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Measure-preserving transformations

X phase space, μ probability measure

Φ:X → R observable (a measurable function, say L2)

Let A be subset of X  (event) 

μ(Φ) = ∫X Φ dμ is the expectation of Φ

T:X→X  induces a time evolution

on observables Φ → Φ T 

on events A →T-1(A)

T is measure preserving if 

μ(Φ)= μ(Φ T) i.e.  μ(A)=μ(T-1(A))        
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Birkhoff theorem and ergodicity

Birkhoff theorem: if T preserves the measure μ then
with probability one the time averages of the 
observables exist (statistical expectations). The 
system is ergodic if these time averages do not
depend on the orbit (statistics and a-priori 
probability agree)

Law of large numbers:
Statistics of orbits = 
a-priori probabilityJan 20, 2010 3
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Recurrence times

• A point is recurrent when it is a point of accumulation of its 
future (and past) orbit

• Poincarè recurrence: given a dynamical system T which 
preserves a probability measure μ and a set of positive 
measure E a point x of E is almost surely recurrent

• First return time of x in E: 

R(x,E)=min{n>0, Tⁿx ϵ E} 

• E could be an element of a partition of the phase space
(symbolic dynamics): this point of view is very important in 
applications (e.g. the proof of optimality of the Lempel-Ziv
data compression algorithm)
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Kac’s Lemma
• If T is ergodic and E has positive measure then

∫E R(x,E)dμ(x)=1 , 

i.e. R(x,E) is of the order of 1/μ(E): the average length of 
time that you need to wait to see a particular symbol 
is the reciprocal of the probability of a symbol. Thus, 
we are likely to see the high-probability strings within 
the window and encode these strings efficiently. 
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Order n correlation coefficient: 

Ergodicity implies

Mixing requires that

namely φ and φ ◦ Tⁿ become independent of each other as
n→∞

Mixing
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Strong vs. weak mixing

• Strongly mixing systems are such that for every E, F we have
μ(Tⁿ(E) π F)→ μ (E) μ (F)

as n tends to infinity; the Bernoulli shift is a good example. Informally, this is 
saying that shifted sets become asymptotically independent of unshifted sets.

• Weakly mixing systems are such that for every E, F we have
μ(Tⁿ(E) π F)→ μ (E) μ (F) 

as n tends to infinity after excluding a set of exceptional values of n of 
asymptotic density zero.  

• Ergodicity does not imply μ(Tⁿ(E) π F)→ μ (E) μ (F) but says that this is true for 
Cesaro averages: 
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Mixing of hyperbolic automorphisms of the 2-
torus (Arnold’s cat)
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Topological entropy

Topological entropy represents the exponential growth rate of the

number of orbit segments which are distinguishable with an arbitrarily

high but finite precision. It is invariant under topological conjugacy. 

Here the phase space is supposed to be a compact metric space (X,d) 

Here r(n, ) is the minimal 

cardinality of a (n, )-spanning set
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Alternative definition

Let α be an open cover of X and let N(α) be the number of sets

in a finite subcover of α with smallest cardinality

Here the join αVβ of two covers is αVβ = { A∩B : Aϵ α, B ϵ β }
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In information theory, entropy is a measure of the uncertainty 
associated with a random variable.

• Experiment with outcomes  A = {a1, ..., ak}

• probability of obtaining the result  is  pi

0 <= pi <= 1,     p1 + ... pk = 1

• If one of the ai, let us say a1 occurs with probability  that is close to 
1, then in most trials the outcome would be a1 . There is not much 
information gained after the experiment

• We quantitatively measure the magnitude of ‘being surprised’ as 
information = −log (probability)

• (magnitude of our perception is proportional to the logarithm of 
the magnitude of the stimulus)
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Uniqueness of entropy

Jan 20, 2010 13
S. Marmi  and G. Tiozzo- Dynamics and 
time series: theory and applications -

Lecture 3



Entropy of a dynamical system 
(Kolmogorov-Sinai entropy)
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Properties of the entropy

Let T:X→X, S:Y→Y be measure preserving 

(T preserves μ, S preserves ν)

If S is a factor of T then h(S,ν)≤ h(T,μ)

If S and T are isomorphic then h(S,ν)=h(T,μ)

On XxY one has h(TxS,μxν)= h(T,μ) x h(S,ν)
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Entropy and partitions

Thus the entropy associated to the experiment is 

In view of the definition of information = - log (probability), 
entropy is simply the expectation of information
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Shannon-Breiman-McMillan theorem

Let P be a generating partition

Let P(n,x) be the element of

which contains x

The SHANNON-BREIMAN-

MCMILLAN theorem says that

for ergodic T, for a.e. x one has

h(T,μ)= - lim   Log μ(P(n,x))

n→∞        n

P
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Asymptotic equipartition property

These formulas assume that the entropy is measured 
in bits,  i.e. using  the base 2 logarithm
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Entropy of Bernoulli schemes

Jan 20, 2010 19
S. Marmi  and G. Tiozzo- Dynamics and 
time series: theory and applications -

Lecture 3



Lyapunov exponents for interval maps

• Assume that T is a piecewise smooth map of I=[0,1]

• By the chain rule we have

• If μ is an ergodic invariant measure for a.e. x the limit exists 
and it is given by

which is also called the Lyapunov exponent of T
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Expanding maps and Rokhlin formula

If T is expanding then it has a unique a.c.i.p.m.
μ and the entropy h of T w.r.t. μ is equal to the 
Lyapunov exponent
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Topological Markov chains or subshifts
of finite type

(primitive matrix)
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Entropy of Markov chains
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Entropy, coding and data compression

• Computer file= infinitely long binary sequence

• Entropy = best possible compression ratio

• Lempel-Ziv (Compression of individual sequences via variable rate coding, IEEE 

Trans. Inf. Th. 24 (1978) 530-536): it does not assume knowledge of 
probability distribution of the source and achieves asymptotic 
compression ratio=entropy of source
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The entropy of English

Is English a stationary ergodic process? Probably not! 

Stochastic approximations to English: as we increase the complexity of 

the model, we can generate text that looks like English. The stochastic 

models can be used to compress English text. The better the stochastic 

approximation, the better the compression.

alphabet of English = 26 letters and the space symbol

models for English are constructed using empirical distributions 

collected from samples of text. 

E is most common, with a frequency of about 13%, 

least common letters, Q and Z, have a frequency of about 0.1%.
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Source: Wikipedia

Frequency of letters
In English

Frequency of letters
In Italian
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Construction of a Markov model for
English

The frequency of pairs of letters is also far from uniform: 

Q is always followed by a U, the most frequent pair is TH,

(frequency of about 3.7%), etc. 

Proceeding this way, we can also estimate higher-order conditional 
probabilities and build more complex models for the language. 

However, we soon run out of data. For example, to build

a third-order Markov approximation, we must compute 

p(xi |xi−1,xi−2,xi−3)  in correspondence of 27x27³ = 531 441 entries for 
this table: need to process millions of letters to make accurate estimates 
of these probabilities.
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Examples
(Cover and Thomas, Elements of Information Theory, 2nd edition , Wiley 

2006)

• Zero order approximation (equiprobable h=4.76 bits): 

XFOML RXKHRJFFJUJ  ZLPWCFWKCYJ  FFJEYVKCQSGXYD  

QPAAMKBZAACIBZLHJQD

• First order approximation (frequencies match): 

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI

ALHENHTTPA  OOBTTVA  NAH BRL

• Second order (frequencies of pairs match): ON IE ANTSOUTINYS ARE T 

INCTORE ST BE S DEAMY ACHIN D ILONASIVE TUCOOWE AT 

TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE

• Third order (frequencies of triplets match): IN NO IST LAT WHEY 

CRATICT FROURE BERS GROCID PONDENOME OF 

DEMONSTURES OF THE REPTAGIN IS REGOACTIONA OF CRE
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• Fourth order approximation (frequencies of quadruplets match, each letter depends
on previous three letters; h=2.8 bits): 

THE GENERATED JOB PROVIDUAL BETTER TRANDTHE DISPLAYED 

CODE, ABOVERY UPONDULTS WELL THE CODERST IN THESTICAL IT DO 

HOCK BOTHE MERG. (INSTATES CONS ERATION. NEVER ANY OF PUBLE 

AND TO THEORY. EVENTIAL CALLEGAND TO ELAST BENERATED IN 

WITH PIES AS IS WITH THE )

• First order WORD approximation (random words, frequencies match):   

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN 

DIFFERENT NATURAL HERE HE THE A IN CAME THE TO OF TO EXPERT 

GRAY COME TO FURNISHES THE LINE MESSAGE HAD BE THESE.

• Second order (WORD transition probabilities match): THE HEAD AND IN 

FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHARACTER OF 

THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS THAT 

THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED
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