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• Lecture 1: An introduction to dynamical systems and to time series. Periodic and 

quasiperiodic motions. (Tue Jan 13,  2 pm - 4 pm Aula Bianchi)

• Lecture 2: Ergodicity. Uniform distribution of orbits. Return times. Kac inequality Mixing 

(Thu Jan 15,  2 pm - 4 pm Aula Dini)

• Lecture 3: Kolmogorov-Sinai entropy. Randomness and deterministic chaos. (Tue Jan 27,  

2 pm - 4 pm Aula Bianchi)

• Lecture 4: Time series analysis and embedology. (Thu Jan 29,  2 pm - 4 pm Dini)

• Lecture 5: Fractals and multifractals. (Thu Feb 12,  2 pm -

4 pm  Dini)

• Lecture 6: The rhythms of life. (Tue Feb 17,  2 pm - 4 pm  Bianchi)

• Lecture 7: Financial time series. (Thu Feb 19,  2 pm - 4 pm  Dini)

• Lecture 8: The efficient markets hypothesis. (Tue Mar 3,  2 pm - 4 pm Bianchi)

• Lecture 9: A random walk down Wall Street. (Thu Mar 19,  2 pm - 4 pm  Dini)

• Lecture 10: A non-random walk down Wall Street. (Tue Mar 24, 2 pm – 4 pm Bianchi)



• Seminar I: Waiting times, recurrence times ergodicity and quasiperiodic
dynamics (D.H. Kim, Suwon, Korea; Thu Jan 22,  2 pm - 4 pm Aula Dini)

• Seminar II: Symbolization of dynamics. Recurrence rates and entropy (S. 
Galatolo, Università di Pisa; Tue Feb 10,  2 pm - 4 pm Aula Bianchi)

• Seminar III: Heart Rate Variability: a statistical physics point of view (A. 
Facchini, Università di Siena; Tue Feb 24,  2 pm - 4 pm Aula Bianchi ) 

• Seminar IV: Study of a population model: the Yoccoz-Birkeland model (D. 
Papini, Università di Siena; Thu Feb 26,  2 pm - 4 pm Aula Dini)

• Seminar V: Scaling laws in economics (G. Bottazzi, Scuola Superiore 
Sant'Anna Pisa; Tue Mar 17,  2 pm - 4 pm Aula Bianchi) 

• Seminar VI: Complexity, sequence distance and heart rate variability (M. 
Degli Esposti, Università di Bologna; Thu Mar 26,  2 pm - 4 pm Aula Dini )

• Seminar VII: Forecasting (M. Lippi, Università di 
Roma; late april, TBA)



Self-similarity and fractals

A subset A of Euclidean space will be considered a “fractal” 
when it has most of the following features:

• A has fine structure (wiggly detail at arbitrarily small
scales)

• A is too irregular to be described by calculus (e.g. no 
tangent space)

• A is self-similar or self-affine (maybe approximately or 
statistically)

• the fractal dimension of A is non-integer
• A may have a simple (recursive) definition
• A has a “natural” appearance: “Clouds are not spheres, 

mountains are not cones, coastlines are not circles, and 
bark is not smooth, nor does lightning travel in a straight 
line . . .”  (B. Mandelbrot)



self-similar
fractals

self-affine
fractals

From: K. Falconer, Techniques in Fractal Geometry, Wiley 1997



self-conformal
fractals

Statistically
self-similar

fractals

From: K. Falconer, Techniques in Fractal Geometry, Wiley 1997



Source: Wikipedia



Source: Wikipedia



Mathematics,  shapes and nature



http://classes.yale.edu/fractals/Panorama/Nature/NatFracGallery/Gallery/Gallery.html



From http://en.wikipedia.org/wiki/Image:Square1.jpg
Lichtenberg Figure
High voltage dielectric breakdown within a block of plexiglas creates a beautiful 
fractal pattern called a Lichtenberg_figure. The branching discharges ultimately
become hairlike, but are thought to extend down to the molecular level. 
Bert Hickman, http://www.teslamania.com

http://en.wikipedia.org/wiki/Image:Square1.jpg
http://www.teslamania.com/


A diffusion-limited aggregation (DLA) cluster. Copper aggregate formed from 
a copper sulfate solution in an electrode position cell. Kevin R. Johnson, Wikipedia

http://en.wikipedia.org/wiki/diffusion-limited_aggregation
http://en.wikipedia.org/wiki/diffusion-limited_aggregation
http://en.wikipedia.org/wiki/diffusion-limited_aggregation
http://en.wikipedia.org/wiki/copper_sulfate


Coastlines

Massachusetts Greece

D=1.15 D=1.20



http://upload.wikimedia.org/wikipedia/com
mons/2/20/Britain-fractal-coastline-

combined.jpg

200 km 100 km 50 km 



How long is a coastline?

The answer depends on the scale at which the measurement is

made: if s is the reference length the coastline length L(s) will be

Log L(s) = (1-D) log s + cost
(Richardson 1961, Mandelbrot Science 1967)



How long is the coast of Britain? 
Statistical self-similarity and fractional dimension 
Science: 156, 1967, 636-638 
B. B. Mandelbrot 

Seacoast shapes are examples of highly involved curves with the 

property that  - in a statistical  sense - each portion can be considered 

a reduced-scale image of the whole. This property will be referred to  

as „„statistical self-similarity.‟‟  The concept of „„length‟‟ is usually 

meaningless for geographical curves. They  can be considered 

superpositions of features of widely scattered characteristic sizes; as 

even finer features are taken into account, the total measured length 

increases, and there is usually no clear-cut gap or  crossover, 

between the realm of geography and details with which geography 

need not be concerned. 



Quantities other than length are therefore needed to discriminate 

between various degrees of  complication for a geographical 

curve. When a curve is self-similar, it is characterized by an 

exponent of  similarity, D, which possesses many properties of 

a dimension, though it is usually a fraction greater that the 

dimension 1 commonly attributed to curves. I propose to 

reexamine in this light, some empirical  observations in 

Richardson 1961 and interpret them as implying, for example, 

that the dimension of the  west coast of Great Britain is D = 

1.25. Thus, the so far esoteric concept of a  „„random figure of 

fractional  dimension‟‟ is shown to have simple and concrete 

applications of great usefulness. 

How long is the coast of Britain? 
Statistical self-similarity and fractional dimension 
Science: 156, 1967, 636-638 
B. B. Mandelbrot 



“Box counting” dimension



s N(s)

25 47

20 67

15 100

10 159

5 386

Log N(s) = -D log s + cost

http://www.physionet.org/tutorials/epn/program/coastline.htm



Box counting (Minkowski) dimension

Let E be a non-empty bounded subset of Rn and let Nr (E) be the 

smallest number of sets of diameter r needed to cover E

• Lower dimension dimB E = liminfr→0 log Nr (E) / -logr

• Upper dimension dimB E = limsupr→0 log Nr (E) / -logr

• Box-counting dimension: if the lower and upper dimension

agree then we define

dim E = limr→0 log Nr (E) / -logr

The value of these limits remains unaltered if Nr (E) is taken to be

the smallest number of balls of radius r (cubes of side r) 

needed to cover E, or the number of r-mesh cubes that

intersect E 



Hausdorff dimension

A finite or countable collection of subsets {Ui } of Rn is a δ-

cover of a set E if | Ui |< δ for all i and E is contained in Ui Ui

Hs
δ (E) = inf {Σi | Ui |s , {Ui } is a a δ-cover of E}

s-dimensional Hausdorff measure of E: Hs (E) =limδ→0 Hs
δ (E) 

It is a Borel regular measure on Rn , it behaves well under 

similarities and Lipschitz maps

The Hausdorff dimension dimH E is

the number at which the Hausdorff

measure Hs (E) jumps from ∞ to 0

dimH E ≤ dimB E ≤ dimB E



Von Koch curve (1904)

D=log4/log3=1.261859...



From: K. Falconer, Techniques in Fractal Geometry, Wiley 1997





Fractal snowflake

Infinite perimeter, finite area, D=log4/log3=1.261859...



Sierpinski triangle (1916)

D=log3/log2=1.5849625...



Source: 
Wikipedia



A fractal carpet (zero area)

D=3log2/log3=1.892789...



A fractal sponge



Zooming in 



Changing parameters

90 anticlockwise rotation 
about the top vertex

•The triangle of Sierpinski is the attractor of an iterated 
function system (i.f.s).

•The i.f.s. is made of three affine maps (each contracting by a 
factor ½ and leaving one of the initial vertices fixed)

•Combining the affine maps with rotations one can change the 
shape considerably

180 rotation about the 

same vertex



Hausdorff metric and compact sets

F
E



Contractions and Hausdorff metric

Proposition: if w:X→X is a contraction with Lipschitz constant s 
then w is also a contraction on (H (X),h) with Lipschitz

constant s

To each family F of contractions on X one can associate a 

family of contractions on (H (X),h). By Banach-Caccioppoli

to each such F will correspond a compact nonempty subset A 
of X: the attractor associated to F

d(w(E),w(F))=max min d(y,z) = max min d(w(e),w(f)) 
yϵE      zϵF eϵE      fϵF 

≤ s max min d(e,f) = s d(E,F) 
eϵE      fϵF 



Iterated function systems

F  = {w1, …, wN} each wi : X→ X is a contraction of constant si, 

0 ≤ si <1

Let W :  H (X) → X 

W   (E) = U wi(E)  

1≤i≤N  

Then W contracts the Hausdorff metric h with Lipschitz constant

s = max si . We denote by A  the corresponding attractor
1≤i≤N

Given any subset E of X, the iterates W  ⁿ(E) → A exponentially

fast, in fact h(W  ⁿ(E) , A ) ≈ sⁿ as n → ∞ 



Self similarity and fractal
dimension
If the contractions of the i.f.s. F  = {w1, …, wN}  are

• Similarities the attractor A will be said self-similar

• Affine maps the attractor A will be said self-affine

• Conformal maps (i.e. their derivative is a similarity) then the 
attractor A will be said self-conformal

If the open set condition is verified, i.e. there exists an open set U 

such that wi(U)∩wj(U)=Ø if i≠j and Ui wi(U)  is an open 
subset of U then the dimension d of the attractor A is the 

unique positive solution of s1
d + s2

d + … + sN
d =1



Inverse problem

Inverse problem: given ε>0 and a target (fractal) set T can one

find an i.f.s F such that the corresponding attractor A is ε-close

to T w.r.t. the Hausdorff distance h?

Collage Theorem (Barnsley 1985) Let ε>0 and let TϵH (X) be

given. If the i.f.s. F  = {w1, …, wN}  is such that

h(U1≤i≤N wi(T) , T ) < ε

then

h(T , A) < ε / (1-s)

where s is the Lipschitz constant of F



Fractal image compression ?

The Collage Theorem tells us that to find an i.f.s. whose attractor

“looks like” a give set one must find a set of contracting maps

such that the union (collage) of the images of the given set 

under these maps is near (w.r.t. Hausdorff metric) to the 

original set.

The collage theorem sometimes allows incredible compression

rates of images (of course with loss). It can be especially

useful when the information contained in details is not

considered very very important



Fractal image compression !

The top­selling multimedia encyclopedia Encarta, published by 

Microsoft Corporation, includes on one CD­ROM seven 

thousand color photographs which may be viewed 

interactively on  a computer screen. The images are diverse; 

they  are of buildings, musical instruments, people's  faces, 

baseball bats, ferns, etc. What most users  do not know is that 

all of these photographs are  based on fractals and that they 

represent a (seemingly magical) practical success of 

mathematics. 

JUNE 1996 NOTICES OF THE AMS 657 

Fractal Image Compression by Michael F. Barnsley

e.g: Barnsley‟s fern: can be encoded with 160 bytes= 4*10*4

4 maps 10 parameters (each parameter using 4 bytes)



From M. Barnsely
SUPERFRACTALS
Cambridge 
University Press
2006



From M. Barnsely
SUPERFRACTALS
Cambridge University Press
2006



LEFT: the original digital image of Balloon, 512 pixels by 512 pixels, with 256 

gray levels at each pixel.  RIGHT: shows the same image after fractal compression. 

The fractal transform file is approximately one fifth the size of  the original.

JUNE 1996 NOTICES OF THE AMS 657  Fractal Image Compression by Michael F. Barnsley



Fractal graphs of functions

Many interesting fractals, both of theoretical and practical 

importance, occur as graphs of functions. Indeed many time 

series have fractal features, at least when recorded over fairly 

long time spans: examples include wind speed, levels of 

reservoirs, population data and some financial time series 

market (the famous Mandelbrot cotton graphs)

Weierstrass nowhere differentiable continuous function:

f(t)=Σ1≤k≤∞ λ(s-2)k sin (λk t)          1<s<2, λ>2

The graph of f has box dimension s for λ large enough.



s=1.3, λ=1.5

s=1.5, λ=1.5

s=1.1, λ=1.5

s=1.7, λ=1.5

From “Fractal Geometry”, K. Falconer, p. 164-165 



Fractal
graphs and 
i.f.s.
(from K. Falconer, 

Fractal Geometry, Wiley

(2003)



Self-affine curves defined by the two affine transformations that 

map the triangle p1pp2 onto p1q1p and pq2p2 respectively. In (a) 

the vertical contraction of both transformations is 0.7 giving 

dim graph f = 1.49, and in (b) the vertical contraction of both 

transformations is 0.8, giving dim graph f = 1.68

from K. Falconer, Fractal Geometry, Wiley (2003)



Probabilistic i.f.s.

F  = {w1, …, wN}, wi : X→ X contraction of constant si, 0 ≤ si <1

(p1,…,pN) probability vector 0 ≤ pi ≤ 1, p1+…+pN =1

Iteration: at each step with probability pi one applies wi

i.f.s.: k iterates of a point → Nk points W :  H (X) → X 

W   (E) = U1 wi(E)  

Probabilistic i.f.s.: k iterates of a point → k points

Theorem: each probabilistic i.f.s. has a unique Borel probability
invariant measure μ with support = A  

Invariance: μ(E)= Σ1≤i≤N piμ(wi
-1(E)) for all Borel sets E, equivalently

∫X g(x)dμ(x)= Σ1≤i≤N pi ∫X g(wi(x))dμ(x) for all continuous functions g



Probabilistic i.f.s.

If M   denotes the space of Borel probability measures on X

endowed with the metric

d(ν1,ν2)=sup{| ∫X g(x)dν1 (x)-∫X g(x)dν2 (x)|, g Lipschitz, Lip(g) ≤1}

Then a probabilistic i.f.s. acts on measures as follows

Lp,w ν= Σ piν wi
-1

And  by duality acts con continuos functions g:X→ R

∫X g(x)d(Lp,w ν)(x)= Σ1≤i≤N pi ∫X g(wi(x))dν(x)

It is easy to verify that

d(Lp,w ν1 , Lp,w ν2 ) ≤ s d(ν1,ν2)

from which the previous theorem follows



Multifractal analysis of measures

Local dimension (local Hölder exponent) of a measure μ at a point x: 

dimloc μ(x)=limr→0 log μ(B(x,r))/log r  (when the limit exists)

α>0, Eα ={xϵX, dimloc μ(x)= α}

For certain measures μ the sets Eα may be non-empty over a range of

values of α: multifractal measures

multifractal spectrum (singularity spectrum) of the multifractal

measure μ: is the function α→f(α)=dim Eα











http://classes.yale.edu/fractals/MultiFractals/MFGaskSect/

MFGaskSectMv.gif









K. Falconer, Techniques in 

Fractal geometry

P=(0.8,0.05,0.15)



The Legendre transform of f(α)

F  = {w1, …, wN}, wi : X→ X contraction of constant si, 0 ≤ si <1

(p1,…,pN) probability vector 0 ≤ pi ≤ 1, p1+…+pN =1

The dimension d of the attractor A  is the solution of the equation

s1
d + s2

d + … + sN
d =1

The singularity spectrum α→f(α) of a probabilistic i.f.s. is the 

Legendre transform of the function q→τ(q) obtained solving 

the functional equation

p1
q s1

τ(q)+p2
q s2

τ(q)+…+pN
q sN

τ(q)=1



The singularity spectrum α→f(α) of a probabilistic i.f.s. is the 

Legendre transform of the function q→τ(q)


