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Il corso si propone di fornire un’introduzione allo studio delle applicazioni dei sistemi dinamici allo studio delle serie 

temporali e al loro impiego nella modellizzazione matematica, con una enfasi particolare sull’analisi delle serie 

storiche economiche e finanziarie. Gli argomenti e i problemi trattati includeranno (si veda la pagina web del docente 

http://homepage.sns.it/marmi/ ):

Introduzione ai sistemi dinamici e alle serie temporali. Stati stazionari, moti periodici e quasi periodici. Ergodicità, 

distribuzione uniforme delle orbite. Tempi di ritorno, diseguaglianza di Kac. Mescolamento. Entropia di Shannon. 

Entropia di Kolmogorov-Sinai. Esponenti di Lyapunov. Entropia ed elementi di teoria dell’informazione. Catene di 

Markov. Scommesse, giorchi probabilistici, gestione del rischio e criterio di Kelly. 

Introduzione ai mercati finanziari: azioni, obbligazioni, indici. Passeggiate aleatorie, moto browniano geometrico. 

Stazionarietà delle serie temporali finanziarie. Correlazione e autocorrelazione. Modelli auto regressivi. Volatilità, 

eteroschedasticità ARCH e GARCH. L’ipotesi dei mercati efficienti. Arbitraggio. Teoria del portafoglio e il Capital 

Asset Pricing Model. 

Modalità dell'esame: Prova orale e seminari 

Sistemi dinamici e teoria dell’informazione: 

Benjamin Weiss: “Single Orbit Dynamics”, AMS 2000

Thomas Cover, Joy Thomas “Elements of Information Theory” 2nd edition, Wiley 2006

Serie temporali: 

Holger Kantz and Thomas Schreiber: Nonlinear Time Series Analysis, Cambridge University Press 2004

Michael Small: Applied Nonlinear Time Series Analysis. Applications in Physics, Physiology and Finance, World 

Scientific 2005

Modelli matematici in finanza e analisi delle serie storiche: 

M. Yor (Editor): Aspects of Mathematical Finance, Springer 2008

John Campbell, Andrew Lo and Craig MacKinlay: The Econometrics of Financial Markets, Princeton University

Press, 1997

Thomas Bjork: Arbitrage Theory in Continuous Time (Oxford Finance)

Stephen Taylor: "Modelling Financial Time Series" World Scientific 2008

Keith Cuthbertson, Dirk Nitzsche "Quantitative Financial Economics" John Wiley and Sons (2004) 
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• Lecture 1: An introduction to dynamical systems and to time series.  (Today,  2 pm - 4 pm Aula Dini)

• Lecture 2: Ergodicity. Uniform distribution of orbits. Return times. Kac’s lemma. Mixing (Thu Jan 14,  2 

pm - 4 pm Aula Fermi)  by Giulio Tiozzo

• Lecture 3: Kolmogorov-Sinai entropy. Randomness and deterministic chaos. (Wen Jan 20,  2 pm - 4 pm 

Aula Bianchi) by Giulio Tiozzo

• Lecture 4: Introduction to financial markets and to financial time series (Thu Jan 21,  

2 pm - 4 pm Aula Bianchi Lettere)

• Lecture 5: Central limit theorems (Wen Jan 27,  2 pm - 4 pm  Bianchi) by Giulio Tiozzo

• Lecture 6: Financial time series: stylized facts and models (Thu Jan 28,  2 pm - 4 pm  Bianchi)

• Lecture 7: (Thu Feb 4,  2 pm - 4 pm  Dini) 

• Lectures 8 and 9 (including possibily a seminar) Wen Feb 11 and Thu Feb 12

• Lectures 10 and 11 (including possibily a seminar) Wen Feb 18 and Thu Feb 19

• Lectures 12 and 13 (including possibily a seminar) Wen Feb 25 and Thu Feb 26  

• Lectures 14 and 15 (including possibily a seminar) Wen Mar 3 and Wen Mar 10
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• Seminar I: TBA (Fabrizio Lillo,  Palermo, Wen Feb 10 or Thu Feb11)

• Seminar II: TBA (Massimiliano Marcellino, European University Institute)

• Seminar III: ….

• Challenges and experiments: 
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Dynamical systems
• A dynamical system is a couple (X phase space, time evolution law: 

either a map T:X→X or a flow gt :X→X, here t is time)

• The phase space X is the set of all possible states (i.e. initial 
conditions) of our system

• Each initial condition uniquely determines the time evolution 
(determinism)

• The system evolves in time according to a fixed law (iteration of a 
map T, flow gt for example arising from solving a differential 
equation, etc.)

• Often (but not necessarily) the evolution law is not linear

• Observables are simply scalar functions ϕ:X→R 

• Time series naturally arise from the time evolution of the observables: 

ϕ(x), ϕ(T(x)), ϕ(T◦T(x)), ϕ(T3 (x)), ….. Here Tn+1(x)=T ◦Tn (x)
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Examples of dynamical systems in 

natural and social sciences
• The Solar System

• Atmosphere (meteorology) 

• Human body (heart, brain cells, lungs, ...) 

• Ecology (dynamics of animal populations) 

• Epidemiology

• Chemical reactions

Dynamical systems not necessarily deterministic

• Stockmarket

• Electric grid

• Internet  
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Examples of time-series in natural 

and social sciences
• Weather measurements (temperature, pressure, rain, wind speed, …) . 

If the series is very long …climate

• Earthquakes

• Lightcurves of variable stars

• Sunspots

• Macroeconomic historical time series (inflation, GDP, 

employment,…)

• Financial time series (stocks, futures, commodities, bonds, …)

• Populations census (humans or animals)

• Physiological signals (ECG, EEG, …)
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Ergodic theory

The focus of the analysis is mainly on the 
asymptotic ditribution of the orbits, and not on 
transient phenomena. Ergodic theory is an 
attempt to study the statistical behaviour of 
orbits of dynamical systems restricting the 
attention to their asymptotic distribution. One 
waits until all transients have been wiped off 
and looks for an invariant probability measure 
describing the distribution of typical orbits. 
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Measure theory vs. probability

theory
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Stochastic or chaotic?

• An important goal of time-series analysis is to

determine, given a times series (e.g. HRV) if

the underlying dynamics (the heart) is:

– Intrinsically random

– Generated by a deterministic nonlinear chaotic

system which generates a random output

– A mix of the two (stochastic perturbations of

deterministic dynamics)
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Randomness and the physical law
• It may well be that the universe itself is completely deterministic (though 

this depends on what the “true” laws of physics are, and also to some extent 
on certain ontological assumptions about reality), in which case 
randomness is simply a mathematical concept, modeled using such abstract 
mathematical objects as probability spaces. Nevertheless, the concept 
of pseudorandomness- objects which “behave” randomly in various 
statistical senses - still makes sense in a purely deterministic setting. A 

typical example are the digits of π=3.1415926535897932385…this is a 
deterministic sequence of digits, but is widely believed to behave 
pseudorandomly in various precise senses (e.g. each digit should 
asymptotically appear 10% of the time). If a deterministic system exhibits a 
sufficient amount of pseudorandomness, then random mathematical models 
(e.g. statistical mechanics) can yield accurate predictions of reality, even if 
the underlying physics of that reality has no randomness in it.

http://terrytao.wordpress.com/2007/04/05
/simons-lecture-i-structure-and-randomness-in-fourier-analysis-and-number-theory/
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Probability, statistics and the 

problem of induction

• The probability of an event (if it exists) is almost always impossible

to be known a-priori

• The only possibility is to replace it with the frequencies measured by

observing how often the event occurs

• The problem of backtesting

• The problem of ergodicity and of typical points: from a single series

of observations I would like to be able to deduce the invariant

probability

• Bertrand Russell’s chicken (turkey nella versione USA)
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http://www.edge.org/3rd_culture/taleb08/taleb08_index.html

Bertrand Russel
(The Problems of Philosophy, 

Home University Library, 1912. Chapter VI On Induction) Available at the 
page http://www.ditext.com/russell/rus6.html

Domestic animals expect food when they see the person who feeds 
them. We know that all these rather crude expectations of 

uniformity are liable to be misleading. The man who has fed the 
chicken every day throughout its life at last wrings its neck 

instead, showing that more refined views as to the uniformity of 
nature would have been useful to the chicken.
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http://www.edge.org/3rd_culture/taleb08/taleb08_index.html
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Figure 3 The graph shows the daily variations a derivatives
portfolio exposed to U.K. interest rates between 1988 and 2008.
Close to 99% of the variations, over the span of 20 years, will be

represented in 1 single day—the day the European Monetary
System collapsed. As I show in the appendix, this is typical with

ANY socio-economic variable (commodity prices, currencies,
inflation numbers, GDP, company performance, etc. ). No known
econometric statistical method can capture the probability of the
event with any remotely acceptable accuracy (except, of course,

in hindsight, and "on paper"). Also note that this applies to
surges on electricity grids and all manner of modern-day

phenomena.

http://www.edge.org/3rd_culture/taleb08/taleb08_index.html

Payoff from
mildly OTM 
UK Sterling

Short 
Option, 

1988-2008
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Measure-preserving transformations

X phase space, μ probability measure

Φ:X → R observable (a measurable function, say L2 ). 
Let A be subset of X  (event). 

μ(Φ) = ∫X Φ dμ is the expectation of Φ

T:X→X  induces a time evolution

on observables: Φ → Φ T 

on events: A →T-1 (A)

T is measure preserving if μ(Φ)= μ(Φ T) i.e.  
μ(A)=μ(T-1 (A))        
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Birkhoff theorem and ergodicity

Birkhoff theorem: if T preserves the measure μ then
with probability one the time averages of the 
observables exist (statistical expectations). The 
system is ergodic if these time averages do not
depend on the orbit (statistics and a-priori probability
agree)

Law of large numbers:
Statistics of orbits = 
a-priori probabilityJan 13, 2010 17
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“Historia magistra vitae” or the 

mathematical foundation of

backtesting

• Without assuming ergodicity, Birkhoff theorem

shows that: 

• Time averages exist and they give rise to an

experimental statistics to compare with theory

• Past and future time averages agree almost

everywhere
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Statistical distribution of frequencies of vists

Rotation

Gauss map

Doubling map
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The simplest dynamical systems

• The phase space is the circle: 

S=R/Z

• Case 1: quasiperiodic dynamics

θ(n+1)=θ(n)+ω (mod 1)

(ω irrational)

• Case 2:  chaotic dynamics

θ(n+1)=2θ(n)(mod 1)

ω
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Quasiperiodic dynamics

• Quasiperiodic = periodic if precision is finite, but the period
→∞ if the precision of measurements is improved

• More formally a dynamics f is quasiperiodic if

id f kn
For some sequence kn

return times

ff
1nk

Renormalization

approach

1nk
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Sensitivity to initial conditions

For, in respect to the latter branch of the supposition, it should be considered that 
the most trifling variation in the facts of the two cases might give rise to the 
most important miscalculations, by diverting thoroughly the two courses of 
events; very much as, in arithmetic, an error which, in its own individuality, 
may be inappreciable, produces at length, by dint of multiplication at all points 
of the process, a result enormously at variance with truth.

(Egdar Allan Poe, The mistery of Marie Roget)

For the doubling map on the circle (case 2) one has  

θ(N)- θ’(N)=2N (θ(0)- θ’(0)) even if the initial datum is known with a 
10 digit accuracy, after 40 iterations one cannot even say if the iterates are 
larger than ½ or not

In quasiperiodic dynamics this does not happen: for the rotations on the circle one
has θ(N)- θ’(N)= θ(0)- θ’(0) and long term prediction is possible
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Stochastic or chaotic?

• An important goal of time-series analysis is to

determine, given a times series (e.g. HRV) if

the underlying dynamics (the heart) is:

– Intrinsically random

– Generated by a deterministic nonlinear chaotic

system which generates a random output

– A mix of the two (stochastic perturbations of

deterministic dynamics)
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Deterministic or random? 

Appearance can be misleading…
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Time delay map
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Logit and logistic

The logistic map x→L(x)=4x(1-x) preserves the 
probability measure dμ(x)=dx/(π√x(1-x))

The transformation h:[0,1] →R, h(x)=lnx-ln(1-x) 
conjugates L with a new map G

h L=G h 

definined on  R. The new invariant probability
measure is dμ(x)=dx/[π(ex/2 + e-x/2 )]

Clearly G and L have the same dynamics (the differ
only by a coordinates change)
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Embedding method

• Plot x(t) vs. x(t- ), x(t-2 ), x(t-3 ), …

• x(t) can be any observable

• The embedding dimension is the # of delays

• The choice of and of the dimension are critical

• For a typical deterministic system, the orbit will be 

diffeomorphic to the attractor of the system (Takens

theorem)
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Time series analysis of

physiological signals

Physiological signals are characterized by extreme variability both in healthy
and pathological conditions. Complexity, erratic behaviour, chaoticity are
typical terms used in the description of many physiological time series.

Quantifying these properties and turning the variability analysis from
qualitative to quantitative are important goals of the analysis of time-series
and could have relevant clinical impact.
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From ECG to heart rate variability 

time series

• Example of ECG signal

• The time interval between 

two consecutive R-wave 

peaks (R-R interval) varies in 

time

• The time series given by the 

sequence of the durations of 

the R-R intervals is called

heart rate variability (HRV)
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The heart cycle and ECG
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Healthy? Statistical vs. 

dynamical tools for diagnosis

• The HRV plots of an

healthy patient show a 

very different dynamics

from those of a sick

patient but the traditional

statistical measures (mean

and variance) are almost

the same. 

• www.physionet.org
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Time series and self-similarity

www.physionet.org
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Healthy ? 

www.physionet.org
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Healthy or not?

(Adapted from Goldberger AL. Non-linear dynamics for clinicians: 
chaos theory, fractals, and complexity at the bedside. Lancet 1996;347:1312-1314.) 
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Healthy or not?
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Correlation between disease severity

and fractal scaling exponent

www.physionet.org
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Distribution of

R-R intervals

www.physionet.org
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Distribution

of daily

returns, Dow

Jones 1928-

2007
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Distribution of daily returns , DJIA

Frequenza

Geometric daily return at 
time t = (Price of index at 
time t / Price of index at 

time t-1)-1
Here the index is the Dow

Jones Industrial Average, t is
integer and counts only

open market days
The value of the index is at 
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Random walks vs. Dow Jones
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Selfsimilarity

x L

x √L
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The normal distribution
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Do daily returns follow a  

normal distribution?

Mean 00204

Median 00411
Moda 0
Standard 
deviation 0.011355

Varianza 
campionaria 00129
Kurtosis 26.84192

Asymmetry -0.67021
Intervallo 0.399044
Minimum -0.25632
Maximum 0.142729
Sum 4.058169
Number of
observations 19848

Class
Observed
Frequency

Theoretical
Frequency

x< -0.05 67 0.093902
-0.05<x<-0.045 19 0.567355
-0.045<x<-0.04 41 3.207188
--0.04<x<0.035 51 14.9652
-0.035<x<-0.03 78 57.64526
-0.03<x<-0.025 117 183.3153
-0.025<x<-0.02 247 481.2993
-0.02<x<-0.015 484 1043.367
-0.015<x<-0.01 1111 1867.6

-0.01<x<-05 2433 2760.391
-0.05<x<0 4879 3369.05

0<x<05 5119 3395.468
05<x<0.01 2881 2825.84

01<x<0.015 1219 1941.987
0.015<x<0.02 539 1102.011
0.02<x<0.025 241 516.3589
0.025<x<0.03 105 199.7674
0.03<x<0.035 77 63.8089
0.035<x<0.04 43 16.82651
0.04<x<0.045 27 3.662964
0.045<x<0.05 20 0.658208

x> 0.05 50 0.110887
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Theoretical and observed frequency of

outliers in the history of 15 stockmarkets

Estrada, Javier: Black Swans and Market Timing: How Not to Generate Alpha. 
Available at SSRN: http://ssrn.com/abstract=1032962 
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