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 Dynamics and time series: theory and applications 

 

• Introduction to dynamical systems (deterministic and stochastic) and their use 

in the study of time series, especially economics and financial time series 

• Introduction to dynamical systems and time series. Stationary states. Periodic 

and quasiperiodic motions. Ergodicity, uniform distribution of orbits. Return 

times, Kac inequality. Mixing. Shannon entropy. Kolmogorov-Sinai entropy. 

Lyapunov exponents. Entropy and information theory. Markov chains. Mutual 

information, relative entropy. Reconstruction of attractors from time series: 

Takens’ theorem. Gambling, probabilistic games, risk management and Kelly 

criterion.  

• Stochastic processes, autoregressive models, random walks, Brownian 

motion. Ordinary Least Squares and Maximum Likelihood. Granger causality. 

Correlation and autocorrelation. Stylized facts for financial time series. 

Volatility, heterosckedasticity, ARCH and GARCH. 

• Introduction to R programming and its use for time series analysis 
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• Lectures on OLS, Maximum Likelihood, AR, ARMA, ARCH, GARCH: 

Fulvio Corsi (Swiss Finance Institute) 

• Introduction to R programming language and laboratory: Luigi Bianchi 

(SNS) 

• Dynamical Systems: lecture notes; Michael Brin and Garrett Stuck: 

Introduction to Dynamical Systems, Cambridge University Press 2003  

• Information Theory: Thomas Cover, Joy: Thomas Elements of Information 

Theory, 2nd edition, Wiley 2006 

• Time series: Holger Kantz and Thomas Schreiber: Nonlinear Time Series 

Analysis, Cambridge University Press 2004; Peter Brockwell and Richard 

Davies: Time Series: Theory and Methods, Springer 2nd ed. 2006; Lambert 

Koopmans: The Spectral Analysis of Time Series, Academic Press 1974; 

Johnatan Cryer and Kung-Sik Chan: Time Series Analysis with Applications 

in R, Springer 2008 

• Mathematical models in finance and time series analysis: John Campbell, 

Andrew Lo and Craig MacKinlay: The Econometrics of Financial Markets, 

Princeton University Press, 1997; Stephen Taylor: Asset Price Dynamics, 

Volatility, and Prediction Princeton University Press 2005. 
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Dynamical systems 
• A dynamical system is a couple (X phase space, time evolution law: 

either a map T:X→X or a flow gt :X→X, here t is time) 

• The phase space X is the set of all possible states (i.e. initial 
conditions) of our system 

• Each initial condition uniquely determines the time evolution 
(determinism) 

• The system evolves in time according to a fixed law (iteration of a 
map T, flow gt for example arising from solving a differential 
equation, etc.) 

• Often (but not necessarily) the evolution law is not linear 

• Observables are simply scalar functions ϕ:X→R  

• Time series naturally arise from the time evolution of the observables:  

     ϕ(x), ϕ(T(x)), ϕ(T◦T(x)), ϕ(T3 (x)), ….. Here Tn+1(x)=T ◦Tn (x) 
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Examples of dynamical systems in 

natural and social sciences 
• The Solar System     

• Atmosphere (meteorology)  

• Human body (heart, brain cells, lungs, ...)  

• Ecology (dynamics of animal populations)  

• Epidemiology 

• Chemical reactions 

 

   Dynamical systems not necessarily deterministic 

• Stockmarket 

• Electric grid 

• Internet   
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Examples of time-series in natural 

and social sciences 
• Weather measurements (temperature, pressure, rain, wind speed, …) . 

If the series is very long …climate 

• Earthquakes 

• Lightcurves of variable stars 

• Sunspots 

• Macroeconomic historical time series (inflation, GDP, 

employment,…) 

• Financial time series (stocks, futures, commodities, bonds, …) 

• Populations census (humans or animals) 

• Physiological signals (ECG, EEG, …) 
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• Free sources of financial time series (see my homepage) 

• Reuters/Jefferies CRB Index (commodities) 

• Oanda.com: FXHistory®: historical currency exchange rates  

• Yahoo finance page (indexes, stocks, etfs, mutual funds)  

• Kenneth R. French data library (fantastic!)  

• Robert Shiller online data (includes montlhy historical S&P500 index value, 

earnings, long term interest rates, CPI since 1871)  

• Hedge funds indexes …………………………………..and much more! 

 

• High frequency (intraday, 1 min) financial data: ETFs and US stocks 

• Economic time series: 

• http://research.stlouisfed.org/fred/  

• http://www.economicsnetwork.ac.uk/links/data_free.htm 

• Free sources of metereological data: e.g. meteopisa.it 

• Free sources of physiological time series: physionet.org 

• ….. 
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http://www.jefferies.com/cositemgr.pl/html/ProductsServices/SalesTrading/Commodities/ReutersJefferiesCRB/IndexData/index.shtml
http://www.oanda.com/convert/fxhistory
http://www.oanda.com/convert/fxhistory
http://www.oanda.com/convert/fxhistory
http://finance.yahoo.com/
http://finance.yahoo.com/
http://finance.yahoo.com/
http://finance.yahoo.com/
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://www.econ.yale.edu/~shiller/data.htm
http://www.econ.yale.edu/~shiller/data.htm
http://www.econ.yale.edu/~shiller/data.htm
http://www.econ.yale.edu/~shiller/data.htm
http://www.econ.yale.edu/~shiller/data.htm
http://www.econ.yale.edu/~shiller/data.htm
http://www.econ.yale.edu/~shiller/data.htm
http://www.econ.yale.edu/~shiller/data.htm
https://www.hedgefundresearch.com/index.php?fuse=home&1232142746
https://www.hedgefundresearch.com/index.php?fuse=home&1232142746


• Temperature and pressure time series from www.meteopisa.it 

Nov 7, 2011 
S. Marmi - Dynamics and time series: 
theory and applications - Lecture 1: 

introduction 
8 



Ergodic theory 

 

 

• The focus of the analysis is mainly on the asymptotic 
ditribution of the orbits, and not on transient phenomena.  

• Ergodic theory is an attempt to study the statistical behaviour 
of orbits of dynamical systems restricting the attention to their 
asymptotic distribution.  

• One waits until all transients have been wiped off and looks 
for an invariant probability measure describing the distribution 
of typical orbits.  
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Measure theory vs. probability 

theory 
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Stochastic or chaotic? 

 

An important goal of time-series analysis is to determine, given a 

times series if the underlying dynamics is: 

• Intrinsically random  

• Generated by a deterministic nonlinear chaotic system 

which generates a random output 

• A mix of the two (stochastic perturbations of deterministic 

dynamics) 
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Randomness and the physical law 
• It may well be that the universe itself is completely deterministic (though 

this depends on what the “true” laws of physics are, and also to some extent 
on certain ontological assumptions about reality), in which case 
randomness is simply a mathematical concept, modeled using such abstract 
mathematical objects as probability spaces. Nevertheless, the concept 
of pseudorandomness- objects which “behave” randomly in various 
statistical senses - still makes sense in a purely deterministic setting. A 

typical example are the digits of π=3.1415926535897932385…this is a 
deterministic sequence of digits, but is widely believed to behave 
pseudorandomly in various precise senses (e.g. each digit should 
asymptotically appear 10% of the time). If a deterministic system exhibits a 
sufficient amount of pseudorandomness, then random mathematical models 
(e.g. statistical mechanics) can yield accurate predictions of reality, even if 
the underlying physics of that reality has no randomness in it. 

http://terrytao.wordpress.com/2007/04/05 
/simons-lecture-i-structure-and-randomness-in-fourier-analysis-and-number-theory/ 
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Probability, statistics and the 

problem of induction  

• The probability of an event (if it exists) is almost always impossible 

to be known a-priori 

• The only possibility is to replace it with the frequencies measured by 

observing how often the event occurs 

• The problem of backtesting 

• The problem of ergodicity and of typical points: from a single series 

of observations I would like to be able to deduce the invariant 

probability 

• Bertrand Russell’s chicken (turkey  nella versione USA) 
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http://www.edge.org/3rd_culture/taleb08/taleb08_index.html  

Bertrand Russel 
(The Problems of Philosophy,  

Home University Library, 1912.  Chapter VI On Induction) Available at the 
page http://www.ditext.com/russell/rus6.html  

 
Domestic animals expect food when they see the person who feeds 

them. We know that all these rather crude expectations of 
uniformity are liable to be misleading. The man who has fed the 

chicken every day throughout its life at last wrings its neck 
instead, showing that more refined views as to the uniformity of 

nature would have been useful to the chicken.  
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http://www.edge.org/3rd_culture/taleb08/taleb08_index.html  
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Figure 3 The graph shows the daily variations a derivatives 
portfolio exposed to U.K. interest rates between 1988 and 2008. 
Close to 99% of the variations, over the span of 20 years, will be 

represented in 1 single day—the day the European Monetary 
System collapsed. As I show in the appendix, this is typical with 

ANY socio-economic variable (commodity prices, currencies, 
inflation numbers, GDP, company performance, etc. ). No known 
econometric statistical method can capture the probability of the 
event with any remotely acceptable accuracy (except, of course, 

in hindsight, and "on paper"). Also note that this applies to 
surges on electricity grids and all manner of modern-day 

phenomena. 

http://www.edge.org/3rd_culture/taleb08/taleb08_index.html  

Payoff from  
mildly OTM 
UK Sterling 

Short 
Option,  

1988-2008 
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Rain rate time series from meteopisa.it,  

German electricity prices time series from http://www.econ-pol.unisi.it/~reno/spots.html  

http://www.econ-pol.unisi.it/~reno/spots.html
http://www.econ-pol.unisi.it/~reno/spots.html
http://www.econ-pol.unisi.it/~reno/spots.html


Measure-preserving transformations 

 X phase space, μ probability measure 

 Φ:X → R observable (a measurable function, say L2 ). 
Let A be subset of X  (event).  

 μ(Φ) = ∫X  Φ dμ is the expectation of Φ 

 T:X→X  induces a time evolution  

  on observables:   Φ → Φ◦T  

       on events:     A →T-1 (A) 

 T is measure preserving if μ(Φ)= μ(Φ◦T) i.e.  
 μ(A)=μ(T-1 (A))         
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Birkhoff theorem and ergodicity  

Birkhoff theorem: if T preserves the measure μ then 
with probability one the time averages of the 
observables exist (statistical expectations). The 
system is  ergodic if these time averages  do not 
depend on the orbit (statistics and a-priori probability 
agree) 

 

 

 Law of large numbers: 

Statistics of orbits =  

a-priori probability Nov 7, 2011 19 
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“Historia magistra vitae” or the 

mathematical foundation of 

backtesting 

• Without assuming ergodicity, Birkhoff theorem 

shows that:  

 

• Time averages exist and they give rise to an 

experimental statistics to compare with theory 

• Past and future time averages agree almost 

everywhere 
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Statistical distribution of frequencies of vists  

 

Rotation 

Gauss map 

Doubling map 

Nov 7, 2011 21 
S. Marmi - Dynamics and time series: 
theory and applications - Lecture 1: 

introduction 



The simplest dynamical systems 

• The phase space is the circle: 

S=R/Z 

• Case 1: quasiperiodic dynamics 

  θ(n+1)=θ(n)+ω (mod 1) 

  (ω irrational) 

• Case 2:  chaotic dynamics 

 θ(n+1)=2θ(n)(mod 1) 

 

ω 
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quasiperiodic 

circle  
rotation and the  
chaotic doubling 

map 



Quasiperiodic dynamics  

• Quasiperiodic = periodic if precision is finite, but the period  
→∞ if the precision of measurements is improved  

• More formally a discrete time dynamics f is quasiperiodic if   

 

id f kn
For some sequence kn

 return times 

ff
1nk 


Renormalization 

approach 

1nk
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Sensitivity to initial conditions 
    For, in respect to the latter branch of the supposition, it should be considered 

that the most trifling variation in the facts of the two cases might give rise 

to the most important miscalculations, by diverting thoroughly the two 

courses of events; very much as, in arithmetic, an error which, in its own 

individuality, may be inappreciable, produces at length, by dint of 

multiplication at all points of the process, a result enormously at variance 

with truth. (Egdar Allan Poe, The mistery of Marie Roget) 

 

For the doubling map on the circle (case 2) one has   

θ(N)- θ’(N)=2N (θ(0)- θ’(0))       even if the initial datum is known with 

a 10 digit accuracy, after 40 iterations one cannot even say if the iterates are 

larger than ½ or not  

In quasiperiodic dynamics this does not happen: for the rotations on the circle 

one has  θ(N)- θ’(N)= θ(0)- θ’(0)  and long term prediction is possible        
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Stochastic or chaotic? 

 

An important goal of time-series analysis is to determine, given a 

times series (e.g. HRV) if the underlying dynamics (the heart) is: 

– Intrinsically random  

– Generated by a deterministic nonlinear chaotic system 

which generates a random output 

– A mix of the two (stochastic perturbations of deterministic 

dynamics) 
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Deterministic or random? 

Appearance can be misleading… 
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Time delay map 
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Logit and logistic  

The logistic map x→L(x)=4x(1-x) preserves the probability 

measure dμ(x)=dx/(π√x(1-x)) 

 

The transformation h:[0,1] →R, h(x)=lnx-ln(1-x) conjugates L 

with a new map G definined on  R: 

      h ◦ L=G ◦ h  

The new invariant probability measure is dμ(x)=dx/[π(ex/2 + e-x/2 )] 

Clearly G and L have the same dynamics (the differ only by a 

coordinates change) 
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From Cryer and Kung-Sik Chan: Time Series Analysis with Applications in R 
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From Cryer and Kung-Sik Chan: Time Series Analysis with Applications in R 
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Embedding method 

• Plot x(t) vs. x(t-), x(t-2), x(t-3), … 

• x(t) can be any observable 

• The embedding dimension is the # of delays 

• The choice of  and of the dimension are critical 

• For a typical deterministic system, the orbit will be diffeomorphic to 

the attractor of the system (Takens theorem) 
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Time series analysis of 

physiological signals 

 

 Physiological signals are characterized by extreme variability 
both in healthy and pathological conditions. Complexity, 
erratic behaviour, chaoticity are typical terms used in the 
description of many physiological time series. 

 

 Quantifying these properties and turning the variability 
analysis from qualitative to quantitative  are important goals 
of the analysis of time-series and could have relevant clinical 
impact.     
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From ECG to heart rate variability 

time series 

 
• Example of ECG signal 

• The time interval between 

two consecutive R-wave 

peaks (R-R interval) varies in 

time  

• The time series given by the 

sequence of the durations of 

the R-R intervals is called 

heart rate variability (HRV) 
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The heart cycle and ECG 
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Healthy?  Statistical vs. 

dynamical tools for diagnosis 

• The HRV plots  of an healthy 

patient show a very different 

dynamics from those of a sick 

patient but the traditional 

statistical measures (mean and 

variance) are almost the same.  

• www.physionet.org 
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Time series and self-similarity 

www.physionet.org 
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Healthy ?   

 

www.physionet.org 
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Healthy or not? 

(Adapted from Goldberger AL. Non-linear dynamics for clinicians:  
chaos theory, fractals, and complexity at the bedside. Lancet 1996;347:1312-1314.)  
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Healthy or not? 
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Correlation between disease severity 

and fractal scaling exponent 

www.physionet.org 
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Distribution of  

R-R intervals 

www.physionet.org 
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Distribution 

of daily 

returns, Dow 

Jones 1928-

2007 
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Classe 

Distribution of daily returns , DJIA 

Frequenza

Geometric daily return at 
time t = (Price of index at 
time t / Price of index at 

time t-1)-1 
Here the index is the Dow 

Jones Industrial Average, t is 
integer and counts only  

open market days 
The value of the index is at 

the close Nov 7, 2011 
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Random walks vs. Dow Jones 
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Selfsimilarity  

x L 

x √L 
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The normal distribution 
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Do daily returns follow a   

normal distribution? 

Mean 00204 
  
Median 00411 
Moda 0 
Standard 
deviation 0.011355 

Varianza 
campionaria 00129 
Kurtosis 26.84192 

Asymmetry -0.67021 
Intervallo 0.399044 
Minimum -0.25632 
Maximum 0.142729 
Sum 4.058169 
Number of 
observations 19848 

Class 
Observed 
Frequency 

Theoretical 
Frequency  

x< -0.05 67 0.093902 
-0.05<x<-0.045 19 0.567355 
-0.045<x<-0.04 41 3.207188 
--0.04<x<0.035 51 14.9652 
-0.035<x<-0.03 78 57.64526 
-0.03<x<-0.025 117 183.3153 
-0.025<x<-0.02 247 481.2993 
-0.02<x<-0.015 484 1043.367 
-0.015<x<-0.01 1111 1867.6 

-0.01<x<-05 2433 2760.391 
-0.05<x<0 4879 3369.05 

0<x<05 5119 3395.468 
05<x<0.01 2881 2825.84 

01<x<0.015 1219 1941.987 
0.015<x<0.02 539 1102.011 
0.02<x<0.025 241 516.3589 
0.025<x<0.03 105 199.7674 
0.03<x<0.035 77 63.8089 
0.035<x<0.04 43 16.82651 
0.04<x<0.045 27 3.662964 
0.045<x<0.05 20 0.658208 

              x> 0.05 50 0.110887 
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Theoretical and observed frequency of 

outliers in the history of 15 stockmarkets  

 

Estrada, Javier: Black Swans and Market Timing: How Not to Generate Alpha.  
Available at SSRN: http://ssrn.com/abstract=1032962  
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