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• Lecture 1: An introduction to dynamical systems and to time series. Periodic and 

quasiperiodic motions. (Tue Jan 13,  2 pm - 4 pm Aula Bianchi)

• Lecture 2: Ergodicity. Uniform distribution of orbits. Return times. Kac inequality Mixing 

(Thu Jan 15,  2 pm - 4 pm Aula Dini)

• Lecture 3: Kolmogorov-Sinai entropy. Randomness and deterministic chaos. (Tue Jan 27,  

2 pm - 4 pm Aula Bianchi)

• Lecture 4: Time series analysis and embedology. (Thu

Jan 29,  2 pm - 4 pm Dini)

• Lecture 5: Fractals and multifractals. (Thu Feb 12,  2 pm - 4 pm  Dini)

• Lecture 6: The rhythms of life. (Tue Feb 17,  2 pm - 4 pm  Bianchi)

• Lecture 7: Financial time series. (Thu Feb 19,  2 pm - 4 pm  Dini)

• Lecture 8: The efficient markets hypothesis. (Tue Mar 3,  2 pm - 4 pm Bianchi)

• Lecture 9: A random walk down Wall Street. (Thu Mar 19,  2 pm - 4 pm  Dini)

• Lecture 10: A non-random walk down Wall Street. (Tue Mar 24, 2 pm – 4 pm Bianchi)



• Seminar I: Waiting times, recurrence times ergodicity and quasiperiodic
dynamics (D.H. Kim, Suwon, Korea; Thu Jan 22,  2 pm - 4 pm Aula Dini)

• Seminar II: Symbolization of dynamics. Recurrence rates and entropy (S. 
Galatolo, Università di Pisa; Tue Feb 10,  2 pm - 4 pm Aula Bianchi)

• Seminar III: Heart Rate Variability: a statistical physics point of view (A. 
Facchini, Università di Siena; Tue Feb 24,  2 pm - 4 pm Aula Bianchi ) 

• Seminar IV: Study of a population model: the Yoccoz-Birkeland model (D. 
Papini, Università di Siena; Thu Feb 26,  2 pm - 4 pm Aula Dini)

• Seminar V: Scaling laws in economics (G. Bottazzi, Scuola Superiore 
Sant'Anna Pisa; Tue Mar 17,  2 pm - 4 pm Aula Bianchi) 

• Seminar VI: Complexity, sequence distance and heart rate variability (M. 
Degli Esposti, Università di Bologna; Thu Mar 26,  2 pm - 4 pm Aula Dini )

• Seminar VII: Forecasting (M. Lippi, Università di 
Roma; late april, TBA)



Examples of time-series in natural 
and social sciences

• Weather measurements (temperature, pressure, rain, wind 
speed, …) . If the series is very long …climate

• Earthquakes

• Lightcurves of variable stars

• Sunspots

• Macroeconomic historical time series (inflation, GDP, 
employment,…)

• Financial time series (stocks, futures, commodities, bonds, …)

• Populations census (humans or animals)

• Physiological signals (ECG, EEG, …)









Yes!!! These paper really claims that U.S. GDP can be forecasted using
sunspots….

….what are Neokeynesians good for??? What is Obanomics good for???
What happened in the U.S. during the Maunder minimum???



Source: Wikipedia

Changes 
in carbon-

14 concentration 
in theEarth's
atmosphere, 

which serves as a 
long term proxy of 

solar activity. 

http://en.wikipedia.org/wiki/carbon-14
http://en.wikipedia.org/wiki/carbon-14
http://en.wikipedia.org/wiki/carbon-14
http://en.wikipedia.org/wiki/Earth's_atmosphere
http://en.wikipedia.org/wiki/Earth's_atmosphere
http://en.wikipedia.org/wiki/Earth's_atmosphere


Stochastic or chaotic?

• An important goal of time-series analysis
is to determine, given a times series (e.g. 
HRV) if the underlying dynamics (the 
heart) is:

– Intrinsically random

– Generated by a deterministic nonlinear
chaotic system which generates a random
output

– A mix of the two (stochastic perturbations of
deterministic dynamics)



The normal heart rhythm in humans is set by a small group of cells called the sinoatrial
node. Although over short time intervals, the normal heart rate often appears to be 

regular, when the heart rate is measured over extended periods of
time, it shows significant fluctuations. There are a number of factors that affect these 

fluctuations: changes of activity or mental state, presence of drugs, presence of artificial
pace- makers, occurrence of cardiac arrhythmias that might mask the sinoatrial rhythm 
or make it difficult to measure. Following the widespread recognition of the possibility of 
deterministic chaos in the early 1980s, considerable attention has been focused on the 

possibility that heart rate variability might reflect deterministic chaos in the physiological 
control system regulating the heart rate. A large number of papers related to the 

analysis of heart rate variability have been published in Chaos and elsewhere. However, 
there is still considerable debate about how to characterize fluctuations in the heart rate 
and the significance of those fluctuations. There has not been a forum in which these 

disagreements can be aired. Accordingly, Chaos invites submissions that address
one or more of the following questions:



• Is the normal heart rate chaotic?
• If the normal heart rate is not chaotic, is there some more appropriate 
term to characterize the fluctuations e.g., scaling, fractal, multifractal?
• How does the analysis of heart rate variability elucidate the

underlying mechanisms controlling the heart rate?
• Do any analyses of heart rate variability provide clinical 
information that can be useful in medical assessment e.g., in 
helping to assess the risk of sudden cardiac death. If so, please 
indicate what additional clinical studies would be useful for measures of 
heart rate variability to be more broadly accepted by the medical 
community.



Chaotic brains at work!



Chaotic brains at work!







Continuous Blood Pressure 
Waveform: Healthy Subject

http://www.viskom.oeaw.ac.at/~joy/March15,%202004.ppt



Randomness and the physical law
• It may well be that the universe itself is completely deterministic 

(though this depends on what the “true” laws of physics are, and 
also to some extent on certain ontological assumptions about 
reality), in which case randomness is simply a mathematical 
concept, modeled using such abstract mathematical objects as 
probability spaces. Nevertheless, the concept of pseudorandomness-
objects which “behave” randomly in various statistical senses - still 
makes sense in a purely deterministic setting. A typical example are 

the digits of π=3.1415926535897932385…this is a deterministic 

sequence of digits, but is widely believed to behave 
pseudorandomly in various precise senses (e.g. each digit should 
asymptotically appear 10% of the time). If a deterministic system 
exhibits a sufficient amount of pseudorandomness, then random 
mathematical models (e.g. statistical mechanics) can yield accurate 
predictions of reality, even if the underlying physics of that reality 
has no randomness in it.

http://terrytao.wordpress.com/2007/04/05
/simons-lecture-i-structure-and-randomness-in-fourier-analysis-and-number-theory/

http://terrytao.wordpress.com/2007/04/05
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Deterministic or random? 
Appearance can be misleading…



Time delay map

Source: sprott.physics.wisc.edu/lectures/tsa.ppt



Logit and logistic

The logistic map x→L(x)=4x(1-x) preserves

the probability measure dμ(x)=dx/(π√x(1-x))

The transformation h:[0,1] →R, h(x)=lnx-ln(1-

x) conjugates L with a new map G

h L=G h 

definined on  R. The new invariant probability

measure is dμ(x)=dx/[π(e     + e     )]

G and L have the same dynamics (the only

difference is a coordinates change)

x/2 -x/2



Hyperbolic secant
distribution

Parameters none

Support xϵ(-∞,+∞)

Probability density 
function (pdf)

½sech(½πx)

Cumulative 
distribution

function (cdf)

2arctan(exp(½πx))

π

Mean 0

Median 0

Mode 0

Variance 1

Skewness 0

Excess kurtosis 2

Entropy 4/π G ≈1.16624

Source: wikipedia

G = 0.915 965 594 177 219 015 054 603 
514 932 384 110 774... Catalan’s constant

http://en.wikipedia.org/wiki/Support_(mathematics)
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Cumulative_distribution_function
http://en.wikipedia.org/wiki/Cumulative_distribution_function
http://en.wikipedia.org/wiki/Cumulative_distribution_function
http://en.wikipedia.org/wiki/Cumulative_distribution_function
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Median
http://en.wikipedia.org/wiki/Mode_(statistics)
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Skewness
http://en.wikipedia.org/wiki/Kurtosis
http://en.wikipedia.org/wiki/Information_entropy


Takens theorem

• ϕ : X → X map, f : X → R smooth observable

• Time-delay map (reconstruction of the 
dynamics from periodic sampling):

• F(f,ϕ) : X → Rⁿ n is the number of delays

• F(f,ϕ)(x) = (f(x), f(ϕ(x)), f(ϕ◦ϕ(x)), ..., f(ϕⁿ 

(x)))

• Under mild assumptions if the dynamics has an
attractor with dimension k and n>2k then for
almost any choice of the observable the 
reconstruction map is injective

-1



Immersions and embeddings

• A  smooth  map  F  on  a compact smooth manifold A  is  an  
immersion if  the derivative map DF(x)  (represented by  the  
Jacobian matrix  of  F  at  x)  is one-to-one  at  every  point  xϵA.  

Since DF(x)  is  a  linear  map,  this  is equivalent  to DF(x)  having 
full  rank  on the tangent space.  This can happen whether  or  not  
F  is  one-to-one.  Under  an  immersion,  no  differential structure  
is lost in going from A  to F(A).

• An  embedding of A  is a smooth diffeomorphism from  A  onto  its 
image F(A),  that  is, a  smooth one-to-one map which  has a  
smooth inverse.  For a compact manifold A,  the map F is an 
embedding  if and only if ,F  is a one- to-one immersion. 

• The set of embeddings is open in the set of smooth maps: arbitrarily 
small perturbations of an embedding will still be embeddings!



Embedology (Sauer, Yorke, Casdagli, J. 

Stat. Phys. 65 (1991)

Whitney  showed that  a generic smooth map  ,F  from  a d-dimensional

smooth compact manifold  M  to Rⁿ , n>2d is actually a diffeomorphism on 
M. That  is, M  and F(M)  are diffeomorphic. We  generalize  this  in  two  
ways:

• first, by  replacing "generic" with  "probability-one"  (in  a prescribed  
sense),

• second, by  replacing  the manifold  M  by  a  compact  invariant  set A

contained  in  some Rk that  may  have  noninteger box-counting  
dimension (boxdim).  In  that  case,  we show  that  almost every 
smooth map  from  a neighborhood  of A  to Rⁿ is one-to-one  as  long 
as n>2 * boxdim(A)

We  also show that almost every smooth map  is an embedding on 
compact subsets of  smooth  manifolds  within  l.  This  suggests  that  
embedding techniques can  be  used  to  compute  positive  Lyapunov
exponents  (but not  necessarily  negative Lyapunov exponents).  The  
positive Lyapunov exponents are usually carried by  smooth  unstable 
manifolds on attractors.



Takens dealt with  a  restricted class of maps called delay-coordinate

maps: these are time series  of a single observed quantity  from  an  
experiment. He showed  (F.  Takens, Detecting  strange attractors  in  turbulence, in  

Lecture Notes  in Mathematics, No. 898 (Springer-Verlag,  1981  )  that if the dynamical  
system  and  the observed  quantity  are  generic,  then  the  delay-
coordinate map  from  a d-dimensional  smooth compact manifold M  to 
Rⁿ , n>2d is a diffeomorphism on M.

• we  replace generic with  probability-one 

• and the manifold  M  by  a  possibly  fractal  set. 

Thus,  for  a  compact  invariant subset A  under mild  conditions  on  the  
dynamical  system, almost every delay-coordinate  map  to Rⁿ is one-to-
one  on A  provided that  n>2.boxdim(A). Also,  any  manifold  structure 
within  I  will  be preserved  in  F(A). 

• Only C¹ smoothness is needed.; 

• For  flows, the delay must  be chosen so that  there are no  periodic orbits
with period exactly equal to the time delay used or twice the delay

Embedology (Sauer, Yorke, Casdagli, J. 

Stat. Phys. 65 (1991)



Embedding method

• Plot x(t) vs. x(t- ), x(t-2 ), x(t-3 ), …

• x(t) can be any observable

• The embedding dimension is the # of delays

• The choice of and of the dimension are critical

• For a typical deterministic system, the orbit will be 

diffeomorphic to the attractor of the system (Takens

theorem)



Choice of Embedding Parameters

Theoretically, a time delay coordinate map yields an valid embedding for any 
sufficiently large embedding dimension and for any time delay when the data are

noise free and measured with infinite precision. 

But, there are several problems:

(i) Data are not clean
(ii) Large embedding dimension are computationally expensive and unstable

(iii) Finite precision induces noise

Effectively, the solution is to search for:

(i) Optimal time delay 
(ii) Minimum embedding dimension d

or
(i) Optimal time window w

There is no one unique method solving all problems and 
neither there is an unique set of embedding parameters appropriate for all purposes.
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The Role of Time Delay 

Too small Too large A better

If is too small,x(t) and x(t- ) will be very close, then each reconstructed vector 
will consist of almost equal components  Redundancy ( R)

The reconstructed state space will collapse into the main diagonal

If is too large,x(t) and x(t- ) will be completely unrelated, then each reconstructed 
vector will consist of irrelevant components  Irrelevance ( I)

The reconstructed state space will fill the entire state space. 

http://www.viskom.oeaw.ac.at/~joy/March22,%202004.ppt



Blood Pressure Signal

Small 

Large T

A better 

A better choice is: 

R < w < I

Caution: should not be
close to main period

Collapsing of state space

http://www.viskom.oeaw.ac.at/~joy/March22,%202004.ppt



Some Recipes to Choose 

Estimate autocorrelation function: )()()()(
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Then, opt C(0)/e
or

first zero crossing of C( )

Modifications:

1. Consider minima of higher order autocorrelation functions, <x( )x(t+ )x(t+2 )>
and then look for time when these minima for various orders coincide.

2. Apply nonlinear autocorrelation functions: <x2( )x2(t+2 )>

Albano et al. (1991) Physica D

Billings, Tao (1991) Int. J. Control.

Based on Autocorrelation

http://www.viskom.oeaw.ac.at/~joy/March22,%202004.ppt



Based on Time delayed Mutual Information

The information we have about the value of x(t+ ) if we know x(t). 

1. Generate the histogram for the probability distribution of the signal x(t).

2. Let pi is the probability that the signal will be inside the i-th bin and 
pij(t) is the probability that x(t) is in i-th bin and x(t+ ) is in j-th bin. 

3. Then the mutual information for delay will be

i

i

iij

ji

ij ppppI log2)(log)()(
,

For  0, I( )  Shannon’s Entropy

opt First minimum of I( ) 

http://www.viskom.oeaw.ac.at/~joy/March22,%202004.ppt



Statistical analysis of a time series: 
moments of the probability distribution



Higher moments: simmetry of
the distribution and fat tails

• Skewness: measures simmetry of the data 
about the mean (third moment)

• Kurtosis: peakedness of the distribution
relative to the normal distribution (hence
the -3 term)

• Leptokurtic distribution (fat tailed): has
positive kurtosis



ψ,φ observables with expectations μ(ψ ) and μ(φ)

σ(ψ)   =[ (μ(ψ )- μ(ψ )  ] variance

The correlation coefficient of ψ,φ is

ρ(ψ,φ)=covariance(ψ,φ) / (σ(ψ) σ(φ))
= μ [(ψ- μ(ψ))(φ- μ (φ))] / (σ(ψ) σ(φ))

= μ [ψ φ - μ(ψ)μ (φ)] / (σ(ψ) σ(φ))

The correlation coefficient varies between -1 and 1 and 
equals 0 for independent variables but this is only a 

necessary condition (e.g. φ uniform on [-1,1] has zero 
correlation with its square)

2 22



Sample correlation coefficient
between two finite series of data



Autocorrelation function



Decay time of autocorrelation

This is an important indicator of the strength of the 
autocorrelation of time series

It can be used to determine the time delay in embedology



Stationarity
• Stationarity: all parameters of the data series 

statistical distribution must be time-
independent

• Weak-stationarity: we only require that the 
first two moments (mean and variance) are 
constant

• Parameters can for example be moments of 
the probability distribution, but also  
coefficients in differential equations or 
autoregressive processes.



Tests of stationarity

• Moving window analysis: Divide a long 
time series in shorter windows and 
analyze these short windows separately.

• For example split the series into two parts, 
compute mean and variance and compare 
(remember that the standard error will be 
σ/√N)



Financial time series: standard 
deviation and volatility

If the daily logarithmic returns of a stock have a standard deviation of 
0.01 and there are 252 trading days in a year, then the time period 
of returns is 1/252 and annualized volatility is

The formula used to annualize returns is not deterministic, but is an 
extrapolation valid for a random walk process whose steps have 
finite variance. Generally, the relation between volatility in different 
time scales is more complicated, involving the Lévy stability 

exponent α: 

α = 2 you get the Wiener process scaling relation, but some people 

believe α< 2 for financial activities such as stocks, indexes and so 

on. This was discovered byBenoît Mandelbrot, who looked at cotton 
prices and found that they followed a Lévy alpha-stable 
distribution with α = 1.7. Mandelbrot's conclusion is, however, not 
accepted by mainstream financial econometricians.

..

http://en.wikipedia.org/wiki/Random_walk
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http://en.wikipedia.org/wiki/Beno%C3%AEt_Mandelbrot
http://en.wikipedia.org/wiki/Beno%C3%AEt_Mandelbrot
http://en.wikipedia.org/wiki/Levy_function
http://en.wikipedia.org/wiki/Levy_function
http://en.wikipedia.org/wiki/Levy_function
http://en.wikipedia.org/wiki/Levy_function
http://en.wikipedia.org/wiki/Levy_function
http://en.wikipedia.org/wiki/Levy_function


In econometrics, an autoregressive conditional heteroscedasticity (ARCH, 
Engle (1982)) model considers the variance of the current error term to be a 

function of the variances of the previous time period's error terms. ARCH relates the 
error variance to the square of a previous period's error. It is employed commonly in 

modeling financial time series that exhibit time-varying volatility clustering, i.e. 
periods of swings followed by periods of relative calm. 

http://en.wikipedia.org/wiki/Econometrics
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Error_term
http://en.wikipedia.org/wiki/Volatility_(finance)

