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Dynamical systems

A dynamical system is a couple (X phase space, time evolution law:
either a map T:X—X or a flow ¢,:X—X, here t is time)

The phase space X is the set of all possible states (i.e. initial
conditions) of our system

Each initial condition uniquely determines the time evolution
(determinism)

The system evolves in time according to a fixed law (iteration of a
map T, flow g, for example arising from solving a differential
equation, etc.)

Often (but not necessarily) the evolution law Is not linear
Observables are simply scalar functions ¢:X—R
Time series naturally arise from the time evolution of the observables:

d(X), (T(X)), d(T-T(X)), &(T3 (x)), ..... Here T*(X)=T oT" (X)



Measure-preserving transformations

X phase space, u probability measure

®:X — R observable (a measurable function, say L?).
Let A be subset of X (event).

w(®) =J, @ dy is the expectation of @
T:X—X Induces a time evolution

on observables: @& — ®-T

on events: A —T1(A)

T 1s measure preserving If w(®)= u(d-T) I.e.
WA)=u(T (A))
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Law of large numbers

{Xi} Independent identically distributed random variables
E(X.) =<+

1 n

— > X, > U

L)

Then Xn=

Weak form:

Ve>0 limP(Xn—ule)=1

Strong form: =0

Xn—> Y7 almost surely
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Birkhoff theorem and ergodicity

Birkhoff theorem: If T preserves the measure u then
with probability one the time averages of the
observables exist (statistical expectations). The
system Is ergodic If these time averages do not
depend on the orbit (statistics and a-priori probability
agree)

5 T poTi@)= 1 Swelz) — fp(dul®

! | Law of large numbers:
vt i €0,N), T'(z) € A} — u(A)  Statistics of orbits =
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Law of large numbers vs Birkhoff

theorem
Random setting Deterministic setting
X} iid. random variables T:- X > X
E(X) =pn <+ f e L'(X,dg) observable
H Z xi — U are not necessarily independent
1=1
If T ergodic

almost surely 1
=Y foT! > | fdu
N5

almost surely
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“Historia magistra vitae” or the
mathematical foundation of
backtesting

* Without assuming ergodicity, Birkhoff theorem
shows that:

* Time averages exist and they give rise to an
experimental statistics to compare with theory

 Past and future time averages agree almost
everywhere



Recurrence times

A point is recurrent when it is a point of accumulation of its
future (and past) orbit

Poincare recurrence: given a dynamical system T which
preserves a probability measure u and a set of positive
measure E a point x of E Is almost surely recurrent

First return time of X In E:
R(X,E)=min{n>0, Trx € E}

E could be an element of a partition of the phase space
(symbolic dynamics): this point of view is very important in
applications (e.g. the proof of optimality of the Lempel-Ziv
data compression algorithm)
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Kac's Lemma
* If T iIs ergodic and E has positive measure then

e RxE)du(x)=1.

l.e. R(X,E) is of the order of 1/u(E): the average length of
time that you need to wait to see a particular symbol is
the reciprocal of the probability of a symbol. Thus, we
are likely to see the high-probability strings within the
window and encode these strings efficiently.
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The ubiquity of “cycles” (as long as they last...)

. If E Is a set of positive measure in a
measure-preserving system, and Kk Is a positive integer, then there
are infinitely many integers n for which

HENT ™EYn..nT % VUY(E)Y>0
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Strong vs. weak mixing: on events

 Strongly mixing systems are such that for every E, F we have

W(TE) N F)— p (E) u (F)
as n tends to infinity; the Bernoulli shift is a good example.
Informally, this iIs saying that shifted sets become asymptotically
Independent of unshifted sets.

« \Weakly mixing systems are such that for every E, F we have

W(T(E) N F)— p (E) n (F)
as n tends to infinity after excluding a set of exceptional values of n of
asymptotic density zero.

 Ergodicity does not imply u(T~(E) N F)— u (E) n (F) but says that
this is true for Cesaro averages:

1n 3™ W(T(E) N F)— p (E) p (F)
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Mixing: on observables

Order n correlation coefficient:

cn(p,¥) = [@ap o T dp — [ pdp [bdy

N-1

%_ e, ) — 0

=)=

Ergodicity implies
Mixing requires that e, 1) —

namely ¢ and ¢ ° T» become independent of each other as
N—00
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Mixing of hyperbolic automorphisms of the
2-torus (Arnold’s cat)

- ) Y
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