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Il corso si propone di fornire un’introduzione allo studio delle applicazioni dei sistemi dinamici allo studio delle serie
temporali e al loro impiego nella modellizzazione matematica, con una enfasi particolare sull’analisi delle serie
storiche economiche e finanziarie. Gli argomenti e i problemi trattati includeranno (si veda la pagina web del docente
http://homepage.sns.it/marmi/ ):

Introduzione ai sistemi dinamici e alle serie temporali. Stati stazionari, moti periodici e quasi periodici. Ergodicita,
distribuzione uniforme delle orbite. Tempi di ritorno, diseguaglianza di Kac. Mescolamento. Entropia di Shannon.

Entropia di Kolmogorov-Sinai. Esponenti di Lyapunov. Entropia ed elementi di teoria dell’informazione. Catene di
Markov. Scommesse, giorchi probabilistici, gestione del rischio e criterio di Kelly.

Introduzione ai mercati finanziari: azioni, obbligazioni, indici. Passeggiate aleatorie, moto browniano geometrico.
Stazionarieta delle serie temporali finanziarie. Correlazione e autocorrelazione. Modelli auto regressivi. Volatilita,
eteroschedasticita ARCH e GARCH. L’ipotesi dei mercati efficienti. Arbitraggio. Teoria del portafoglio e il Capital
Asset Pricing Model.

Modalita dell’'esame: Prova orale e seminari

Sistemi dinamici e teoria dell’informazione:

Benjamin Weiss: “Single Orbit Dynamics”, AMS 2000

Thomas Cover, Joy Thomas “Elements of Information Theory” 2nd edition, Wiley 2006

Serie temporali:

Holger Kantz and Thomas Schreiber: Nonlinear Time Series Analysis, Cambridge University Press 2004

Michael Small: Applied Nonlinear Time Series Analysis. Applications in Physics, Physiology and Finance, World
Scientific 2005

Modelli matematici in finanza e analisi delle serie storiche:

M. Yor (Editor): Aspects of Mathematical Finance, Springer 2008

John Campbell, Andrew Lo and Craig MacKinlay: The Econometrics of Financial Markets, Princeton University
Press, 1997

Thomas Bjork: Arbitrage Theory in Continuous Time (Oxford Finance)

Stephen Taylor: "Modelling Financial Time Series"” World Scientific 2008

Keith Cuthbertson, Dirk Nitzsche "Quantitative Financial Economics" John Wiley and Sons (2004)



http://homepage.sns.it/marmi/

Lecture 1: An introduction to dynamical systems and to time series. (Today, 2 pm - 4 pm Aula Dini)

Lecture 2: Ergodicity. Uniform distribution of orbits. Return times. Kac’s lemma. Mixing (Thu Jan 14, 2

pm - 4 pm Aula Fermi) by Giulio Tiozzo

Lecture 3: Kolmogorov-Sinai entropy. Randomness and deterministic chaos. (Wen Jan 20, 2 pm - 4 pm

Aula Bianchi) by Giulio Tiozzo

Lecture 4: Introduction to financial markets and to financial time series (Thu Jan 21,

2 pm - 4 pm Aula Bianchi Lettere)

Lecture 5: Central limit theorems (Wen Jan 27, 2 pm - 4 pm Bianchi) by Giulio Tiozzo
Lecture 6: Financial time series: stylized facts and models (Thu Jan 28, 2 pm - 4 pm Bianchi)
Lecture 7: (Thu Feb 4, 2 pm -4 pm Dini)

Lectures 8 and 9 (including possibily a seminar) Wen Feb 11 and Thu Feb 12

Lectures 10 and 11 (including possibily a seminar) Wen Feb 18 and Thu Feb 19

Lectures 12 and 13 (including possibily a seminar) Wen Feb 25 and Thu Feb 26

Lectures 14 and 15 (including possibily a seminar) Wen Mar 3 and Wen Mar 10



« Seminar I: TBA (Fabrizio Lillo, Palermo, Wen Feb 10 or Thu Feb11)

« Seminar II: TBA (Massimiliano Marcellino, European University Institute)

e Seminar III: ....

« Challenges and experiments:
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Dynamical systems

A dynamical system is a couple (X phase space, time evolution law:
either a map T:X—X or a flow ¢, :X—X, here t is time)

The phase space X is the set of all possible states (i.e. initial
conditions) of our system

Each initial condition uniquely determines the time evolution
(determinism)

The system evolves in time according to a fixed law (iteration of a
map T, flow g, for example arising from solving a differential
equation, etc.)

Often (but not necessarily) the evolution law Is not linear
Observables are simply scalar functions ¢:X—R
Time series naturally arise from the time evolution of the observables:

d(X), (T(X)), d(T-T(X)), d(T3 (x)), ..... Here T*(X)=T oT" (X)



Examples of dynamical systems in

natural and social sciences

The Solar System

Atmosphere (meteorology)

Human body (heart, brain cells, lungs, ...)
Ecology (dynamics of animal populations)
Epidemiology

Chemical reactions

Dynamical systems not necessarily deterministic
Stockmarket
Electric grid
Internet



Examples of time-series in natural
and soclal sciences

Weather measurements (temperature, pressure, rain, wind speed, ...) .
If the series 1s very long ...climate

Earthquakes
Lightcurves of variable stars
Sunspots

Macroeconomic historical time series (inflation, GDP,
employment,...)

Financial time series (stocks, futures, commodities, bonds, ...)
Populations census (humans or animals)
Physiological signals (ECG, EEG, ...)



Ergodic theory

The focus of the analysis i1s mainly on the
asymptotic ditribution of the orbits, and not on
transient phenomena. Ergodic theory Is an
attempt to study the statistical behaviour of
orbits of dynamical systems restricting the
attention to their asymptotic distribution. One
walts until all transients have been wiped off
and looks for an invariant probability measure
describing the distribution of typical orbits.



Measure theory vs. probability
theory

Table 1.1. Comparison of terminology

Measure Theory Probability Theory
a probability measure space X a sample space (2
re X w € Q)
a o-algebra A a o-field F
a measurable subset A an event E
a probability measure u a probability P
() P(E)
a measurable function f a random wvariable X
flx) x, a value of X
a characteristic function yg an indicator function 1
Lebesgue integral [, fdu expectation E[X]
almost everywhere almost surely, or with probability 1
convergence in L' convergernce in mean
convergence in measure convergence in probability
conditional measure p4(B)  conditional probability Pr(B|A)
S. MIAITImT = DyTIiarmnes dar i thTe SETTes.,
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Stochastic or chaotic?

* An important goal of time-series analysis Is to
determine, given a times series (e.g. HRV) if
the underlying dynamics (the heart) Is:

— Intrinsically random

— Generated by a deterministic nonlinear chaotic
system which generates a random output

— A mix of the two (stochastic perturbations of
deterministic dynamics)

S. Marmi - Dynamics and time series:
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Randomness and the physical law

(though
this depends on what the “true” laws of physics are, and also to some extent
on certain ontological assumptions about reality),

, modeled using such abstract
mathematical objects as probability spaces. Nevertheless, the concept
of pseudorandomness- objects which “behave” randomly in various
statistical senses - still makes sense in a purely deterministic setting. A
typical example are the digits of 1=3.1415926535897932385...thisis a
deterministic sequence of digits, but is widely believed to behave

pseudorandomly in various precise senses (e.g. each digit should
asymptotically appear 10% of the time).

http://terrytao.wordpress.com/2007/04/05



http://terrytao.wordpress.com/2007/04/05

Probabillity, statistics and the
problem of induction

The probability of an event (if it exists) is almost always impossible
to be known a-priori

The only possibility is to replace it with the frequencies measured by
observing how often the event occurs

The problem of backtesting

The problem of ergodicity and of typical points: from a single series
of observations | would like to be able to deduce the invariant
probability

Bertrand Russell’s chicken (turkey nella versione USA)



Bertrand Russel
(The Problems of Philosophy,
Home University Library, 1912. Chapter VI On Induction) Available at the
page http://www.ditext.com/russell/rus6.html

Domestic animals expect food when they see the person who feeds
them. We know that all these rather crude expectations of
uniformity are liable to be misleading. The man who has fed the
chicken every day throughout its life at last wrings its neck
instead, showing that more refined views as to the uniformity of
nature would have been useful to the chicken.

Figure 1 My classical metaphor: A Turkey is fed for & 1000
gdays—every days confirms to fts statistical department that the
hiuman race cares about fts welfare "with fncreased statistical
significance”. On the 1001 day, the turkey has a surprise.
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Anatomy of a Blowup
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Source: Bloomberg News

Figure 2 The graph above shows the fate of close to 1000
financial institutions (includes busts such as FNMA, Bear Stearns,
Northern Rock, Lehman Brothers, ete.). The banking system
(betting AGAINST rare events) just lost > 1 Trillion dollars (so
far) on a single error, more than was ever earned In the history

http://www.edge.org/3rd culture/taleb08/taleb08 index.html
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http://www.edge.org/3rd_culture/taleb08/taleb08_index.html

Payoff from
mildly OTM
UK Sterling
Short
Option,
1988-2008

Bl

Figure 3 The graph shows the daily variations a derivatives
portfolio exposed to U.K. interest rates between 1988 and 2008.
Close to 99% of the variations, over the span of 20 years, will be

represented in 1 single day—the day the European Monetary
System collapsed. As I show in the appendix, this is typical with
ANY socio-economic variable (commodity prices, currencies,
inflation numbers, GDP, company performance, etc. ). No known
econometric statistical method can capture the probability of the
event with any remotely acceptable accuracy (except, of course,
in hindsight, and "on paper"). Also note that this applies to
surges on electricity grids and all manner of modern-day
phenomena,

http://www.edge.ora/3rd cultuse/taleb08/taleb08 index.html
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Measure-preserving transformations

X phase space, p probability measure

®:X — R observable (a measurable function, say L?).
Let A be subset of X (event).

w(®@) =J @ du is the expectation of @
T:X—X Induces a time evolution

on observables: & —->® T

on events: A —-T1(A)

T 1s measure preserving If w(®)= u(d T) I.e.
R(A)=p(T (A))

S. Marmi - Dynamics and time series:
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Birkhoff theorem and ergodicity

Birkhoff theorem: if T preserves the measure u then
with probability one the time averages of the
observables exist (statistical expectations). The
system Is ergodic If these time averages do not

depend on the orbit (statistics and a-priori probability
agree)

! Law of large numbers:
it {1 €[0,N), T'(x) € A} — pu(4)  Statistics of orbits =
ol Drrenics it <g=priori probability

introduction




“Historia magistra vitae” or the
mathematical foundation of
backtesting

* Without assuming ergodicity, Birkhoff theorem
shows that:

* Time averages exist and they give rise to an
experimental statistics to compare with theory

 Past and future time averages agree almost
everywhere



Statlstlcal distribution of frequencies of vists
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The simplest dynamical systems

« The phase space Is the circle:
S=R/Z

« Case 1: quasiperiodic dynamics
0 0(n+1)=06(n)+w (mod 1)
(o Irrational)

e Case 2. chaotic dynamics
0(n+1)=20(n)(mod 1)
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Quasiperiodic dynamics

 Quasiperiodic = periodic if precision is finite, but the period
—oo If the precision of measurements Is improved

« More formally a dynamics f is quasiperiodic if

f Ny > |d For some sequence N —

n+1
f ~ f Renormalization
approach

n,+1—o0 return times



Sensitivity to initial conditions

For, in respect to the latter branch of the supposition, it should be considered that
the most trifling variation in the facts of the two cases might give rise to the
most important miscalculations, by diverting thoroughly the two courses of
events; very much as, in arithmetic, an error which, in its own individuality,
may be inappreciable, produces at length, by dint of multiplication at all points
of the process, a result enormously at variance with truth.

(Egdar Allan Poe, The mistery of Marie Roget)

For the doubling map on the circle (case 2) one has

O(N)- 0°(N)=2N (06(0)- °(0)) ™=  even if the initial datum is known with a
10 digit accuracy, after 40 iterations one cannot even say if the iterates are
larger than Y2 or not

In quasiperiodic dynamics this does not happen: for the rotations on the circle one
has O(N)- 6°(N)=6(0)- 6°(0) and long term prediction is possible



Stochastic or chaotic?

* An important goal of time-series analysis Is to
determine, given a times series (e.g. HRV) if
the underlying dynamics (the heart) Is:

— Intrinsically random

— Generated by a deterministic nonlinear chaotic
system which generates a random output

— A mix of the two (stochastic perturbations of
deterministic dynamics)

S. Marmi - Dynamics and time series:
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Deterministic or random?
Appearance can be misleading...

Gaussian white noise

Determimistic Gaussian white time series

P(X)




Time delay map

Ganssian white noise

Deterministic Gaussian white time series

N




Logit and logistic

The logistic map Xx—L(x)=4x(1-X) preserves the
probability measure du(X)=dx/(mVx(1-x))
The transformation h:[0,1] —R, h(x)=Inx-In(1-x)
conjugates L with a new map G
h L=G h
definined on R. The new Invariant frobability
measure is du(X)=dx/[rw(e¥? + eX/?)]

Clearly G and L have the same dynamics (the differ
only by a coordinates change)




Embedding method

* Plot x(t) vs. x(t-7), X(t-27), x(t-37), ...

® x(f) can be any observable

* The embedding dimension is the # of delays

* The choice of rand of the dimension are critical

* For atypical deterministic system, the orbit will be
diffeomorphic to the attractor of the system (Takens

theorem)



Time series analysis of
physiological signals

Physiological signals are characterized by extreme variability both in healthy
and pathological conditions. Complexity, erratic behaviour, chaoticity are
typical terms used in the description of many physiological time series.

Quantifying these properties and turning the variability analysis from
qualitative to quantitative are important goals of the analysis of time-series
and could have relevant clinical impact.



From ECG to heart rate variability
time series

. 0t 1, 5, * Example of ECG signal

* The time interval between
JMWM two consecutive R-wave
peaks (R-R interval) varies in
time
* The time series given by the
sequence of the durations of

085 the R-R intervals is called
0.75 heart rate variability (HRV)
063

o 100 200 300
battity

[sec]
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Heart Rate {(bpm)

Heart Rate {bpm)

Healthy?  Statistical vs.
dynamical tools for diagnosis

Maormal

WWWM%MMW
« The HRV plots of an

o = healthy patient show a
very different dynamics

120+

=l AP from those of a sick

- patient but the traditional

o T statistical measures (mean
and variance) are almost
the same.
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Time series and self-similarity

Spatial Self-Similarity Temporal Self-Similarity

0D rmiry

www.phy5|onet.org S. Marmi - Dynamics and time series:
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Healthy ?

Haart Rate Dynamics in Hoalh and Disaaso:
& Tirme Series Test
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Heart Rate (bpm)

Heart Rate (opm)

Healthy or not?
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Healthy or not?

FRACTAL DYNAMICS OF HEART RATE AND GAIT

FRACTAL HEART FRACTAL GAIT
DYNAMICS DYNAMICS
Features Extends over thousands of | Extends over thousands of
beats steps
In Health Persists during different Persists regardless of gait
activities (asleep or awake) |speed (slow, normal or fast)
Potential Altered with advanced age | Altered with advanced age
Diagnostic & Prognostic |Altered with cardiovascular |Altered with nervous system
disease (e.g. Heart Failure) |disease (e.g. Parkinson’s D.)
Utility Helps predict survival May predict falls among

elderly

Source: htpp.//www.physionet.org
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Correlation between disease severity
and fractal scaling exponent

Correlation between Disease Severity and Fractal Scaling
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Percent change

Distribution of daily returns, DJIA
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Distribution .,
of daily -
returns, Dow
Jones 1928- -
2007

Dow Jones percent change per day 10/1/1928 - 3/20/2006

Frequenza

300

Geometric daily return at
time t = (Price of index at
0.15 - 3/15/1933 time t / Price of index at
0.1 1 9/5/1939 10/21/1987 time t'].)'].
Here the index is the Dow
Jones Industrial Average, t is
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Random walks vs. Dow Jones
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Selfsimilarity
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The normal distribution
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Do dally returns follow a
normal distribution?

Observed Theoretical
Frequency Frequency

Class
x<-0.05 67
-0.05<x<-0.045 19
-0.045<x<-0.04 41
--0.04<x<0.035 51
-0.035<x<-0.03 78
-0.03<x<-0.025 117
-0.025<x<-0.02 247
-0.02<x<-0.015 484
-0.015<x<-0.01 1111
-0.01<x<-05 2433
-0.05<x<0 4879
0<x<05 5119
05<x<0.01 2881
01<x<0.015 1219
0.015<x<0.02 539
0.02<x<0.025 241
0.025<x<0.03 105
0.03<x<0.035 77
0.035<x<0.04 43
0.04<x<0.045 27
0.045<x<0.05 20
x> 0.05 50

Jan 13, 2010

0.093902
0.567355
3.207188
14.9652
57.64526
183.3153
481.2993
1043.367
1867.6
2760.391
3369.05
3395.468
2825.84
1941.987
1102.011
516.3589
199.7674
63.8089
16.82651
3.662964
0.658208
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Theoretical and observed frequency of
outliers in the history of 15 stockmarkets

Exhibit 4: Outliers — Expected and Observed

Thus exhubit shows, for the indexes and sample peniods in Exhibat 2, the expected (Exp) and observed (Obs) mumber
of dady retnrns three standard deviations (3D below and above the anthmetic mean retuon (AR); the ratio betwreen
the nmumber of these chserved and expected retnrns; and the total number of expected (TE) and chserved (TO]
returns mose than three SDs away from the mean “Exp’ figuses are rounded to the nearest integer.

Lower Tal Upper Tail
AMarket AM-3-5D Exp Obs Ramo AM+3SD Ezp Obs Ranoe TE TO Rato
Anstralia 246% 17 T3 44 252% 17 33 32 33 126 38
Canada —248% 11 73 6.9 255% 11 43 41 21 116 55
France -311% 13 79 6.2 319% 13 51 48 25 140 353
Germany =351% 1o &5 5.3 357% 16 76 48 32 161 51
Hong E:;::uﬂg -553% 12 77 6.2 567% 12 80 6.5 25 137 64
Ttaly -382% 12 Tl 6.0 391% 12 45 40 24 119 30
Japan =312% 19 132 68 319% 19 112 538 39 244 63
New Zealand -251% 12 6l 49 256% 12 57 46 25 118 47
Singapore -312% 14 90 64 318% 14 80 6.1 28 176 6.3
Spain 322 11 32 48 3.31% 11 Gl 5.6 22 113 52
Switzerland -274% 13 101 79 279% 13 62 48 26 163 64
Tarwan —455% 15 103 68 4.63% 15 g1 53 30 184 60
Thailand —440%% 10 &2 6.0 448% 10 g1 T8 21 143 69
UK 300% 13 @9 5.3 307% 13 L 16 26 129 50
USA -335% 28 180 64 340% 28 173 61 56 333 6.3
ﬂ.‘ir‘erage -3.39% 14 87 0.0 3.47% 14 To 5.2 29 1la3 5.0
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