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[Lecture 1: An introduction to. dynamical systems and to time series. Periodic and
guasiperiodic motions. (iue Jan 13, 2 pm - 4 pm Aula;Bianchi)

[lecture 2: Ergodicity. Uniform distribution of: orbits. Return times. Kac inequality: Mixing
(ThuJan 15, 2'pmi- 4 pm Aula Dini)

lecture 3: Kolmogoerov-Sinal entropy. RandomneSSs and
deterministic chaos. (htue Jan 27, 2 pm -4 pm Aula
Bianchi)

['ecture 45 lime series analysis and embedolegy. (huiJani29, 2 pm - 4 pm Dini)
[lecture 5; Fractals and multifractals. (Thu Eebrl2, 2 pm -4 pm: Dini)

['ecture 6: Tihe rhythms ofilife. (iue Feb 17, 2 pm -4 pm: Bianchi)

[lecture 7: Financial time series. (Thu Feb 19, 2'pmi-4 pm  Dini)

[lecture 8: Iihe efficient markets hypothesis. (iue Mar 3, 2 pmi -4 pm Bianchr)
|'ecture 9: A random walk:down Wall'Street. (hu Mar 19, 2 pm - 4 pm. Dini)

[lecture 10: A 'non-random walk-down Wall'Street. (iue Mar 24, 2 pm — 4 pm| Bianchi)



Seminar [; Waiting times, recurrence times ergodicity, and quasiperiodic
dynamics (D:H: Kim, Suwoen, Kereay ThuJan 22, 2 pm - 4 pm Aula Dinr)

Seminar [1: Symbolization off dynamics. Recurrence rates and entropy. (S.
Galatolo, Universita dit Pisa; Tiue Eeb 10, 2 pm - 4 pm Aula Bianchi)

Seminar [I1; Heart Rate Variability: a statistical' physics point offview: (A.
Facchini, Universita di'Siena; Tiue Feb 24, 2 pm - 4 pm Aula Bianchi')

Seminar IV: Study of: a population model; the Yoccoz-Birkeland model (.
Papini, Universita difSiena; Thu kFeb 26, 2 pm' - 4 pm Aula Dini)

Seminar Vi Scaling laws in economics (G. Bottazzi, Scuola SUperore
Sant/Anna Pisay liue Mar 17, 2 pm' -4 pmiAula Bianchr)

Seminar VI: Complexity, sequence distance and heart rate variability (M.
DeglitEsposti, Universita di'Bologna; Thu Mar 26, 2 pm - 4 pmiAtla Dini’)

Seminar: VII: Forecasting| (IBA)



Measure-preserving transtormations

X phase space, [ probability: measure

d:X > R (& measurable function,
say %), Let A be subset of X ( ):

u(®) = |, @ diiis the <
XX IRAUCES a
OR elhservables D> D
On EVENRLS A—T 'l(A)

TS 1 (D)= (D) ILE.
HEAYSHETE (A))




Birkhofi: theorem and ergodicity

BirkRoff theorem: Ifi I preserves the measure |
then with' prebability: one the

(Statisticall expectations).
Iihe system s [Fthese time averages
do net depend on the orbit (statistics and a-
Priori probability: agree)

Law of large numbers:
Statistics of orbits =
a-priori probability

%# {i € [0, N), T(z) € A} —> u(A)




Recurrence times

o A POINE IS WRER LIS a point off accumulation
off Its future (and past) orbit
o : diven a dynamical system i

WRICH Presenves al propability: measure [U'and al set of
positive measure E a point x ol E s almoest surely.
FECUrrent

o off X Inl E:
ROGE)=mingn>0, 12X € E}

o E could be an element of a partition off the phase
Space (Ssymbolic dynamics): this point of VIEW. IS Very.
Important in applications (€.g. the prool of: optimality
off the LLempel-Ziv: data compression algorithm)



Kac's Lemma

o [flris ergodic and E has positive measure
then

I ROGE) A=,
=

I.e. R(X E) s of the order off 1/u(E): the average
ength o time that you need to'Walt to)see a
particular symboliis the reciprocal ofi the
probability; of a'symbol: Tius, we are likely: to
See the Nigh-prebpability: striings wWithin the
WINAOW: and encode: these strings: efficiently:




MIXing

Order n correlation coefficient:

cn(0,9) = [oap o Tdp — [ pdu [bdu

Ergodicity Implies

MiIXing reguires that

namely @ and @ e [ becom
Off eéachi other asin—oe

elngepenienL



Strong vs. Weak mixing

systems are suchithat for every E, E, we have

LECE) m B)— 1 (E) u (F)ras n tends to finity; the Bernoulli
ShIft IS a good example. Informally, thisis saying that shifted
Sets become asymptotically independent of: Unshifted Sets.

systems are suchithat for every E, E, we have

LEMCE) )= 1 (E) p (F)as n tends to Infinity: aiter exciuding
d SeL Ofexceplional Vallues: ol 11 O asylipLoLc dersity . Zero.

does not imply: LCE) i E)— 1 (E) w (F) but says
that this s true for Cesare averages:



MiIXing off NYPErboelIc automoerpnisms of
the 2-torus (Arnoeld’s cat)




llopological entropy:

represents the

At IS mvariant under topoelogical
Conjugacy.
HEere the phase space IS SUPPeSed 1o be a compact metric space (OX.d).

Definition 4.1 Let S C X, n € N and ¢ > 0. S is a (n,&)-spanning set if for

every x € X there exists y € S such that d(f7(z). f’(y)) < e forall 0 < j < n.

- 1 _
hop(f) = lim limsup —logr(n, ) EEEEICH{GRANERENEEL Ryl

of points In an (n,e)-spanning set

£—0 n—+toc




Alternative definition

et o e an open: cover: ofi X and let N(o) be the numBEr: of:sets
Ina finite subcover of:on With smallest cardmality

n—1
htop(f) =sup lim llogN (\/ f‘ia>

n—oo 71
@ i=0

Here the join oV of two covers Is obtained considering the sets
ANB where Ae a, B €



IR INIEEMatieNI thELRY, entropy. IS'a measure of the Uncertainty,
associated With' a ianeom Varable.

* Experiment with outcomes: A = {a,,..., a4,

s\ priebability offobtaining the result: @:is
0 < p,< Lpy+4p =1

o [ffone of the @; , et us say ®1 occurs with probability: that'is
close to 1, then'in' most trials the outcome would be @1 .
Iihere istnoet muchiinformation gained after the experment

o \\/e guantitatively: measure the magnitiude of BEIng surprised:
as Information = —log (prebability)

o (magnitude ofi OUr PErCEPLION IS Proportional torthe logaritim
off the magnitude of the stimulus)


http://en.wikipedia.org/wiki/Information_theory
http://en.wikipedia.org/wiki/Random_variable

Suppose that one performs an experiment which we will denote a which has
m &€ N possible mutually esclusive outcomes Aj,..., A, (e.g. throwing a coin
m =2 or a dice m = 6). Assume that each possible outcome A; happens with a
probability p; € [0,1], 327" p; =1 (in an experimental situation the probability
will be defined statistically). In a probability space (X, A, pt) this corresponds to

the following setting : « is a finite partition X = A, U... U A, mod(0), A4; € A,

Returning to our “experiment”, we define on X a function I(a) called information
relative to the partition a which, evaluated at the point z, expresses the amount
of information we get from the knowledge of the element A; of a to which z
belongs. It is natural to ask that I depends only on the probability of A; so
that I(a) = S ,—, &(pi)xa, for some function ¢ : Ry — Ry it is natural
to require that ¢ is decreasing since the information is bigger if we can locate
r in a smaller set. Finally we assume that. if a and 3 are independent. then
the information gained from the knowledge of the position of x with respect to
both partitions is obtained summing the information relative to each partition :
I(aVv 3) =1(a)+I1(3). To fulfill this last requirement on ¢ we must impose that
o(ab) = ¢(a) + ¢(b) Ya,b € (0,1). It is then clear that ¢(¢) must be a constant
multiple of —logt.



Entropy. and partitions

® [hus the entropy. ass%ciated to the experiment IS

H=— p;log p;

= |

In view of the definition of information = - Log (probability),
entropy is simply the expectation of information



Unigueness ofi entropy:.

Alm) ={(z1,....Tm) € R | x; €0, 1], Zmi =1}

Definition 4.15A continuous function H™ : Alm) — [0, +oc] is called an
entropy if it has the following properties :
(1) symmetry : Vi, j € {1,....m} H™(py,...,p;.... W ey i) =H(p1,...,pj,l

o Birs B )3
(2) H“"’(l 0....,0)=0;

(3) H soisibm) = B Wi codm) ¥ m B 2 ¥ e ibw) €

(4) ¥ (P Pm) € A™ one has H™ (py,...,pp) < H™ (L., L) where
equality is possible if and only if p; = ;nL Jorollt=dyuou W

(5) Let (Wllv ce s T T2y e e s T2L5 v oo s T 1 s - ~-a7‘-’ml) € A(ml) : fOT all (pla“ *pm)

e A™) one must have

.T"ml) =H(m)(p1,- . spm)+
m
il (s
+) pHY (—,...,

Theorem 4.16 An entropy is necessarily a positive multiple of




Entropy. of a dynamical system
(Kelmogorev-Sinall entropy)

Given two partitions P and Q

the join of P and ©Q

BNC where B € Q and C € Q

h(T,P)= lim —1—H (Pn) MT) = Sgp T, P)

n—oo M,




Properties of the entropy

Let IBX—X S:Y—Y e measure preserving (1
PrESENVES [, S Presenves v)

In > 1, then h(T™) =nh(T)

If T is invertible, then h(T~1) = h(T)

I S Is a factor of T then h(S,v)<h(T,w)
If S and T are Isomorphic then h(S,v)=nh(T,u)
On XXY one has h(TxS,uxv)= h(T,n)xh(S,v)



Shannon=Breiman=-McMillan

Let &”be a generating partition
et P(n,Xx) be the element of

n—1

Vrr

i=0

which contains x

a0 The SHANNON-BREIMAN-
MCMILLAN theorem says that
for a.e. x one has

h(T,u)= - lim Log p(P(n,x))

N—00 n




Asymptotic' eguipartition
PFOPENLY

Suppose that P is a finite generating partition of X. For everye > 0 andn > 1

there exist subsets in Py, which are called (n,)-typical subsets, satisfying the
following:

(i) for every typical subset Py,(x),
2-—n(h+s) & /-L(Pn(x)) < 2—n(h.—s) ’

(ii) the union of all (n,e)-typical subsets has measure greater than 1 — e, and
(i1i) the number of (n. €)-typical subsets is between (1 —e)2™"=¢) gnd 2n(h+e),

These formulas assume that the entropy is measured
in bits, i.e. using the base 2 logarithm



Entropy: off Bernoulli schemes

Let N >2, %y ={1,...N}Z

d(z,y) =27®¥%)  where a(z.y) = inf{|n|. n € Z. z,, # y,}

shift o : Xy — XN 0((7:)icz) = (Tit1)icz

The topological entropy of (X N o) is log N

Definition 4.26 The Bernoulli scheme BS(p1,....pn) is the measurable dynam-
ical system given by the shift map o : ¥y — X with the (product) probability

measure 1 = v% on Yy.

Proposition 4.27 The Kolmogorov-Sinai entropy of the Bernoulli scheme BS(p;.....pn)
is — Y, pilog pi.




LVapunoyV: exponent for a map
off an interval

o Assume that IF IS a pIECEWISE Smooth map) of
I=[0,1]

o By the chain rulewe have

 [f IS anl ergodiC Invariant measure fior' a.e. X

the limit existsiand it Is given by.

It IS also) called the Lyapunoy
exponent off i




Expanding maps and RoOKAIIN
formula
[IFis expanding then it hias a tunigue

d.C.I.p.m. [rand the entropy h of [T W.rt. [
IS egual to the Lyapunoy: exponent




Tlopological Markoey: chalns or
SUBSHIfts off finite type

Ya={r€eXn. (zizit1) €e'Vi € Z}
Y 4 is a compact shift invariant subset of ¥

A = Ar the N x N matrix with entries a;; € {0,1}

az..:{l > (i,j) €T
? 0 otherwise

The restriction of the shift o to ¥4 is denoted o4

A™ = (aj}) and @ > 0 for all i, j



Entropy: of Markey: chains

Theorem 4.35 (Perron—Frobenius, see [Gan]) If A is primitive then there
exists an eigenvalue A4 > 0 such that :
(i) [Aa| > A for all eigenvalues A # A4 :
(ii) the left and right eigenvectors associated to A4 are strictly positive and are
unique up to constant multiples :
(iii) Aa is a simple root of the characteristic polynomial of A.

Let P = (F;;) be an N x N matrix such that

(1) Pz'j > 0 for all 7. 7. and P@:j > (0 <— a;; = 1:

(i) S0, Py =1foralli=1 ,
(iii) P™ has all its entries strictly positive.

El




Such a matrix is called a stochastic matriz. Applying Perron-Frobenius
theorem to P we see that 1 is a simple eigenvalue of PP and there exists a normalized
eigenvector p = (p1.....pn) € AN such that p; > 0 for all 7 and

S piPy=p;. V1I<i<N.

i=1

We define a probability measure i on ¥4 corresponding to P prescribing its value

J0s e Jk
JUJ(C (Eq,t—}ﬁf)) :ijPijl'“ij_ljk,

foralli € Z, k > 0 and jg,.... 5 € {1,..., N}. It is called the Markov measure
associated to the stochastic matrix P.

on the cylinders :

the subshift o4 preserves the Markov measure u




Entrepy, coding and data
COmMpPression

o Computer file="infinitely long binary: SEGUENCE
®' Entropy: = bBest possible’ compression ratio

o LempeI-Ziv (Compression|offindividualisequences via variable rate coding,
IEEE Tirans. Inf. Th. 24 (1978) 530-536):; AOES NOL assume
knowledge of probability, distrbution of: the seurce and
dCRIEVES asymptotic COMPrESSION ratio=entrepy. Off SOUKCE



Let X = {0.1}" and o be a left-shift map.
Define R, to be the first return time of the initial n-block, i.e.,

Ro(x)=min{j > 1:x1...X, = Xj41 ... Xjsn}-

15
—I—\

x=[1010]01001101100[1010]--- = Rs(x) = 15.

1
The convergence of — log R,(x) to the entropy h was studied in a
n

relation with data compression algorithm such as the Lempel-Ziv
compression algorithm.




The Lempel-Ziv data compression algorithm provide a universal
way to coding a sequence without knowledge of source.

Parse a source sequence into shortest words that has not appeared
so far:

1011010100010 --- = 1.0.11.01.010. 00. 10. . . .

For each new word, find a phrase consisting of all but the last bit,
and recode the location of the phrase and the last bit as the
compressed data.

(000, 1) (000, 0) (001, 1) (010, 1) (100, 0) (010, 0) (001, 0)...




Theorem (Wyner-Ziv(1989), Ornstein and Weiss(1993))

For ergodic processes with entropy h,

1
lim —log R,(x) = h almost surely.
n—oo N

The meaning of entropy

» Entropy measures the information content or the amount of
randomness.

» Entropy measures the maximum compression rate.

» Totally random binary sequence has entropy log2 = 1. It
cannot be compressed further.




Ihe entropy. off English

IS Englishiis a stationary, ergodic process? Probably: not!

Stochastic approximations to English: asiWe Increase the complexity. of
the model; we can generate text that looks like English fine stochastic
mogdels can be used o compress Englishitext. lihe better the stochastic
approximation; the etter the cCompression.

alphabet ol English'= 26 letters and'the space symool

mogdels for Englishiare constructea using empirical distrioutions
collected from samples ofitext.

E IS most common, With'a frequency. ofiabout 1.3%,
least common Ietters, @ and'Z, have a frequency. of:about 0.1%.



Frequency of letters
In Italian

0,00 H
0,08 -H H HT
007 HHH H
006 HHHHHHHH
05 HHHHHHHHF
0 HHHHHHHHH HH
0B3HHHHHHHHHHH
02 HHHHHHHHHHH -
0 HHHHHHHHHHH L H

eaion !l rtsedpumwgh fbagaz

Relative Frequency
|

| o I s R e Y

0 I I I I I I I I I I I I I I I I I I I I I I I I I

etaoinshrdlcumwfgyphbykjxagz FIE6EEeRei s
Letter In English

Source: Wikipedia



Construction of a Markoev: model
for English

lihe frequency. ofipairs ofiletters is also far from uniform:
Q1S always followed by a U, the most frequent pairis i,
(frequency/ ofiabout 3.7%), EIC.

Proceeding this way, We can also estimate higher-order: conditional
propabilities anaburna more complex models for the language.

HOWEVEr, We Soon run out ofidata. For example; to burla
a third-order MarkoV approximation, We must compute

pxa X1 1ox1=2,x1-3) i correspondence ofi 27x27° = 531 441
entries for this taple: need to: process millions of Ietters to make
accurate estimates of: these probabilities.



Exam ples (Gover and! Thomas, Elements, of
Information liheoery, 2nd edition’, Wiley: 2006)
ZEero orderapproximation (eguiprobable N=4.76 bits):

XEOML RXKHRIERIUJ ZIEPWCREWKCYJ ERJEYVKCQSGXYD
QPAAMKBZAACIBZIEHIQD

FIrSt order approximation (freguencies match):
OCRO HLEITRGWR NMIELEWIS EU L NBNESEBYA TH EEI
ALHENHTHRPA OOBIIVA NAH BRI

Second order: (frequencies of: pairs match): ONIE ANTSOUTHNY'S
ARE TF INCIORE SIVBE S DEAMY ACHINDALLONASIVE
NUCOOWE Al IEASONARE FUSOTHZINFANDY TOBE SEACE
CHSBE

Jihirarorder: (frequencies ofitriplets match) s INFNOISTF EATRWHE Y.
CRANCIFFROURE BERS GROCID'PONDENOME OF
DEMONSTURES OF THE REPTAGIN'IS REGOACTHIONA OF
CRE



> Fourth order approximation (frequencies of:guadruplets match, each
[etter depends on previous three letters; h=2.8 DIts):

NTHE GENERATED JOB PROVIDUAL BETMER TRANDTHE
DISPLEAYED CODE ABOVERY URONDUIEHS WELIE HE
CODERSIFINTTHESTHCAL Iy DO'HOCK BONHE MERG:
(INSTATES CONS ERATION. NEVER ANY OF PUBLLE AND 1O
THEORY. EVENTHAL CALILEGAND IO EILASTF BENERATED
IN'WITTH PIES AS IS WITH TTHE")

s Birst orderr WORID approximation (random Words, frequencIes
match): REPRESENTHNG ANDISPEEDILEY IS ANIGOOD AP
OR COME CAN DIEFERENIFNATURAL HERE HE TTHE A'IN
CAME THE 10 OF IO EXPERIFGRAY COME NTO'FURNISHES
THE LINE MESSAGE HAD BE THESE.

s Second'erder (WORD: transition probanilitiess match) s HE HEAD
ANDINEFRONTAL ATTACK ONTANFENGLISHWRITER TIHAM
NHE CHARACTER OF THIS POININIS THEREFORE ANOTHER
METHODFORTHE LEMNNERS THATNTHE THIVIE OF WHO'EVER
NOLD THE PROBLLEMIEFOR ANFUNEXPECTIED



