkeland model (.
Papini, Universita difSiena; Thu kFeb 26, 2 pm' - 4 pm Aula Dini)

Seminar Vi Scaling laws in economics (G. Bottazzi, Scuola SUperore
Sant/Anna Pisay liue Mar 17, 2 pm' -4 pmiAula Bianchr)

Seminar VI: Complexity, sequence distance and heart rate variability (M.
DeglitEsposti, Universita di'Bologna; Thu Mar 26, 2 pm - 4 pmiAtla Dini’)

Seminar VIIL: Eorecasting (M. Lippi, Universita di
Romaj late april, TBA)



Self-similarity’and firactals

A subset A of Euclidean space will'be considered a fractal™
WHENR' it has most off the fellowing features:

o A has fine structure (wWiggly: detail at arbitrarily: small
SCales)

® A is too irregular to be described by calculus (e.g. no
tangent space)

o A |s self=similar or self-affine (maybe approximately: or
statistically)

® the fractal dimension ofi A'IS NGN-INtEGET:
o A may have a simple (recursive) definition

o A has a natural*appearance: Clouds are Not SPhEres,
MOUNtAINS are Not CONES, COASHINES are not circles, and
ParkiIs NOt smooth, Nor deesHightning travellinia straight
ine . ..~ (B Mandelbret)
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From: K. Ifé)lconer, Techniques in Fractal dde’ometry, Wiley 1997

self-similar
fractals

self-affine
fractals




Statistically
self-similar
fractals

self-conformal
fractals

From: K. Falconer, Techniques in Fractal Geometry, Wiley 1997



Source: Wikipedia






. Shapes and nature
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http://en.wikipedia.org/wiki/Image:Square1.jpg
http://www.teslamania.com/

iy KF

A diffusion-limited aggregation (DLA) cluster. Copper aggregate formed from
a copper sulfate solution in an electrode position cell. Kevin R. Johnson, Wikipedia



http://en.wikipedia.org/wiki/diffusion-limited_aggregation
http://en.wikipedia.org/wiki/diffusion-limited_aggregation
http://en.wikipedia.org/wiki/diffusion-limited_aggregation
http://en.wikipedia.org/wiki/copper_sulfate

Coastiines

Massachusetts Greece
D=1.15 D=1.20



200 km 100 km 50 km

http://upload.wikimedia.org/wikipedia/com
mons/2/20/Britain-fractal-coastline-
combined.jpg



How. leng IS a coastiine?
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The answer depends on the scale at which the measurement is
made: if s is the reference length the coastline length L(s) will be
Log L(s) = (1-D) log s + cost
(Richardson 1961, Mandelbrot Science 1967)



HOW: Iong IS the coast off Britain?

Statistical seli-similarity: and fractional dimension
Science: 156, 1967, 636-638

B. B. Mandelbrot

Seacoast shapes are examples of:highly imvelved curves withithe
Property. that - In'a statistical’ Sense - eachipPortion can e considered
a reduced-scale Image ofithe whole. hnis property. Will oe referredito
as - statistical self=similarity.* The concept of ““length™ 1s usually.
meaningless for geographical cunves. Tiney. can e considered
SUpEerpositions of: features of:widely: scattered characteristic SIZEs; as
eVen finer features are taken Inte account, the total measured length
INCreases, and there Is usually no clear-cut gap or CroSSOVer,
DEtWeEN the realm of:geography. and detarls withrwhichigeography.
need not e CONCErnEa.



HOW: Iong IS the coast off Britain?

Statistical seli-similarity: and fractional dimension
Science: 156, 1967, 636-638

B. B. Mandelbrot

Quantities otherthan length are therefore needed to discriminate
PETWEEN Various degrees ofs complication for a geographical
curve. \When a curve Is self=similar, 1t IS characterized by, an
exponent of: similarity, D, WHIChI POSSESSES many: Properties of
a dimension; though it s ustally:a fraction greater: that the
dimension 1 commonly; attriouted to curves. | propose to
reexamine i this light, seme empiricals observations In
Richardson 1961 and mterpret them as implying, for example,
that the dimension ofithe West coast of:Great Britain s D=
1225, Thus; the'so far esoteric concept off a’ = ‘random figure of:
fractional’ dimension”" 1s shown torhave simple and concrete
applications of:great Usefulness.



“Box counting”® dimension

 s—0 log(l/ 5)
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Box counting (MinkowsKi) dimension

I"et E e a nen-empty. vounded subset offRMandlet N (E) e the
smallest number: ofisets ofidiameter: : needed to cover. E

* |cower-dimension: dimg E = liminf_ - 1og N, (E)/-logr
* Upperdimension: dim®E = limsup,_, log N, (E)/-logr

* Box-counting dimension: ifithe lower and upper dimension
agree then we define

dimE = lim._, log N; (E)/-logr

Iihe value ofithese limits remains unaltered IffN. (E)'Is taken tohe
the smallest number: of:balls of-radius I (CUlbes of:side )
Needed torcover: E; or the numoer: ofir-meshiCulbes that
INtersect &



IHausdorfif dimension

A finite or-countanle collectioniofisunsets {U: ; OF RIS @ o-
cover.ofia set E ifi| U < oforall rand’E 1s contamediin U: U:

H> (E) = nfi{: | Us: P, {U; } IS a a o-Cover-of E}
s-dimensional Hausdorfizmeasure of £ H° (E) =lim; 5 H°s (E)

It 1S a Borel regularmeasure on R it behaves wWell tunder:
similarities and LLIpschitz maps

e Hausdorfizdimension dim, E IS
he number:at Wwhich the Hausdor

measure H> (E) jumps fromeo {6 0

dim, E<dimg E<dim> E




Von Koch curve (1904)

D=log4/log3=1.261859...
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Figure 3.6 A cut-out set in the plane. Here, the largest possible disc is removed at each
step. The family of discs removed is called the Apollonian packing of the square, and the
cut-out set remaining is called the residual set, which has Hausdorff and box dimension

about L3 eom: K. Falconer, Techniques in Fractal Geometry, Wiley 1997
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Eractal snowiflake
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Arga calculation:
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Infinite perimeter, finite area, D=log4/l0g3=1.261859...



langle (1916)

tr

IerpInskKi

S

LLb AL L R 114
ARSI,

SAALLL RIS

Btttk
SARALIII AR

=log3/l0g2=1.5849625...



Source:
Wikipedia




A fractal carpet (zero area)
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sponge

A fractal




Zooming In




Changing parameters

*The triangle of Sierpinski is the attractor of an iterated
function system (I.f.s).

*The I.f.s. Is made of three affine maps (each contracting by a
factor %2 and leaving one of the nitial vertices fixed)

«Combining the affine maps with rotations one can change the
shape considerably

180 rotation about the

aloUL the top Vertex
same vertex



[Hausdorhi: MELrC and cOmpact Sets

X=[0.1]?
d((x,y).(x".y )= [x-x'[+|y-y’| Manhattan metric
#(X)={E compact nonempty subsets of X}

h(E,Fy=max(d(E,F),d(F,E))
d(EFy=max,cgmingcr d(x, y) d(E,F}d(F.E)
d(E,F)>0 F

d(F,E)y=0 3

Theorem: ( #(X),h) is a complete metric space

— Cauchy sequences have a limit!



Contractions and Hausdorfif metric

Proposition: ifiw: XX IS a contraction With' LL1pschitz constant's
then w is also a contraction on (- (0X);h) with' LLipschitz

CONSLaNt's

10 each family 7= of: contractions 6n X Gne can assoclate a
family oficontractions on (57 (X);h). By Banach-Caccioppoli
to each such Z= will correspond a compact nonempty: SUbSet #Z
ofiX: the attractor associated to -
d(W(E),wW(R))=max mind(y,z) = max min d(w(e),w(r))
yeE  zeF eeE  fek

< s max min d(e,f) = s d(E,F)
eeE  feF



Iterated function systems

7= {Wa, ..., Wy BaChiW; X XTIS a contraction of constant's;,
0=<s; <1

et 972 - (X) —> X
w2 (E)= U wi(E)

I<i<N
Jihen 97 contracts the Hausdorfi:metric hwith LLipsehitz constant
S = maxs; . \We denote by ~ the corresponding attractor

I<1i=N
Given any. subset E ofiX; the iterates 97 2(E) — £ exponentially
fast, in fact h(#7°2(E), #£) = s* ash — oo



Selff similarity and fractal
dimension

ITithe contractions ofithe ILfiS. 7= {W, ..., Wy s are
° Similarities s the attractor sz wWill'be saidiself=similar
* Affine maps = the attractor ¢ will e said self-affine

s Conformal maps (I.e: thelr dervative Is a similarity) then the
attractor: #Z will'be said self-conformal

[T:the open Set condition IS Verified, I.e. there exists an open set U

such that w;(U)Aw;(U)=@if iz and Ui w;(U)Isianiopen
subset ofiU'then the dimension d of the attractor. % IS the

unigue positive solution ofis, %+ s,2+4 ... + 5. ¢ =



Inverse problem

Inverse problem: given >0 and a target (fractal) set &/.can one
find an I.fis 7 such that the corresponding attractor #Zis e-close
{0 /- W.I.T. the Hausdorfi:distance R?

Collage Tiheorem (Barnsley, 1985) LLet >01and et e (0X) e
given. Ifthe ILfs. #= {W, ..., W} IS such that

(UG Wi(F)1 ) < €
then

h(, 7)< e/ (1-5)
Where s IS the LLipscehitz constant of: 4=



Fractal Image compression ?

Tihe Collage Tineoremitells us that to find an'I.f:S. WhoSEe attractor
“looks like™ a give set one must find a set of:contracting maps
such that the unioni (collage) ofithe Images ofithe giveni set
under these maps' IS near (W.r.t. Hausdorfizmetric) to the
original set.

Tihe collage theorem sometimes allows Incrediible compression
rates of:images (of:course with 10ss). It can e especially.
usefuliwhnen the mformation contaied i detarls Is not
considered Very Veny Important



Fractall Image compression !

Tihe top-selling multimedia encyclopedia Encarta, published by
Microsoft Corporation, Includes onone CH-ROIM seven
thousandicolor photegrapns Whichimay: be viewed
Interactively on a computer screen. The Images are diVerse;
they: are of:burldings, musical InStruments, People’s: faces,
paseball bats, ferns, etc. WWhat most users do not know Is that
all ofithese photographs are based on fractals and that they
represent a (seemingly magical) practical Success, of
mathematics.

JUNE 1996 NOTICES OF THE AMS 657

Eractal' Image Compression by Michael k. Barnsley.

€.0: Barnsley’s fern: can be encoded with 160 bytes= 4*10*4
4 'maps 10 parameters (each parameter using 4: bytes)



a,x + b,y +c,

d,x + e,y + k,
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From M. Barnsely
SUPERFRACTALS
Cambridge University Press
2006
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Figure 3. This shows the result of applying fractal compression and decompression to the image displayed in
Figure 2.

Figure 2, Original 512 x 512 grayscale image, with 256 gray levels for each pixel before fractal compression.
© Louisa Barns ley.

ression - Motices Ams [1996) 54, 192mm  Page: "3 3of B ...omplession ; Notices Ams [1SSBj F"age: ;'li"ull of 6

[LEETE the original digitaliimage of:Balloon; 512 pixels by 512 pixels, with 256
gray. levels at each pixel. RIGHT: shows the same Image after: fractal' compression.

[ihe fractal transform file 1s approximately one fifth the size of: the original.
JUNE 1996 NOTICES OF THE AMS 657 Fractal'image Compression by Michael'k. Barnsley.



Fractal grapis of fUACLIONS

IMlany.interesting fractals; both of:theoretical and practical
IMPOrtance; OCCUr:as grapns of:functions. Indeed many/ time
Series have fractal features, at Ieast WhRen recorded over:fairly.
long time spans: examples nclude wind speed, Ievels of
[ESERVOINS, population data and'seme financial time Series
market (the famous IMandelbrot cotton grapns)

\N/e1erstrass nownere differentianle continuous function:
f(0)=2 =, AE2<SIN (A 1) I<s<2, x>2

[ihe graph ofif:has Box dimension s for A large enough.
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Fractal
draphs and

.1.S.

(from K Falconer,
Figure 11.3 Stages in the construction of a self-affine curve F. The affine transforma- .
tions Sy and S; map the generating triangle p,pp> onto the triangles p g, p and pgs p2. Fl’aCta| GeO me'[l‘y, Wl Ie
respectively, and transform vertical lines to vertical lines. The rising sequence of polyg-
onal curves Eg. E|.... are given by E,., = S§;(E;) U S»(E;) and provide increasingly (2003)
good approximations to F (shown in figure 11.4(a) for this case)

Sit.x)=0/m+((—1)/m, a;t +c¢c;x +b;).

Thus the §; transform vertical lines to vertical lines, with the vertical strip 0 <
t < 1 mapped onto the strip (i — 1)/m < ¢ < i/m. We suppose that

l/m<c¢; <1 (11.9)

so that contraction in the ¢ direction is stronger than in the x direction.
Let pi=1(0,b/(1—=¢1)) and p, = (1. (am + bm)/(1 —cy)) be the fixed
points of §; and §,,,. We assume that the matrix entries have been chosen so that

Si(pm) = Six1(p1) (I<sism-—1) (11.10)

so that the segments [S;(pi), Si(pm)] join up to form a polygonal curve E;. To



Self:affine curves defined by the two affine transformations that
map the triangle pypp; 0nto p;g, P and pa;pP, respectively. In(a)
the vertical contraction oftboth transformations 1s 0.7: giving
dimigraph f:= 1.49; and In (b) the vertical contraction of both
transformations is 0.8, giving dim graph f:="1.68

from K. Falconer, Fractal'Geometry, \Wiley (2003)




Probabilistic I.f.s.

=Wy, ..., Wy b, We s X— X contraction oficonstant s;, 0= s; <1
(B2, --.Py) probability Vector 0=p; = 1. pyt... Tpy =1
[teration: at each step withrprobability p; ene applies W:
I.f:s.; k iterates ofia point — NX points. 777: #H (X) — X
7 (E)1= Uy wi(E)
Probabilistic I.f:s.: K iterates ofia point — k poInts

Niheorem: eachiprobabilistic I.fis. has a unigue Borel probability,
Invariant measure pwwWith support = o

Invariance: w(E)= 2o Bi(W;=(E)) for-all'Borel sets E, equivalently
5 a0 U0 = 22 o 1 I O(W:(64) d (<) for all continuous functions g



Probabilistic I.f.s.

[ denotes the space of:Borel probability measures on X
endowed Withithe metric
d(Vy, Vo) =Supy| jx g(>9)av; (X)'jx g(>9av, (9|, g Lipsenitz; 1hip(g) <15
Tihen a probabilistic ILf:s. acts on measures as follows

L V=2 PV Wit
And by duality acts con continuoes functions g:X— R

I G0, V)= 2y P AW () dv()

IS easy to verify/ that
d(Lp,W Vi Loy Vo) =S d(vy,v,)

from Which the previous theorem follows



Multifractall analysis off measures

[Cocal dimension: (local Holder exponent) ofia measure [ at a point x:
dimy,. pEO)=lm, = log (B0 r)/Aeg 1= (When the [imit exists)

o=>0; E, ={xeX; dimy,. u(x)= o

[=0rF Certan measures (v the Sets £, may/ De non-empty. OVera range of

values ofio:
ofithe multifractal

measure (i Is the function o—f(o)=aIim e,
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With equal probabiities, the Eandom Algonthin for the IFS with these rules

otz 9) = (2, 712) + (0, 112)|[Tus, ) = (2, 972 + (112, 172)
Ty(x v) = (22, 7/2) To(x, v) = (2, /2) + (112, 0)

fills in the unit square uniformly.
The pictures below were generated with these probabiities
14 =|:|.1, Fa=pa=pra= 0=

successive pictures show mcrements of 25000 points. “With enough patience, the whele square will fill in, but some regions fill in more quickly than others




classes.yale.ady

 Funids - Hist, .. E Sk, Louis Fed: Econa. .,

will e in each of the squares with address 2, 3, and 4.

with address 12, and 50 on.

Multifractals

Variable Probability Histograms
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Higher tterates are easter to understand wsually.

of the points, and so on.

Here we show the first four generations, with the height of the box in a region representing the fraction of the pomts m that region.
Al the pictures have been adjusted to have the same height, whereas square 4 has 0.3 of the pomts, square 44 has 0.0% of the points, square 444 has 0.027

» G- F

[T altri Prefes

The probabilities of applying each transformation represent the fraction of the total number of tterates in the region determined by the transformation.
TWith the ITFS and probabilities of the last example, i a typical picture about 001 of the points will lie in the square with addresz 1, and about 0.3 of the points

Arouing in the same way, about 0.01 = 0.1%0.1 of the points will lie in the square with address 11, about 0.02 = 0.1%0 3 of the points will lie in the square
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2o agamn the height represents the fraction of the points landing m that region.

-t aif T Y raoctes Fokk i downlaad
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http://classes.yale.edu/fractals/MultiFractals/IMEGaskSect/
MEGaskSectMv.gif
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Different Probabilities, Another Example

In thiz example, we mtroduce more variabidity in the probabdities:
p1 =02, =025, pa =025, and py = 0.3

Among other things, the number of values of the probabiibes of regions mereases more rapadly.

=maller regions hawe smaller probabiities; if these graphs weren't rescalled vertically they would appear to become closer and closer to a flat surface of heig
0. Cliclz here for an anmmnation of the first four tterates, all drawn to the same vertical scale.

For each region we expect that
prob scales as (side length)30Mme POWet

=o matead of lething the heyght of the graph represent the probabality of the region, now we assign height Log(prob)Logiside length) to the region.
EBecause the probability measures the fraction of the pomnts that eccupy a region, we think of this ratio as a dimension.
EBemng wiewed at the resolution of the side length of the region, this 15 a coarse Holder exponent; it 15 also called the coarse dinension.

af T Y racckras bokk | dowrload
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Multifractals

Local Holder Exponents

Talring limits as the side length of the regions go to zero, the coarse Holder exponent can be refined to the local Holder exponent (or roughness) at (xz, v) is
dipo%9) = b, > iy Log(Probliy.. i) Log(2 ™)
where Probily.. 1) 15 the probabiity priy )™ ... *priy,), f () les i the square with address 1.1,
The walue for a square of finite length address 12 called the coarse Holder exponent. So the local Holder exponent of a point (3, v) 12 the limit as I -= infinity of
the coarse Holder exponents of the length N address squares containing (x, ¥).
Mow define
Eatpta = (%, ¥ dyp(x, y) = alpha},
the collection of all points of the fractal hawing local Holder exponent alpha.
As alpha takes on all values of the local Holder exponent, we decompose the fractal into these sets Egopo.
Here are examples, Ealpha (alpha = column height) for the lowest value of alpha (on the leff), two mtermediate values, and the highest value.

Chick here for an animation scanning through all the walues of alpha, from lowest to highest, resolved to boxes have side length 1124

EBecause each local Holder exponent alpha is the exponent for a power law, a multiftactal is a process exhibiting scaling for a range of different power laws.
The multifractal structure 15 revealed by plothing dim(Ealphaj as a function of alpha.

(In general, a dimension more subtle than the box-counting dimension must be used. "We ignore thiz complication here.)

g T 3 Mostra tutti i download. ..
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Click here for an ammation scantng through all the values of alpha, from lowest to lughest, resolved to boxes have side length 1124

Because each local Holder exponent alpha 1 the exponent for a power law, a multifractal 15 a process exhibiting scaling for a range of different powe
The multifractal structure 12 revealed by plotting dﬁn{Eﬂpha) as a fiunction of alpha.

{In general, a dimension more subtle than the box-countng dimension must be used. We 1gnore this complication here )

This graph 15 called the falpha) curve.

Here 15 the f{alpha) curve for the example with py = 0.2, py =py =025, and py = 0.3,
At least i thiz example, sets Eﬂlpha for the lowest and hughest values of alpha reduce to points in the lnut, hence have dimension flalpha) = 0. This 13
represented m the left and right endpoints of the curve Iying on the x-ass.

f(alpha)
2__

A37 4.

This result 15 dertved under more general condiions in a later section.

Eeturn to hultifractals.



K. Falconer; Miechnigues in
Eractal geometry

P=(0.8,0.05,0.15)




The lL.egendre transtorm off (o)

fr= Wy, ..., Wb, Wi 5 X— XEcontraction of constant s;, 0'='s; <1
(B2, -.PN) probability Vector O=p; = 1, pyt... Tpy =1
Tihe d ¢ IS the solution ofithe equation
sd-rsd+ .. +5d =l
Tihe singularity: spectrum o—1(o) of:a provabilistic I.ES. IS the

[Cegendre transform ofithe function g—(q) obtainedselving
the functional equation

o)) 51T(Q)+p2q 52T(Q)+. S o\ SNT(Q):]_



ol mcaling .
|6C' U:ﬁversa]itv | DEﬁnlng f(ﬂ)

6P, For each point (g, ©(q)) say the slope of the tangent line 12 -o. That 18, o= -dofdq.
Eenormalization T ( q)

60, Dirven IS

6F. Eelly Plot
62, Control of

Chaos

o f(a@) = 7(q) +ac\

Smchror?ization q
of Chaotic (q, T(Cl))

Proceszes

7. Multhfactals

A, Unecual i -
Probabilities Line of Slope

78 Histograms This tangent line passes through the pomt (g, ©(q)) and the pomt {0, v). Consequently,

7C Another = - di0 - g
Solving for v,

7D, Local v =gt g
Dirmnensions Call this w-walue o)

7E. Multifractals Ho) = qet oy
from IFS
JF. f{a) curves

|T"G. a) from | ad

7
‘é _

Eeturn to Multdfractals from IFS.

@ Lecture_5_MFizask3ect...qif ~

Tihe singularity: spectrum o—f(o) of:a prokabilistic ILfiS. IS the

ICegendre transformrof:the function g-—x(d)




