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• Lecture 1: An introduction to dynamical systems and to time series. Periodic and 

quasiperiodic motions. (Tue Jan 13,  2 pm - 4 pm Aula Bianchi)

• Lecture 2: Ergodicity. Uniform distribution of orbits. 

Return times. Kac inequality Mixing (Thu Jan 15,  2 

pm - 4 pm Aula Dini)

• Lecture 3: Kolmogorov-Sinai entropy. Randomness and deterministic chaos. (Tue Jan 27,  

2 pm - 4 pm Aula Bianchi)

• Lecture 4: Time series analysis and embedology. (Thu Jan 29,  2 pm - 4 pm Dini)

• Lecture 5: Fractals and multifractals. (Thu Feb 12,  2 pm - 4 pm  Dini)

• Lecture 6: The rhythms of life. (Tue Feb 17,  2 pm - 4 pm  Bianchi)

• Lecture 7: Financial time series. (Thu Feb 19,  2 pm - 4 pm  Dini)

• Lecture 8: The efficient markets hypothesis. (Tue Mar 3,  2 pm - 4 pm Bianchi)

• Lecture 9: A random walk down Wall Street. (Thu Mar 19,  2 pm - 4 pm  Dini)

• Lecture 10: A non-random walk down Wall Street. (Tue Mar 24, 2 pm – 4 pm Bianchi)



• Seminar I: Waiting times, recurrence times ergodicity and quasiperiodic
dynamics (D.H. Kim, Suwon, Korea; Thu Jan 22,  2 pm - 4 pm Aula Dini)

• Seminar II: Symbolization of dynamics. Recurrence rates and entropy (S. 
Galatolo, Università di Pisa; Tue Feb 10,  2 pm - 4 pm Aula Bianchi)

• Seminar III: Heart Rate Variability: a statistical physics point of view (A. 
Facchini, Università di Siena; Tue Feb 24,  2 pm - 4 pm Aula Bianchi ) 

• Seminar IV: Study of a population model: the Yoccoz-Birkeland model (D. 
Papini, Università di Siena; Thu Feb 26,  2 pm - 4 pm Aula Dini)

• Seminar V: Scaling laws in economics (G. Bottazzi, Scuola Superiore 
Sant'Anna Pisa; Tue Mar 17,  2 pm - 4 pm Aula Bianchi) 

• Seminar VI: Complexity, sequence distance and heart rate variability (M. 
Degli Esposti, Università di Bologna; Thu Mar 26,  2 pm - 4 pm Aula Dini )

• Seminar VII: Forecasting (TBA)



Dynamical systems

• A dynamical system is a couple (phase space, time evolution 
law)

• The phase space is the set of all possible states (i.e. initial 
conditions) of our system

• Each initial condition uniquely determines the time evolution 
(determinism)

• The system evolves in time according to a fixed law (iteration 
of a map, differential equation, etc.)

• Often (but not necessarily) the evolution law is not linear



Ergodic theory

• The focus of the analysis is mainly on the 
asymptotic ditribution of the orbits, and 
not on transient phenomena. Ergodic
theory is an attempt to study the 
statistical behaviour of orbits of

dynamical systems restricting the 
attention to their asymptotic distribution. 
One waits until all transients have been 
wiped off and looks for an invariant 
probability measure describing the 
distribution of typical orbits. 



Measure theory vs. probability
theory



Stochastic or chaotic?

• An important goal of time-series analysis
is to determine, given a times series (e.g. 
HRV) if the underlying dynamics (the 
heart) is:

– Intrinsically random

– Generated by a deterministic nonlinear
chaotic system which generates a random
output

– A mix of the two (stochastic perturbations of
deterministic dynamics)



Randomness and the physical law
• It may well be that the universe itself is completely deterministic 

(though this depends on what the ―true‖ laws of physics are, and 
also to some extent on certain ontological assumptions about 
reality), in which case randomness is simply a mathematical 
concept, modeled using such abstract mathematical objects as 
probability spaces. Nevertheless, the concept of pseudorandomness-
objects which ―behave‖ randomly in various statistical senses - still 
makes sense in a purely deterministic setting. A typical example are 

the digits of π=3.1415926535897932385…this is a deterministic 

sequence of digits, but is widely believed to behave 
pseudorandomly in various precise senses (e.g. each digit should 
asymptotically appear 10% of the time). If a deterministic system 
exhibits a sufficient amount of pseudorandomness, then random 
mathematical models (e.g. statistical mechanics) can yield accurate 
predictions of reality, even if the underlying physics of that reality 
has no randomness in it.

http://terrytao.wordpress.com/2007/04/05
/simons-lecture-i-structure-and-randomness-in-fourier-analysis-and-number-theory/

http://terrytao.wordpress.com/2007/04/05


Probability, statistics and the 
problem of induction

• The probability of an event (if it exists) is almost always
impossible to be known a-priori

• The only possibility is to replace it with the frequencies
measured by observing how often the event occurs

• The problem of backtesting

• The problem of ergodicity and of typical points: from a single 
series of observations I would like to be able to deduce the 
invariant probability

• Bertrand Russell’s chicken (turkey nella versione USA)



http://www.edge.org/3rd_culture/taleb08/taleb08_index.html

Bertrand Russel
(The Problems of Philosophy, 

Home University Library, 1912. Chapter VI On Induction) Available at the 
page http://www.ditext.com/russell/rus6.html

Domestic animals expect food when they see the person who feeds 
them. We know that all these rather crude expectations of 

uniformity are liable to be misleading. The man who has fed the 
chicken every day throughout its life at last wrings its neck 

instead, showing that more refined views as to the uniformity of 
nature would have been useful to the chicken.

http://www.edge.org/3rd_culture/taleb08/taleb08_index.html
http://www.ditext.com/russell/rus6.html
http://www.ditext.com/russell/rus6.html
http://www.ditext.com/russell/rus6.html


http://www.edge.org/3rd_culture/taleb08/taleb08_index.html

http://www.edge.org/3rd_culture/taleb08/taleb08_index.html


Figure 3 The graph shows the daily variations a derivatives
portfolio exposed to U.K. interest rates between 1988 and 2008.
Close to 99% of the variations, over the span of 20 years, will be

represented in 1 single day—the day the European Monetary
System collapsed. As I show in the appendix, this is typical with

ANY socio-economic variable (commodity prices, currencies,
inflation numbers, GDP, company performance, etc. ). No known
econometric statistical method can capture the probability of the
event with any remotely acceptable accuracy (except, of course,

in hindsight, and "on paper"). Also note that this applies to
surges on electricity grids and all manner of modern-day

phenomena.

http://www.edge.org/3rd_culture/taleb08/taleb08_index.html

Payoff from
mildly OTM 
UK Sterling

Short 
Option, 

1988-2008

http://www.edge.org/3rd_culture/taleb08/taleb08_index.html


Measure-preserving transformations

X phase space, μ probability measure

Φ:X → R observable (a measurable function, 

say L ). Let A be subset of X  (event). 

μ(Φ) = ∫  Φ dμ is the expectation of Φ

T:X→X  induces a time evolution

on observables Φ → Φ T 

on events A →T    (A)

T is measure preserving if μ(Φ)= μ(Φ T) i.e.  

μ(A)=μ(T    (A))        

-1

-1

X

2



Birkhoff theorem and ergodicity

Birkhoff theorem: if T preserves the measure μ
then with probability one the time averages of
the observables exist (statistical expectations). 
The system is ergodic if these time averages
do not depend on the orbit (statistics and a-
priori probability agree)

Law of large numbers:
Statistics of orbits = 
a-priori probability



―Historia magistra vitae‖ or the 
mathematical foundation of
backtesting

• Without assuming ergodicity, Birkhoff
theorem shows that: 

• Time averages exist and they give rise to an
experimental statistics to compare with
theory

• Past and future time averages agree almost
everywhere



Statistical distribution of frequencies of vists

Rotation

Gauss map

Doubling map



The simplest dynamical systems

• The phase space is the circle: 
S=R/Z

• Case 1: quasiperiodic dynamics

θ(n+1)=θ(n)+ω (mod 1)

(ω irrational)

• Case 2:  chaotic dynamics
θ(n+1)=2θ(n)(mod 1)

ω





Recurrence times

• A point is recurrent when it is a point of accumulation
of its future (and past) orbit

• Poincarè recurrence: given a dynamical system T 
which preserves a probability measure μ and a set of
positive measure E a point x of E is almost surely
recurrent

• First return time of x in E: 

R(x,E)=min{n>0, Tⁿx ϵ E} 

• E could be an element of a partition of the phase
space (symbolic dynamics): this point of view is very
important in applications (e.g. the proof of optimality
of the Lempel-Ziv data compression algorithm)



Kac’s Lemma

• If T is ergodic and E has positive measure
then

∫ R(x,E)dμ(x)=1 , 

E

i.e. R(x,E) is of the order of 1/μ(E): the average 
length of time that you need to wait to see a 
particular symbol is the reciprocal of the 
probability of a symbol. Thus, we are likely to 
see the high-probability strings within the 
window and encode these strings efficiently. 



The ubiquity of ―cycles‖ (as long as they last…)

• There are few persons, even among the calmest thinkers, who have not 
occasionally been startled into a vague yet thrilling half-credence in the 
supernatural, by coincidences of so seemingly marvellous a character that, 
as mere coincidences, the intellect has been unable to receive them. Such 
sentiments -- for the half-credences of which I speak have never the full 
force of thought -- such sentiments are seldom thoroughly stifled unless by 
reference to the doctrine of chance, or, as it is technically termed, the 
Calculus of Probabilities. Now this Calculus is, in its essence, purely 
mathematical; and thus we have the anomaly of the most rigidly exact in 
science applied to the shadow and spirituality of the most intangible in 
speculation.  (Egdar Allan Poe, The mistery of Marie Roget)

Furstenberg’s recurrence: If E is a set of positive measure in a 
measure-preserving system, and k is a positive integer, then
there are infinitely many integers n for which



ψ,φ observables with expectations μ(ψ ) and μ(φ)

σ(ψ)   =[ (μ(ψ )- μ(ψ )  ] variance

The correlation coefficient of ψ,φ is

ρ(ψ,φ)=covariance(ψ,φ) / (σ(ψ) σ(φ))
= μ [(ψ- μ(ψ))(φ- μ (φ))] / (σ(ψ) σ(φ))

= μ [ψ φ - μ(ψ)μ (φ)] / (σ(ψ) σ(φ))

The correlation coefficient varies between -1 and 1 and 
equals 0 for independent variables but this is only a 

necessary condition (e.g. φ uniform on [-1,1] has zero 
correlation with its square)

2 22



If we have a series of n  measurements of X  and Y  written as 
x(i)  and y(i)  where i = 1, 2, ..., n, then the Pearson product-
moment correlation coefficient can be used to estimate the 

correlation of X  and Y . The Pearson coefficient is also known
as the "sample correlation coefficient". The Pearson correlation 

coefficient is then the best estimate of the correlation of X 
and Y . The Pearson correlation coefficient is written:



Correlation between two
observables or series



Correlation and data-mining



Stupid Data Miner Tricks: Overfitting the S&P 500
David J. Leinweber

THE JOURNAL OF INVESTING
Spring 2007



Stupid Data Miner Tricks: Overfitting the S&P 500
David J. Leinweber

THE JOURNAL OF INVESTING
Spring 2007



Stupid Data Miner Tricks: Overfitting the S&P 500
David J. Leinweber

THE JOURNAL OF INVESTING
Spring 2007



Historical correlation between
stockmarkets
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EAFE-US

Emerging-US

EAFE-Emerging

Correlation coefficients between rolling 5-year series of monthly returns of
the indexes MSCI-Barra EAFE (Europe, Australasia, Far East), MSCI-U.S. and 

MSCI-Emerging Markets. 



Mixing
Order n correlation coefficient: 

Ergodicity implies

Mixing requires that

namely φ and φ ◦ Tⁿ become independent
of each other as n→∞



Strong vs. weak mixing
• Strongly mixing systems are such that for every E, F, we have

μ(Tⁿ(E) π F)→ μ (E) μ (F) as n tends to infinity; the Bernoulli 

shift is a good example. Informally, this is saying that shifted 
sets become asymptotically independent of unshifted sets.

• Weakly mixing systems are such that for every E, F, we have

μ(Tⁿ(E) π F)→ μ (E) μ (F) as n tends to infinity after excluding 
a set of exceptional values of n of asymptotic density zero.  

• Ergodicity does not imply μ(Tⁿ(E) π F)→ μ (E) μ (F) but says 

that this is true for Cesaro averages: 



Mixing of hyperbolic automorphisms of
the 2-torus (Arnold’s cat)


