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Measure-preserving transformations

X phase space, p probability measure
®:X — R observable (a measurable function, say L?2)
Let A be subset of X (event)
w(®) =, ® duis the expectation of @
T.X—X induces a time evolution
on observables b ->PT
on events A —->T1L(A)
T IS measure preserving if

W(P)=p(® T) i.e. W(A)=p(T1(A))
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Birkhoff theorem and ergodicity

Birkhoff theorem: if T preserves the measure p then
with probability one the time averages of the
observables exist (statistical expectations). The
system is ergodic if these time averages do not
depend on the orbit (statistics and a-priori
probability agree)

I Z,
N %: ¢OT<$>_—5N90 /X

Law of large numbers:
v {1 €0, N), T(z) € A} — /L(A> Statistics of orbits =
oy e @%prriori probability
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Recurrence times

A point is recurrent when it is a point of accumulation of its
future (and past) orbit

Poincare recurrence: given a dynamical system T which
preserves a probability measure u and a set of positive
measure E a point x of E is almost surely recurrent

First return time of x in E:
R(x,E)=min{n>0, T"x € E}

E could be an element of a partition of the phase space
(symbolic dynamics): this point of view is very important in
applications (e.g. the proof of optimality of the Lempel-Ziv
data compression algorithm
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Kac’s Lemma

* |f Tis ergodic and E has positive measure then

JE ROGE)R(x)=1,

i.e. R(x,E) is of the order of 1/u(E): the average length of
time that you need to wait to see a particular symbol
is the reciprocal of the probability of a symbol. Thus,
we are likely to see the high-probability strings within
the window and encode these strings efficiently.

S. Marmi and G. Tiozzo- Dynamics and
Jan 20, 2010 time series: theory and applications -
Lecture 3



MiXing
Order n correlation coefficient:

cn(p,¥) = [@ap o T dp — [ pdp [bdy

1 N-1
Ergodicity implies o Coltgi ) ==

Mixing requires that )

namely ¢ and ¢ ° T" become independent of each other as
N—>00
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Strong vs. weak mixing

* Strongly mixing systems are such that for every E, F we have

W(T™(E)  F)> W (E) p (F)
as n tends to infinity; the Bernoulli shift is a good example. Informally, this is
saying that shifted sets become asymptotically independent of unshifted sets.

*  Weakly mixing systems are such that for every E, F we have

W(T"(E) F)=> w(E) p (F)

as n tends to infinity after excluding a set of exceptional values of n of
asymptotic density zero.

* Ergodicity does not imply u(T"(E) m F)—> u (E) u (F) but says that this is true for
Cesaro averages:
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Mixing of hyperbolic automorphisms of the 2-
torus (Arnold’s cat)
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Topological entropy

Topological entropy represents the exponential growth rate of the
number of orbit segments which are distinguishable with an arbitrarily
nigh but finite precision. It is invariant under topological conjugacy.
Here the phase space Is supposed to be a compact metric space (X,d)

Definition 4.1 Let S C X, ne€ N and e > 0. S is a (n,z)-spanning set if for
every ¥ € X there exists y € S such that d(f7(z). f/(y)) < e forall 0 < j < n.

hiop(f) = lim lim sup l log (. ) Here r(n, €) is the minimal

e=0 ptoo N cardinality of a (n, €)-spanning set
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Alternative definition

Let o be an open cover of X and let N(a) be the number of sets
In a finite subcover of o with smallest cardinality

htop(f) = sup Jlim Elon g N (\/ /- af)

X

Here the join aVP of two coversisaVp ={ANB:Aca, Bep }
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In information theory, entropy is a measure of the uncertainty
associated with a random variable.

* Experiment with outcomes A={a,, ..., a,}

* probability of obtaining the result is p;
O<=pi<=1, p+..p=1
* If one of the g, let us say a, occurs with probability that is close to

1, then in most trials the outcome would be a, . There is not much
information gained after the experiment

* We quantitatively measure the magnitude of ‘being surprised’ as
information = —-log (probability)

* (magnitude of our perception is proportional to the logarithm of
the magnitude of the stimulus)
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Suppose that one performs an experiment which we will denote a which has

m &€ N possible mutually esclusive outcomes Aj,..., A, (e.g. throwing a coin

m =2 or a dice m = 6). Assume that each possible outcome A; happens with a

probability p; € [0,1], 327" p; =1 (in an experimental situation the probability

will be defined statistically). In a probability space (X, A, pt) this corresponds to

the following setting : « is a finite partition X = A, U... U A, mod(0), A4; € A,
(A N A =0, p(A;) = pi

Returning to our “experiment”, we define on X a function I(a) called information
relative to the partition a which, evaluated at the point x, expresses the amount
of information we get from the knowledge of the element A; of a to which z
belongs. It is natural to ask that I depends only on the probability of A; so
that I(a) = S ,—, &(pi)xa, for some function ¢ : Ry — Ry it is natural
to require that ¢ is decreasing since the information is bigger if we can locate
r in a smaller set. Finally we assume that. if a and 3 are independent. then
the information gained from the knowledge of the position of x with respect to
both partitions is obtained summing the information relative to each partition :
Ilav 3)=1(a)+I1(3) . To fulfill this last requirement on ¢ we must impose that
o(ab) = ¢la) + @(b) Ya,b € (0,1). 1t is then clear that ¢(¢) must be a constant
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Uniqueness of entropy

T
A ={(z1,...,Tp) ER™ | z; €[0.1], Y z; =1}
i=1
Definition 4.15A continuous function H(™ : A(™) — [0, 4+oc] is called an
entropy if it has the following properties :
(1) symmetry : Vi,7 € {1,....m} H™ (p1,....pis....Dju- - Pm) =H(p1....,pj ]

s Pisee s Dm)
(2) H™)(1,0,...,0)=0;

(3/] m}(o Pze...,}ﬁ'm) = H(m—l}@zf“‘?pm) vm = 2, ¥ @2""’}9”1) €

Alm—1)
(4) ¥ (p1e....pm) € A" one has H"™) (py.....py) < H™ (%%) where
equality 1s possible if and only if p; = # for all i=1,....m;
(5) Let (T11se s MU ToLsee e s Tolsn v s Tynlseees Tmi) € A m” fm‘ all (p1s--. pm)
e A one must have

E}(““ ..... g.ﬂ‘glf“.,’:‘rmg) :H(m}(plf....pm)-l-
+ H”(““.....E)
Zp Y~

Theorem 4.16 An entropy is necessarily a positive multiple of
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Entropy of a dynamical system
(Kolmogorov-Sinai entropy)

GGiven two partitions P and ©Q
Pv Q the join of P and @

BNC where B € O and C € O
T - X — X measure preserving

P, =PVvTPv...vT-(n=Up

h(T,P)= lim H (Pn) h h(T) = t:up h(T,P)
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Properties of the entropy

Let T:X—X, S:Y—Y be measure preserving
(T preserves p, S preserves v)

If n>1, then h(T™) = nh(T)
If T is invertible, then h(T~1) = h(T)

If S is a factor of T then h(S,v)< h(T,u)
If S and T are isomorphic then h(S,v)=h(T,u)
On XXxY one has h(TxS uxv) h(T w) X h(S,v)
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Entropy and partitions

Thus the entropy associated to the experiment is

k
H = —Z, pilog p;
1=1

In view of the definition of information = - log (probability),

entropy is simply the expectation of information
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Shannon-Breiman-McMiillan theorem

Let &’be a generating partition
Let P(n,x) be the element of

n—1

which contains x

0 200 400 500 500 oo 1he SHANNON-BREIMAN-

L MCMILLAN theorem says that
for ergodic T, for a.e. x one has

h(T,w)=-lim Log u(P(n,x))
n

N—o0
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Asymptotic equipartition property

Suppose that P is a finite generating partition of X. For everye > 0 andn > 1
there exist subsets in P,, which are called (n.e)-typical subsets, satisfying the
following:

(i) for every typical subset P, (x)

Q—Tt(h—l—s) < #(Pn(ff)) < Q—Tl(h—sj f

(ii) the union of all (n.e)-typical subsets has measure greater than 1 — . and
(iii) the number of (n. e)-typical subsets is between (1 —&)2""=¢) gnd 2n(h+e),

These formulas assume that the entropy is measured
in bits, i.e. using the base 2 logarithm
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Entropy of Bernoulli schemes

Let- :\T 2 2, EN’ — {1. . :V}E
d(z.y) =27%®Y)  where a(x,y) = inf{|n|. n €Z. z, # yn}

shift o+ 2y — Xy o((@i)icz) = (Ti+1)iez
The topological entropy of (X n,0) is log N
(p1.....pn) € A v({i}) = pi

Definition 4.26 The Bernoulli scheme BS(pi1,....pn) is the measurable dynam-
ical system given by the shift map o : Xy — Xy with the (product) probability
measure ;1 = v on Y y.
Pr0p051t10n 4.27The Kolmogorov-Sinai entropy of the Bernoulli scheme BS(py,....pn)
is — Z--g: , Di log p;.
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Lyapunov exponents for interval maps

Assume that T is a piecewise smooth map of |=[0,1]

By the chain rule we have

n—1
1 1 .
~log |T"(z) — T"(y)| ~ — Y log|T'(T'z)|.
og |T"(z) = T(y)| ~ — 3 log |T'(T')

n —0
If Lis an ergodic invariant measure for a.e. x the limit exists
and it is given by

] .
| log [T du

which is also called the Lyapunov exponent of T
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Expanding maps and Rokhlin formula

f T is expanding then it has a unique a.c.i.p.m.
1 and the entropy h of T w.r.t. 1 is equal to the
Lyapunov exponent

1
h =/ log | T"(x)|dpu
0
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Topological Markov chains or subshifts
of finite type

Sa={zeXn,(zsrip1)elVieZ} [ C{l...N}?
Y. 4 is a compact shift invariant subset of X

A = Ar the N x N matrix with entries a;; € {0,1}

a; :{1 -f\:,*ﬁ(z,‘;)el
0 otherwise

The restriction of the shift o to ¥ 4 is denoted o4

A™ = (aj}) and @7 > 0 for all .5 (primitive matrix)
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Entropy of Markov chains

Theorem 4.35 (Perron—Frobenius, see [Gan]) If A is primitive then there
exists an eigenvalue A4 > 0 such that :
(i) |Aa| > A for all eigenvalues A # A4 ;
(ii) the left and right eigenvectors associated to A4 are strictly positive and are
unique up to constant multiples :

(iii) Aa is a simple root of the characteristic polynomial of A.

the topological entropy of 04 is logAa (clearly A4 > 1 since all the integers aff; > 0)

Let P = (F;;) be an N x N matrix such that
(1) Pij > 0 for all 7,7, and Piij >0 < Ai; = 1:
(i) Yo Py=1foralli=1.....N:
(iii) P™ has all its entries strictly positive.
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Such a matrix is called a stochastic matriz. Applying Perron—Frobenius
theorem to PP we see that 1 is a simple eigenvalue of P and there exists a normalized
eigenvector p = (p.....pn) € AW guch that p; > 0 for all 7 and

N
S piPj=pj. V1<i<N.

a=1

We define a probability measure 2 on ¥ 4 corresponding to P prescribing its value

J0s e Jk
.U'(C (114-;{-)) :p‘jDPijl.“ij—ljkr

foralli € Z, k > 0 and jg,.... 5 € {1,..., N}. It is called the Markov measure
associated to the stochastic matrix P.

on the cylinders :

- the subshift o4 preserves the Markov measure u.

(54 Z szzj IDD ij h#(ﬂ'ﬂ) < hmp(ﬂ}l)
1,7=1
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Entropy, coding and data compression

 Computer file= infinitely long binary sequence
* Entropy = best possible compression ratio

LempeI—Ziv (Compression of individual sequences via variable rate coding, IEEE
Trans. Inf. Th. 24 (1978) 530-536): it does not assume knowledge of
probability distribution of the source and achieves asymptotic
compression ratio=entropy of source
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Let X = {0.1}" and o be a left-shift map.
Define R, to be the first return time of the initial n-block, i.e.,

Ro(x)=min{j > 1:x1...X, = Xj41 ... Xjsn}-

15
—'—

x=]1010[01001101100(1010[---= Ra(x) = 15.

1
The convergence of —log R,(x) to the entropy h was studied in a
n

relation with data compression algorithm such as the Lempel-Ziv
compression algorithm.
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The Lempel-Ziv data compression algorithm provide a universal
way to coding a sequence without knowledge of source.

Parse a source sequence into shortest words that has not appeared
so far:

1011010100010--- = 1,0,11.01,010,00,10,...

For each new word, find a phrase consisting of all but the last bit,
and recode the location of the phrase and the last bit as the
compressed data.

(000, 1) (000, 0) (001, 1) (010, 1) (100, 0) (010, 0) (001, 0)...
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Theorem (Wyner-Ziv(1989), Ornstein and Weiss(1993))

For ergodic processes with entropy h,

1
lim —log R,(x) = h almost surely.
n—oc N

The meaning of entropy

» Entropy measures the information content or the amount of
randomness.

» Entropy measures the maximum compression rate.

» Totally random binary sequence has entropy log2 = 1. It
cannot be compressed further.
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The entropy of English

Is English a stationary ergodic process? Probably not!

Stochastic approximations to English: as we increase the complexity of
the model, we can generate text that looks like English. The stochastic
models can be used to compress English text. The better the stochastic
approximation, the better the compression.

alphabet of English = 26 letters and the space symbol

models for English are constructed using empirical distributions
collected from samples of text.

E i1s most common, with a frequency of about 13%,
least common letters, Q and Z, have a frequency of about 0.1%.
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Relative Frequency

Frequency of letters

In
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Construction of a Markov model for
English

The frequency of pairs of letters is also far from uniform:
Q 1s always followed by a U, the most frequent pair is TH,
(frequency of about 3.7%), etc.

Proceeding this way, we can also estimate higher-order conditional
probabilities and build more complex models for the language.

However, we soon run out of data. For example, to build
a third-order Markov approximation, we must compute

p(xi [xi—1,xi—2,x1—3) In correspondence of 27x273 = 531 441 entries for
this table: need to process millions of letters to make accurate estimates
of these probabilities.
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Examples

(Cover and Thomas, Elements of Information Theory, 2nd edition , Wiley
2006)

Zero order approximation (equiprobable h=4.76 bits):

XFOML RXKHRJFRJUJ ZLPWCFWKCYJ FFJEYVKCQSGXYD
QPAAMKBZAACIBZLHJIQD

First order approximation (frequencies match):
OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI
ALHENHTTPA OOBTTVA NAH BRL

Second order (frequencies of pairs match): ON IE ANTSOUTINYS ARE T
INCTORE ST BE S DEAMY ACHIN D ILONASIVE TUCOOWE AT
TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE

Third order (frequencies of triplets match): IN NO IST LAT WHEY
CRATICT FROURE BERS GROCID PONDENOME OF
DEMONSTURES OF THE REPTAGIN IS REGOACTIONA OF CRE
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Fourth order approximation (frequencies of quadruplets match, each letter depends
on previous three letters; h=2.8 bits):

THE GENERATED JOB PROVIDUAL BETTER TRANDTHE DISPLAYED
CODE, ABOVERY UPONDULTS WELL THE CODERST IN THESTICAL IT DO
HOCK BOTHE MERG. (INSTATES CONS ERATION. NEVER ANY OF PUBLE
AND TO THEORY. EVENTIAL CALLEGAND TO ELAST BENERATED IN
WITH PIES AS ISWITH THE)

First order WORD approximation (random words, frequencies match):
REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN
DIFFERENT NATURAL HERE HE THE A IN CAME THE TO OF TO EXPERT
GRAY COME TO FURNISHES THE LINE MESSAGE HAD BE THESE.

Second order (WORD transition probabilities match): THE HEAD AND N
FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHARACTER OF
THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS THAT
THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED
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