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[Lecture 13 An introduction to: dynamical systems and to time series. Perodic and

guasiperiodic motions. (iue Jan 13, 2 pm - 4 pm Aulal Bianchi)

[lecture 2 Ergodicity. Uniferm distribution: of: orbits. Return times. Kac inequality: Mixing
(Fhudanids, 2 pm -4 pm Aula Dinr)

[.ecture 3: Koelmogorov-Sinai' entropy. Randomness and deterministic chaos. (iue Jan 27,

2.pm - 4 pm Aula Bianchi)
llecture 4: lime series analysis and embedoelogy. (ihu

Jan 29, 2 pm - 4 pm: Dinr)

[lecture 5: Fractals and multifractals. (Thu Febrl2, 2:pm -4 pm: Dini)

['ecture 6: Tihe rhythmsofilife. (ue Feb 17, 2 pm -4 pm: Bianchi)

[.ecture 7: Financial time series. (Thu Feb 19, 2'pmi-4 pm Dini)

[lecture 8: lihe efficient markets hypothesis. (liue Mar 3, 2'pmi- 4 pm Bianchi)
['ecture 9: A random walk:down Wall'Street. (ihu Mar 19, 2 pm - 4 pm. Dini)
[ecture 10: A non-random walk-down Wall'Street. (iue Mar24, 2:pm — 4 pm Bianchi)



Seminar [; Waiting times, recurrence times ergodicity, and quasiperiodic
dynamics (D:H: Kim, Suwoen, Kereay ThuJan 22, 2 pm - 4 pm Aula Dinr)

Seminar [1: Symbolization off dynamics. Recurrence rates and entropy. (S.
Galatolo, Universita dit Pisa; Tiue Eeb 10, 2 pm - 4 pm Aula Bianchi)

Seminar [I1; Heart Rate Variability: a statistical' physics point offview: (A.
Facchini, Universita di'Siena; Tiue Feb 24, 2 pm - 4 pm Aula Bianchi')

Seminar IV: Study of: a population model; the Yoccoz-Birkeland model (.
Papini, Universita difSiena; Thu kFeb 26, 2 pm' - 4 pm Aula Dini)

Seminar Vi Scaling laws in economics (G. Bottazzi, Scuola SUperore
Sant/Anna Pisay liue Mar 17, 2 pm' -4 pmiAula Bianchr)

Seminar VI: Complexity, sequence distance and heart rate variability (M.
DeglitEsposti, Universita di'Bologna; Thu Mar 26, 2 pm - 4 pmiAtla Dini’)

Seminar VIIL: Eorecasting (M. Lippi, Universita di
Romaj late april, TBA)



Examples of time-series in natural
dhd Sociall SCIENCES

Weather measurements (temperature, pressure, rain, wind
Speed, ...) . Iffthe seres IS Very Iong ...climate

Earthguakes
LLIgAtCUrVES ofi Variable stars

(Inflation, GDP,
employment,...)

(Stocks, futures, commodities, bonds; ...)
Populations census (humans o animals)
Physielegical sighals (ECG, EEG; ...)
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Sunspots, GDP and the stock market

Theodore Modis

Growth-Dynamics, Via Selva 8§, Massagno, 6900 Lugano, Switzerland
Received 6 May 2007; accepted 13 June 2007

Abstract

A correlation has been observed between the US GDP and the number of sunspots as well as between the Dow
Jones Industrial Average and the number of sunspots. The data cover 80 years of history. The observed correlations
permit forecasts for the GDP and for the stock market in America with a future horizon of 10 years. Both being
above their long-term trend they are forecasted to go over a peak around Jun-2008.



The work reported here presents hard-to-dispute evidence for the existence of a correlation between
stock-market movements as measured by the DJIA (Dow Jones Industrial Average) and sunspot activity,
as well as between GDP growth and sunspot activity. No causality arguments are made and there 1s no
attempt to understand the mechanisms behind the observed correlation. The author would be satisfied
with as little explanation as the possibility that sunspot activity may influence the climate on earth, which
in turn may influence the economy.

Still, given the correlation and the rather reliable forecasts for sunspot activity provided by NASA, the
author ventures long-range forecasts for GDP growth and the stock market in the United States,

Table |
All dates are in decimal fractions of a year
DIIA peaks Sunspot peaks Delta
1937.17 1938.25 L.08
1946.33 1948.67 234
1956.25 1958.42 217
196600 1969.25 3.25
1976.50 1980.83 4.33
1987 58 1990.50 292
1999.92 2001.17 1.25
Ave. delta=2.48
Forecast:

2008.44 2010.92
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Fig. 2. Percent deviations with respect to the long-term trends as calculated via 1 1-year moving averages. The arrows point at the
“significant™ DJIA peaks. The last arrow is a forecast (Jun-2008), see text.




Deviations w.r.t. 11-year averages
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Fig. 4. Percent deviations with respect to the long-term trends as calculated via |1 1-year moving averages. The arrows pointat the
“significant” GDP peaks. The last arrow is a forecast (Jun-2008), see text.

Yes!!! These paper really claims that U.S. GDP can be forecasted using
sunspots....
....what are Neokeynesians good for??? What is Obanomics good for???
What happened in the U.S. during the Maunder minimum???




400 Years of Sunspot Observations
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http://en.wikipedia.org/wiki/carbon-14
http://en.wikipedia.org/wiki/carbon-14
http://en.wikipedia.org/wiki/carbon-14
http://en.wikipedia.org/wiki/Earth's_atmosphere
http://en.wikipedia.org/wiki/Earth's_atmosphere
http://en.wikipedia.org/wiki/Earth's_atmosphere

Stochastic or Chaotic?

o An Important goall ol time-Seres analysis
IS to determing, given| a times series (€.d.
HRV) i the tnderlying dynamics (the
neart) Is:

— Intrnsically;

— (GEnerated by a
WRICH generates a random
ouUtpUt

— A mix of'the two' (Stochastic perturbations: of;
deterministic dynamics)



CHAOS 18, 030201 (2008)

Announcement: A new feature—"“Controversial Topics

in Nonlinear Science: Is the Normal Heart Rate Chaotic?”

Leon Glass
Department aof Physics, McGill University, Montréal, Québec H3G Y6, Canada

(Received 16 June 2008; published online & August 2008)

The normal heart rhythm in humans is set by a small group of cells called the sinoatrial
node. Although over short time intervals, the normal heart rate often appears to be
regular, when the heart rate is measured over extended periods of
time, it shows significant fluctuations. There are a number of factors that affect these
fluctuations: changes of activity or mental state, presence of drugs, presence of artificial
pace- makers, occurrence of cardiac arrhythmias that might mask the sinoatrial rhythm
or make it difficult to measure. Following the widespread recognition of the possibility of
deterministic chaos in the early 1980s, considerable attention has been focused on the
possibility that heart rate variability might reflect deterministic chaos in the physiological
control system regulating the heart rate. A large number of papers related to the
analysis of heart rate variability have been published in Chaos and elsewhere. However,
there is still considerable debate about how to characterize fluctuations in the heart rate
and the significance of those fluctuations. There has not been a forum in which these
disagreements can be aired. Accordingly, Chaos invites submissions that address
one or more of the following questions:



e Is the normal heart rate chaotic?
e If the normal heart rate is not chaotic, is there some more appropriate
term to characterize the fluctuations e.g., scaling, fractal, multifractal?
e How does the analysis of heart rate variability elucidate the

underlying mechanisms controlling the heart rate?

. If so, please
indicate what additional clinical studies would be useful for measures of
heart rate variability to be more broadly accepted by the medical
community.



Chaotic brains at wWork!

.R. Acad. 5cl Park, Scliences de la vie / Life Sclences 324 (2001) 773-7%3
2001 Acsdeémie des sciences/Editions scientifloues et meédicsles Elsevier SAS. Tous droits résenvés

Point sur / Concise review

Is there chaos in the brain? 1. Concepts of nonlinear
dynamics and methods of investigation

Philippe Faure, Henri Korn*®

Biologie cellulaire et moléculaire du neurone (Inserm V261, Institut Pasteur, 25 rue Docteur Roux, 75724
Paris Cedex 15, France

Received 18 June 2001; accepted 2 July 2001

Communicated by Pierre Buser

Abstract — In the light of results obtained during the last two decades in a number of
laboratories, it appears that some of the tools of nonlinear dynamics, first developed and
improved for the physical sciences and engineering, are well-suited for studies of
biological phenomena. In particular it has become clear that the different regimes of
activities undergone by nerve cells, neural assemblies and behavioural patterns, the
linkage between them, and their modifications over time, cannot be fully understood in
the context of even integrative physiology, without using these new techniques. This



Chaoetic brains at Work!

networks and in the study of higher brain functions, will be critically reviewed. It will be
shown that the tools of nonlinear dynamics can be irreplaceable for revealing hidden
mechanisms subserving, for example, neuronal synchronization and periodic oscilla-
tions. The benefits for the brain of adopting chaotic regimes with their wide range of
potential behaviours and their aptitude to quickly react to changing conditions will also
be considered. @ 2001 Académie des sciences/Editions scientifiques et médicales

Available online at www.sciencedirect.com

science (@hoineer-

C. R. Biologies 326 (2003) 787=-840

Neurosciences

Is there chaos in the brain? II. Experimental evidence
and related models

Henri Korn*, Philippe Faure

Reécepreurs et Cognition', CNRS 2182, Institur Pasteur. 25, rue du Docteur-Roux, 75724 Paris cedex 15, France

Received 16 September 2003; accepted 17 September 2003

Presented by Pierre Buser



P.Faure, H. Ko / C.R. Acagd. Scl. Pads, Sciences ce iz vie / Life Sciences 324 (2001) 773-7823
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Figure 9. Reconstruction o1 phase spaces with the delay method. (A1-A2) Case of a continuous signal, as for example the recording of membrane
potential, V. (A1) The time series is subdivided into two sequences of measurements of the same length N (here equal to 100 points). Their starting
point is shitted by the time lag 1. (A2) The trajectory in a two dimensional phase space is obtained by plotting, for each point of the time series, V,
against V,.,. (B1-B2) In the case of a discrete signal, such as time intervals between action potentials in a spike train (B1), the same procedure is
applied to time intervals 1, I,...J, (B2).
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Fig. 5. Discharge patterns of a pacemaker neuron caused by a dc current (A1-A3) representative samples of the recorded membrane potential.
(B1-B3) One-dimensional Poincaré maps of the corresponding sequence of spikes constructed using the delay method (see [1] for explanations).
(A1-B1) Regular discharges of action potentials. (A2-B2) Periodic firing with two spikes per burst. (A3-B3) Chaotic bursting discharges.
(Adapted from [45], with permission of the Journal of Theoretical Biology. )



Contintious Blood Pressure
Waverorm: Healthy Subject

http://www.viskom.oeaw.ac.at/~joy/March15,%202004.ppt

6000 8000 10000 12000 14000 16000




Randomness and the pnysical law

(though this depends on what the “true” laws of physics are, and
dlSO/tesome extent on certainontelogical assumptions about
reality),

, modeled using such abstract mathematical ebjects as
probability; spaces. Nevertheless, the CONCEpPL Of PSelaoraridonifiess-
objects which “behave™ randomly Ini various statistical senses - still
makes sense In' a purely: deterministic setting. A typical example are

the digits of 1=3.1415926555897932385...this IS a deterministic

sequence ofi digits, but is widely: believed: to behave
pseudorandomly in Various precise senses (e.g. each digit should
asymptotically appear 10% of the time).

http://terrytao.wordpress.com/2007/04/05

/simons-lecture-i-structure-and-randomness-in-fourier-analysis-and-number-theory/



http://terrytao.wordpress.com/2007/04/05

Logistic map series (adjusted with mean)
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Autocorrelations

ACF of logistic map series ACF of random normal series
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Fig. 2. Comparison of logistic map and random series.

K. Takala, M. Virén / European Journal of Operational Research 93 (1996} 155-172




Embedding dimension = m

Co(8) = lim —#(& X = % < £

m,i? mj m,i

Iog Cm (8 ) Correlation dimensions of logistic map and
d (m) — Ilm — random normal processes

g—0 Iog(g) )

4




Deterministic or random?
Appearance can be mlsleadlng




Time delay: map

Ganssian white noise Deterministic Gaussian white time series

Source: sprott.physics.wisc.edu/lectures/tsa.ppt



Logit and logistic

he legistic map x=—I1L(X)=4x(1-X) BrESERVES
the probability, measure du()=dx/(mmx(@=->x))
IThe transiermation h:[0; 1] —R; () =Inx=-1n(1-
X) conjugates L withrarnew map: G
h =G h
definned enr R: The new invarant prenability
measure is du)=dx/[m(e ¥=+ e *9)]

G and - have the same dynRamics (the only
difference Is a coerdinates change)
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http://en.wikipedia.org/wiki/Support_(mathematics)
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Cumulative_distribution_function
http://en.wikipedia.org/wiki/Cumulative_distribution_function
http://en.wikipedia.org/wiki/Cumulative_distribution_function
http://en.wikipedia.org/wiki/Cumulative_distribution_function
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Median
http://en.wikipedia.org/wiki/Mode_(statistics)
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Skewness
http://en.wikipedia.org/wiki/Kurtosis
http://en.wikipedia.org/wiki/Information_entropy

Jlakens theorem

s o : X > Xmap, i X — R smooth ebservable

® [iime-delay: map: (reconstruction of the
dYNamICs firomi perodic Sampling):

S E(fd) X — RESANS the nUMBENR ofi delays

o E(f,$) () = (%), (D (X)), (ped (), - (PN
C9)),

o Under mild assumptions i the dynamics has an
attractor With' dimension k' and n>2k then for
almost any. choice ofi the observable the
FECONStrUCHoN Map! IS INJECtVE




Immersions and embeddings

e A smooth map F on a compact smooth manifeld AT IS an
I the dervative map DE(X)" (represented by, the

Jacobian matrix ofi E at X)) IS One-te-One; at every. point XeA.
Since DEX) ISt ar linear map, this' Is equivalent terDEMX) having
[ull= ranks onithe tangent space: This can happen Whether or not
IS one-te-one. Under an’ immersion, no: differential strcture
IS lost In geing fromiA: to E(A).

® An of A" IS a smooth diffeemorphism from A onto; Its
iImage E(A), that IS, ai smooeth Gne-te-ene map WRhIch hasa
smooethiinverse. Eor a compact manifeld'A;, the map Eisan
embedding i and enly i, E ISia one- to-Gne Immersion.

e Jihe set off embeddings is IN the Set off Smoeoeth maps: arbitrarily:
small perturbations offan embedding will'still'be embeddings!



Em bedolcgy (Sauer, Yorke, Casdadli, J
Stat, Phys. 65 (1991)

Whitney: showed that algenercismooth map: E from: a d-dimensional

smooth compact manifeld M torRI "n>2d s actually: a diffeemorphism on
V. ihat 1s, M= and E(M)" are diffeemorphic. We' generalize this: in' two
Way/s:

o first, by replacing “generic with: “probability-one* (In" a prescribed
SENSE),

® second, by replacing; the manifold MEby: a° compact: iInvarant Set A

contained’ N some Rk that: may: have noninteger box-counting
dimension (boxdim). In' that case, We show. that almoest every
SMOeth map: from: a neighborhoed: off AT te RS ene-te-one as: long
as n>2 = boxdim(A)

We' also show: that almoest eVery:sSmooth map: IS an'embedding on
compact subsetsiof: smooeths manifelds: withins 15 Iihis: suggests: that
embedding technigues can' be: used: tor compute positive: Lyapunoy.
exponents: (but not necessarily: negative Lyapunoy: EXponents). Iine
positive Lyapunoey: expenents are usually: carried by: smooth' unstable
manifoelds on' attractors.



Em bedolcgy (Sauer, Yorke, Casdadli, J
Stat, Phys. 65 (1991)

liakens: dealt with' a' restricted class ofi maps called delay-coordinate

Maps: these are time Seres: ofi a single ebserved quantity: from: an
experiment. He showed (F. Takens, Detecting' strange attractors in turbulence, in
llecture Notes: inMathematics, No. 898 (Springer-Verlag, 1981 ) that iffthe dynamical
system' and! the ebserved guantity, are , then the delay-
coordinate map: from' a d-dimensional’ smoeoth compact manifeld M- to
ROER>2d0s a diffeemorphismion M.

" We replace generic with: probability-one
o and the manifeld: M by, a pessibly: fractal’ set.
Nihus;

Also, any: manifeld" structure
within: I will=be presenved: in: E(A):

o Only/ Gt smoeothnessiis needed.;

e For flows, the delay must: be chosen soithat there are no: Penodic Orbits
With period exactly, equalito the time delay; used or twice the delay.



Embedding method
® Plot X() vs. X(&7), X(&-27), X(&37), ...

® x(f) can be any observable

* The embedding dimension is the # of delays

® The choice of rand of the dimension are critical

® For a typical deterministic system, the orbit will be
diffeomorphic to the attractor of the system (Takens

theorem)



Theoretically, a time delay coordinate map yields an valid embedding for any
sufficiently large embedding dimension and for any time delay when the data are
noise free and measured with infinite precision.

But, there are several problems:

(i) Data are not clean
(ii) Large embedding dimension are computationally expensive and unstable
(iii) Finite precision induces noise

Effectively, the solution is to search for:

(i) Optimal time delay r
(ii) Minimum embedding dimension ¢
or
(i) Optimal time window 7,

There is no one unique method solving all problems and
neither there is an unique set of embedding parameters appropriate for all purposes.
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neither there is an unique set of embedding parameters appropriate for all purposes.



If zis too small, x(f) and x(&7) will be very close, then each reconstructed vector
will consist of almost equal components >

———> The reconstructed state space will collapse into the main diagonal

If zis too large, x(f) and x( 1) will be completely unrelated, then each reconstructed
vector will consist of irrelevant components >

> The reconstructed state space will fill the entire state space.

http://www.viskom.oeaw.ac.at/~joy/March22,%202004.ppt



Blood Pressure Signal

A better choice is:
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Estimate autocorrelation function:

Then, 7,,,~ ({0)/e
or
first zero crossing of ({7)

Modifications:

1. Consider minima of higher order autocorrelation functions, <x(7)x(+t)x(+27)>
and then look for time when these minima for various orders coincide.

Albano et al. (1991) Physica D

2. Apply nonlinear autocorrelation functions: <x2(0)x4(+217)>
Billings, Tao (1991) Int. J. Control.

http://www.viskom.oeaw.ac.at/~joy/March22,%202004.ppt



The information we have about the value of x(#7) if we know x( ).

1. Generate the histogram for the probability distribution of the signal x(?).

2. Let p;is the probability that the signal will be inside the ~th bin and
p(D) is the probability that x() is in th bin and x(&+7) is in Fth bin.

3. Then the mutual information for delay = will be

For = > 0, f{7) > Shannon’s Entropy

http://www.viskom.oeaw.ac.at/~joy/March22,%202004.ppt



Statistical analysis ol a time series:
moments ofi the prebability distrbution

nmealn

variance

standard deviation

skewness

kurtosis




Higher moments: simmetry: of
the distrbution and fat tails

o measures simmetry. of the data
about the mean (third moment)

o peakedness of the distrbution
relative torthe nermall distrbution: (hence
the -3 term)

o Nas
POsSIitive KUrtosIs



Y, observables with expectations p(w ) and u(p)

2 2 2
o(w) =[ (MW ) uy)"]

The of g, is

p(w,p)=covariance(y,p) / (a(w) o(p))
= M [(@- p(W))(@- 1 (p))] / (o(y) o())
=MW O - pu ()] / (o(w) o(p))

The correlation coefficient varies between -1 and 1 and
equals 0 for independent variables but this is only a
necessary condition (e.g. ¢ uniform on [-1,1] has zero
correlation with its square)



Sample correlation coefficient
pDetween two finite Series off data

{a;} for i=1,....N Ay;} for i=1,... N




Autocorrelation function

N with 2=0 and o> =1

N —71
1 Tpgrty T =0




Decay time off autocorrelation

This is an important indicator of the strength of the
autocorrelation of time series

It can be used to determine the time delay in embedology



Stationarity.

o dll parameters of the data series
statistical distrbution must be time-
Independent

o We only require that the
first two moments; (mean and Variance) are
constant

o can for Example be moements ofi
the probability distrbution, but alse
coefficients inrdifferential equations; or
dUtOregressive ProCESSES.



llests of stationarity.

s Vovind-window:analysis: Divide a long
Lime Series In Shorter WIndows and
analyze these short WInAewWs separately.

® For example split the series inte two: parts,
compute mean and Varance and compare
(remember that the standard’ error Will-be

o/ V/N)




Einancial time Sseries: standard
deyiation and volati|

y legarithmic returns ofa stocklha}é d standard deviation of;
0.01 and'there are 252 trading days In a year, then the time perod
off returns s 1/252 and annualized volatility is

The formula used torannualize returns IS Net deterministic, but is an
extrapolation valid for al randoem Walk process Whose steps have
finite variance. Generally, the relation between volatility in different
time scales is'more complicated, involving the: [Levy: stability

Ol = 2 you get th caling relation, but some people

believe o< 2 for financial’activities such as stocks, INdexes and so
on. Ihis was' discovered byBenoit Mandelbrot, who: looked at cotton
prices and found that they followed a Levy alpha-stable

gistbution withra = 1.7. Mandelbrots conclusion: is, hNOWEVES, NOt
accepted by mainstream financial' econometriCians.



http://en.wikipedia.org/wiki/Random_walk
http://en.wikipedia.org/wiki/Beno%C3%AEt_Mandelbrot
http://en.wikipedia.org/wiki/Beno%C3%AEt_Mandelbrot
http://en.wikipedia.org/wiki/Beno%C3%AEt_Mandelbrot
http://en.wikipedia.org/wiki/Levy_function
http://en.wikipedia.org/wiki/Levy_function
http://en.wikipedia.org/wiki/Levy_function
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In econometrics, an autoregressive conditional heteroscedasticity (ARCH,
Engle (1982)) model considers the variance of the current error term to be a
function of the variances of the previous time period's error terms. ARCH relates the
error variance to the square of a previous period's error. It is employed commonly in
modeling financial time series that exhibit time-varying volatility clustering, i.e.
periods of swings followed by periods of relative calm.
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