Dynamics and time series:
theory and applications

Stefano Marmi
Scuola Normale Superiore
Lecture 15, March 10, 2010



Lecture 1: An introduction to dynamical systems and to time series. (Today, 2 pm - 4 pm Aula Dini)

Lecture 2: Ergodicity. Uniform distribution of orbits. Return times. Kac inequality Mixing (Thu Jan 14,
2 pm - 4 pm Aula Fermi) by Giulio Tiozzo

Lecture 3: Kolmogorov-Sinai entropy. Randomness and deterministic chaos. (Wen Jan 20, 2 pm - 4 pm

Aula Bianchi) by Giulio Tiozzo

Lecture 4: Introduction to financial markets and to financial time series (Thu Jan 21,

2 pm - 4 pm Aula Bianchi Lettere)

Lecture 5: Central limit theorems (Wen Jan 27, 2 pm - 4 pm Bianchi) by Giulio Tiozzo
Lecture 6: Financial time series: stylized facts and models (Thu Jan 28, 2 pm - 4 pm Bianchi)
Lecture 7: The Efficient Market Hypothesis (Wen Feb 10)

Lecture 8: An introduction to market microstructure and to high frequency finance, by Fabrizio Lillo
(Thu Feb 11, Aula Dini)

Lecture 9 on Wen Feb 17More on the efficient market hypothesis
Lecture 10 An introduction to autoregressive models and to mean-variance optimization, \Wen Feb 24

Lecture 11 On equity trading strategies by A. Carollo, Thu Feb 25



Lecture 12 Volatility by Roberto Reno, Mar 2
Lecture 13 An introduction to ARMA and GARCH processes by Fulvio Corsi, Mar 3

Lecture 14 HAR models for realized volatility: extensions and applications, by Fulvio Corsi,
Mar 4

Lecture 15 Takens’ Theorem and an introduction to fractals and multifractals, TODAY

Lecture 16 Factor models for the analysis of large datasets with applications to economics and

finance, by Massimiliano Marcellino (European University Institute), Thu Mar 18, Aula Dini

Challenges and experiments:
0. blog: http://theworldisatimeseries.wordpress.com
1. statistical arbitrage in sports betting: collecting time series, etc..
2. nonstationarity and volatility of financial series



Logistic map series (adjusted with mean)
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Autocorrelations

ACF of loglstic map series ACF of random normal series
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Fig. 2. Comparison of logistic map and random series.
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Embedding dimension = m
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Deterministic or random? Appearance
can be misleading...

Gaussian white noise

Determimistic Gaussian white time series

P(X)




Time delay map

Ganssian white noise Deterministic Gaussian white time series
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Source: sprott.physics.wisc.edu/lectures/tsa.ppt



Logit and logistic

The logistic map x—L(x)=4x(1-x) preserves the
probability measure du(x)=dx/(TrVx(1-x))
The transformation h:[0,1] —R, h(x)=Inx-In(1-
X) conjugates L with a new map G
h L=G h
definined on R. The new invariant probability
measure Is duy(x)=dx/[r(e +e )]

G and L have the same dyné{lzfnics '(i/ﬁe only
difference Is a coordinates change)
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Takens theorem

¢ : X — X map, f: X — R smooth observable

Time-delay map (reconstruction of the dynamics
from periodic sampling):

~(f, ¢

) : X — R n Is the number of delays

-(f, ¢

D) (X) = (f(x), F(d(X)), f(pop(x)), ..., f($p~ (x)))?

Under mild assumptions if the dynamics has an

attractor with dimension k and n>2k then for almost
any choice of the observable the reconstruction map
IS Injective



Immersions and embeddings

A smooth map F on acompact smooth manifold A is an immersion if
the derivative map DF(X) (represented by the Jacobian matrix of F at X)
IS one-to-one at every point xeA. Since DF(x) is a linear map, this is
equivalent to DF(x) having full rank on the tangent space. This can
happen whether or not F is one-to-one. Under an immersion, no
differential structure is lost in going from A to F(A).

An embedding of A is a smooth diffeomorphism from A onto its image
F(A), that is, a smooth one-to-one map which has a smooth inverse. For
a compact manifold A, the map F is an embedding if and only if ,F isa
one- to-one immersion.

The set of embeddings is open in the set of smooth maps: arbitrarily small
perturbations of an embedding will still be embeddings!



Embedology (Sauer, Yorke, Casdagli, J.
Stat. Phys. 65 (1991)

Whitney showed that a generic smooth map ,F from a d-dimensional

smooth compact manifold M to R», n>2d is actually a diffeomorphism on M.
That is, M and F(M) are diffeomorphic. We generalize this in two ways:

 first, by replacing "generic" with "probability-one” (in a prescribed sense),
» second, by replacing the manifold M by a compact invariant set A

contained in some Rk that may have noninteger box-counting dimension
(boxdim). In that case, we show that almost every smooth map from a
neighborhood of A to R» is one-to-one as long as n>2 * boxdim(A)

We also show that almost every smooth map is an embedding on compact subsets
of smooth manifolds within I. This suggests that embedding techniques can
be used to compute positive Lyapunov exponents (but not necessarily
negative Lyapunov exponents). The positive Lyapunov exponents are usually
carried by smooth unstable manifolds on attractors.



Embedology (Sauer, Yorke, Casdagli, J.
Stat. Phys. 65 (1991)

Takens dealt with a restricted class of maps called delay-coordinate

maps: these are time series of a single observed quantity from an experiment. He
showed (F. Takens, Detecting strange attractors in turbulence, in Lecture Notes in Mathematics,
No. 898 (Springer-Verlag, 1981 ) that if the dynamical system and the observed
quantity are generic, then the delay-coordinate map from a d-dimensional
smooth compact manifold M to R», n>2d is a diffeomorphism on M.

« we replace generic with probability-one
« and the manifold M by a possibly fractal set.

Thus, for a compact invariant subset A under mild conditions on the dynamical
system, almost every delay-coordinate map to R» is one-to-one on A provided
that n>2.boxdim(A). Also, any manifold structure within I will be preserved
in F(A).

* Only C! smoothness is needed.;

« For flows, the delay must be chosen so that there are no periodic orbits with
period exactly equal to the time delay used or twice the delay

S. Marmi - Dynamics and time series -
Mar 10, 2010 Lecture 15: Takens theorem and 14
multifractals



Embedding method

* Plot x(t) vs. x(t-7), X(t-27), x(t-37), ...

® x(f) can be any observable

* The embedding dimension is the # of delays

* The choice of rand of the dimension are critical

* For atypical deterministic system, the orbit will be
diffeomorphic to the attractor of the system (Takens

theorem)



Theoretically, a time delay coordinate map yields an valid embedding for any

sufficiently large embedding dimension and for any time delay when the data are
noise free and measured with infinite precision.

But, there are several problems:

(i) Data are not clean

(ii) Large embedding dimension are computationally expensive and unstable
(iii) Finite precision induces noise

Effectively, the solution is to search for:

(i) Optimal time delay r

(ii) Minimum embedding dimension ¢
or

(i) Optimal time window 7,

There is no one unique method solving all problems and
neither there is an unique set of embedding parameters appropriate for all purposes.
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The Role of Time Delay r

If ris too small,x(f) and x(&7) will be very close, then each reconstructed vector
will consist of almost equal components - Redundancy ()

mm)> The reconstructed state space will collapse into the main diagonal

If zis too large, x(f) and x(&7) will be completely unrelated, then each reconstructec
vector will consist of irrelevant components > Irrelevance (7;)

mm)> The reconstructed state space will fill the entire state space.

40 40 40
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-20 -20 -20
“%o 0 50 50 0 50 50 0 50

http://www.viskom.oeaw.ac.at/~joy/March22,%202004.ppt
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Blood Pressure Signal
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Some Recipes to Choose ¢

Based on Autocorrelation

N—-7-1

Estimate autocorrelation function: C(zr) = N# Zx(t)x(t+r) = (X(t)x(t +7))
v t=0

Then, z,,,~ (0)/e
or
first zero crossing of ((7)

Modifications:

1. Consider minima of higher order autocorrelation functions, <x(7)x(&+1t)x(+217)>
and then look for time when these minima for various orders coincide.

2. Apply nonlinear autocorrelation functions: <x2(o)x4(t+217)>

http://www.viskom.oeaw.ac.at/~joy/March22,%?202004.ppt
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Based on Time delayed Mutual Information

The information we have about the value of x(#7) if we know x( ).

1. Generate the histogram for the probability distribution of the signal x(?).

2. Let p;is the probability that the signal will be inside the ~th bin and
p(D is the probability that x(£) is in Fth bin and x(&+z) is in Fth bin.

3. Then the mutual information for delay z will be

For z > 0, L) 2> Shannon’s Entropy

Tope ® First minimum of A7)

http://www.viskom.oeaw.ac.at/~joy/March22,%202004.ppt
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Decay time of autocorrelation

1
g = min{7 : Cpp(7) < —}
e

This is an important indicator of the strength of the
autocorrelation of time series

It can be used to determine the time delay in embedology



Self-similarity and fractals

A subset A of Euclidean space will be considered a “fractal”
when it has most of the following features:

« A has fine structure (wiggly detalil at arbitrarily small scales)

« Astoo irregular to be described by calculus (e.g. no tangent
space)

« Als self-similar or self-affine (maybe approximately or
statistically)

« the fractal dimension of A is non-integer

« A may have a simple (recursive) definition

* Ahas a “natural” appearance: “Clouds are not spheres, _
mountains are not cones, coastlines are not circles, and bark is

not smooth, nor does lightning travel in a straight line . . .” (B.
Mandelbrot)
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Mathematics, shapes and nature
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From http://en.wikipedia.org/wiki/Image:Squarel.jpg
Lichtenberg Figure

High voltage dielectric breakdown within a block of plexiglas creates a beautiful
fractal pattern called a Lichtenberg_figure. The branching discharges ultimately
become hairlike, but are thought,to.extend down to.the molecular level.

Bert Hickman, http://www.teslaméaniascomipkens theorem and

multifractals
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http://en.wikipedia.org/wiki/Image:Square1.jpg
http://www.teslamania.com/

Il‘l’ﬂ‘e')Dgl'g?< ”%mﬁfreaggregate formed from
a copper sulfate solution in an e é%fr&dﬁfﬁ%]s'hﬁ)ﬁ cell. Kevin R. Johnson, Wikiped|3a1



http://en.wikipedia.org/wiki/diffusion-limited_aggregation
http://en.wikipedia.org/wiki/diffusion-limited_aggregation
http://en.wikipedia.org/wiki/diffusion-limited_aggregation
http://en.wikipedia.org/wiki/copper_sulfate

Coastlines

Massachusetts Greece
D=1.15 =1.20
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How long Is a coastline?
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The answer depends on the scale at which the measurement is
made: if s is the reference length the coastline length L(s) will be

Log L(s) = (1-D) log s + cost
(Richardson 1961, Mandeibrot'Sciehce 1967)

multifractals



How long is the coast of Britain?
Statistical self-similarity and fractional dimension
Science: 156, 1967, 636-638
B. B. Mandelbrot

Seacoast shapes are examples of highly involved curves with the
property that - in a statistical sense - each portion can be considered
a reduced-scale image of the whole. This property will be referred to
as ‘“‘statistical self-similarity.” The concept of ““length” is usually
meaningless for geographical curves. They can be considered
superpositions of features of widely scattered characteristic sizes; as
even finer features are taken into account, the total measured length
Increases, and there is usually no clear-cut gap or crossover,
between the realm of geography and details with which geography
need not be concerned.



How long is the coast of Britain?
Statistical self-similarity and fractional dimension
Science: 156, 1967, 636-638

B. B. Mandelbrot
Quantities other than length are therefore needed to discriminate

between various degrees of complication for a geographical
curve. When a curve is self-similar, it is characterized by an
exponent of similarity, D, which possesses many properties of
a dimension, though it is usually a fraction greater that the
dimension 1 commonly attributed to curves. | propose to
reexamine in this light, some empirical observations in
Richardson 1961 and interpret them as implying, for example,
that the dimension of the west coast of Great Britain is D =
1.25. Thus, the so far esoteric concept of a ““random figure of
fractional dimension” is shown to have simple and concrete
applications of great usefulness.



"Box counting” dimension

D=1lm

s—)

log N(s)

log(1/ s)
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Box counting (Minkowski) dimension

Let E be a non-empty bounded subset of R" and let N, (E) be the
smallest number of sets of diameter r needed to cover E

* Lower dimension dimg E =liminf_,, log N, (E) / -logr
 Upper dimension dimBE = limsup,_,, log N, (E) / -logr

* Box-counting dimension: if the lower and upper dimension
agree then we define

dimE=1lim_,,log N, (E) / -logr

The value of these limits remains unaltered if N, (E) Is taken to be
the smallest number of balls of radius r (cubes of side r)
needed to cover E, or the number of r-mesh cubes that
mtersect E



Hausdorff dimension

A finite or countable collection of subsets {U; } of R" is a 6-
cover of aset E if | U; [< & for all i and E is contained in U; U

HS; (E) =Inf{Z|U; |°, {U, } is aad-cover of E}
s-dimensional Hausdorff measure of E: H® (E) =lim;_,, H5; (E)

It is a Borel regular measure on R" , it behaves well under
similarities and Lipschitz maps H®

The Hausdorff dimension dim, E is
the number at which the Hausdorff
measure H® (E) jumps from o to 0

dim, E <dimg E <dim8 E

L] dirnHE Ly



Von Koch curve (1904)

L=l L =4 L3
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D=log4/log3=1.261859...




Figure 3.6 A cut-out set in the plane. Here, the largest possible disc is removed at each
step. The family of discs removed is called the Apollonian packing of the square, and the
cut-out set remaining is called the residual set, which has Hausdorff and box dimension

about 131 prom: k. Falconer, Techniques in Fractal Geometry, Wiley 1997
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Fractal snowflake

Infinite perimeter, finitearea, D=log4/l0g3=1.261859...



Sierpinski triangle (1916)
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A fractal carpet (zero area)
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A fractal sponge

S. Marmi - Dynamics and time series -
Lecture 15: Takens theorem and
multifractals

48



Zooming In
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Changing parameters

*The triangle of Sierpinski is the attractor of an iterated

function system (i.f.s).

*The 1.f.s. Is made of three affine maps (each contracting by a
factor %2 and leaving one of the initial vertices fixed)

«Combining the affine maps with rotations one can change the

shape considerably

90 anticlockwise rotation
about the top vertex

180 rotation about the
saine vertex



Hausdorff metric and compact sets

X=[0,1]

d((x,y),(x’,y'))= [x-X’|+|ly-y’| Manhattan metric
7 (X)={E compact nonempty subsets of X}
h(E,F)=max(d(E,F),d(F,E))
d(E,F)y=maxycgmingcr d(X,y) d(E, F)y£d(F .E)
d(E,F)>0

d(F,E)=0

Theorem: ( #(X).,h) is a complete metric space

— Cauchy sequences have a limit!

multifractals



Contractions and Hausdorff metric

Proposition: if w:X—X is a contraction with Lipschitz constant s
then w is also a contraction on (# (X),h) with Lipschitz

constant s

To each family ¥ of contractions on X one can associate a family
of contractions on (# (X),h). By Banach-Caccioppoli to each
such ¥ will correspond a compact nonempty subset +£ of X:
the attractor associated to T

d(w(E),w(F))=max min d(y,z) = max min d(w(e),w(f))

yeE  zeF eeE  feF

<'s max min d(e,f) = s d(E,F)
eeE  feF



Iterated function systems

F=4{w,, ..., wy} each w; : X— Xis a contraction of constant s;,
0< S; <1

Let 7. H (X) - X
w° (E) = U wi(E)

1<i<N
Then 9#° contracts the Hausdorff metric h with Lipschitz constant
s=maxs; . We denote by «# the corresponding attractor
1<i<N
Given any subset E of X, the iterates #°*(E) — £ exponentially
fast, in fact h(#°~(E) , #) =s® asnh — o



Self similarity and fractal

dimension
If the contractions of the i.f.s. ¥={w,, ..., w,} are
o Similarities the attractor £ will be said self-similar

. Affine maps‘ the attractor 5# will be said self-affine

« Conformal mm.e. their derivative is a similarity) then the
attractor - will be said self-conformal

If the open set condition is verified, i.e. there exists an open set U
such that w;(U)Nw;(U)=@ If i#j and U; w;(U) is an open
subset of U then the dimension d of the attractor ~Zis the
unique positive solution of 5,9 +s,9+ ... + 5,9 =1



Inverse problem

Inverse problem: given £>0 and a target (fractal) set 7°can one
find an i.f.s ¥ such that the corresponding attractor #Zis e-close
to 7 w.r.t. the Hausdorff distance h?

Collage Theorem (Barnsley 1985) Let >0 and let Fe# (X) be
given. If the i.f.s. #={w,, ..., wy} Issuch that

U s Wi(9), T) <e
then

h(T, ) < e/ (1-5)
where s is the Lipschitz constant of #



Fractal Image compression ?

The Collage Theorem tells us that to find an 1.f.s. whose attractor
“looks like a give set one must find a set of contracting maps
such that the union (collage) of the images of the given set
under these maps is near (w.r.t. Hausdorff metric) to the
original set.

The collage theorem sometimes allows incredible compression
rates of images (of course with loss). It can be especially
useful when the information contained in details is not
considered very very important



Fractal image compression !

The top-selling multimedia encyclopedia Encarta, published by
Microsoft Corporation, includes on one CD-ROM seven
thousand color photographs which may be viewed
Interactively on a computer screen. The images are diverse,
they are of buildings, musical instruments, people's faces,
baseball bats, ferns, etc. What most users do not know is that
all of these photographs are based on fractals and that they
represent a (seemingly magical) practical success of
mathematics.

JUNE 1996 NOTICES OF THE AMS 657

Fractal Image Compression by Michael F. Barnsley

e.g: Barnsley’s fern: can be encoded with 160 bytes= 4*10*4
4'maps 10 parameters (each parameter'asing 4 bytes)
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Figure 3. This shows the result of applying fractal compression and decompression to the image dis played in

Figure 2. Original 512 x 512 grayscale image, with 256 gray levels for each pixel, before fractal compression. Figure 2.
@ Louisa Barns ley.

rezzion - Motices Ams [1996) 54, 192mm  Page: "3 3of B _..Ompre: - Motices &Ams [1359E) Page: "4" 4 of B

LEFT: the original digital image of Balloon, 512 pixels by 512 pixels, with 256
gray levels at each pixel. RIGHT: shows the same image after fractal compression.

The fractal transform file is approximately one fifth the size of the original.
d time s&:les

JUNE-1996 NOTICES OF THE AMS65Z Fractal Iinage Gompression by Michael F. Barnsley

multifractals



Fractal graphs of functions

Many interesting fractals, both of theoretical and practical
Importance, occur as graphs of functions. Indeed many time
series have fractal features, at least when recorded over fairly
long time spans: examples include wind speed, levels of
reservoirs, population data and some financial time series
market (the famous Mandelbrot cotton graphs)

Welerstrass nowhere differentiable continuous function:
f()=Z 0o A2 siN (WX 1) 1<s<2, A>2

The graph of f has box dimension s for A large enough.
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Fractal
graphs anc
.f.S.

(from K. Falconer,
Figure 11.3 Stages in the construction of a self-affine curve F. The affine transforma- -
tions §; and S; map the generating triangle pypp> onto the triangles pig, p and pg: p2. Fractal Geometry, WI I‘
respectively, and transform vertical lines to vertical lines. The rising sequence of polyg-
onal curves Ey, E|.... are given by E,_| = §|(E;) U S:(E,) and provide increasingly (2003)
good approximations to F (shown in figure 11.4(a) for this case)

14 Ey 2

Sit,x)=0/m+(G—1/m, a;t +c;x + b;).

Thus the §; transform vertical lines to vertical lines, with the vertical strip 0 <
t < | mapped onto the strip (i — 1)/m <t < i/m. We suppose that

l/m < ¢; <1 (11.9)

s0 that contraction in the r direction is stronger than in the x direction.
Let py=(0.b /(1 —¢y)) and p, = (1. (am +bw)/(1 —cyn)) be the fixed
points of §; and §,,,. We assume that the matrix entries have been chosen so that

Si(Pm) = Sit1(P13. Marnkil- Syhawsied ard kime series - (11.10)
Mar 10, 2010 Lecture 15: Takens theorem and 63
so that the segments [S;(pi), Si(pm)] join up tonfokfedasolygonal curve Ey. To



Pl

Self-affine curves defined by the two affine transformations that
map the triangle p,pp, onto p,qg,p and pg,p, respectively. In (a)
the vertical contraction of both transformations is 0.7 giving
dim graph f = 1.49, and In (b) the vertical contraction of both
transformations is 0.8, giving dim graph f = 1.68

from K. Falconer, FractalGeemetry, Wiey (2003)

Mar 10, 2010 Lecture 15: Takens heorem an
multifractals
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Probabilistic I.f.s.

F={wy, ..., Wy}, w; : X— X contraction of constant s;, 0 <s; <1
(P4, -.,Py) Probability vector 0 <p; <1, p;+...+py=1
Iteration: at each step with probability p; one applies w;
i.f.s.: k iterates of a point — N¥ points #7: # (X) - X
W’ (E) = Uy wi(E)
Probabilistic 1.f.s.: k iterates of a point — k points

Theorem: each probabilistic i.f.s. has a unique Borel probability
invariant measure p with support =

Invariance: p(E)= X,y pin(w;1(E)) for all Borel sets E, equivalently
fx g(x)du(X)= Z,cien P IX g(w;(x))du(x) for all continuous functions g



Probabilistic I.f.s.

If Z1{ denotes the space of Borel probability measures on X
endowed with the metric
d(vy,v2)=sup{] Iy 9()dv; (x)-I 9(x)dv, (x)|, g Lipschitz, Lip(g) <1}
Then a probabilistic 1.f.s. acts on measures as follows

L, v=2pyv w;
And by duality acts con continuos functions g:X— R

Ix 9O)A(Ly,0 V)X)= Z1cion PiIx GWi(X))dv(X)

It is easy to verify that
d(Lp,W Vi, LpwVa) = d(vy,v,)

fromeahich the previousdheorem-foliows



Multifractal analysis of
measures

Local dimension (local Hélder exponent) of a measure p at a point X:
dim,,. w(x)=lm__,log u(B(x,r))/log r (when the limit exists)

a>0, E ={xeX, dim,,. n(X)= a}

For certain measures p the sets E, may be non-empty over a range of

values of o: multifractal measures

multifractal spectrum (singularity spectrum) of the multifractal
measure p: Is the function a—f(a)=dim E,

S. Marmi - Dynamics and time series -
Mar 10, 2010 Lecture 15: Takens theorem and 67
multifractals
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With equal probabiities, the Eandom Algonthin for the IFS with these rules

otz 9) = (2, 712) + (0, 112)|[Tus, ) = (2, 972 + (112, 172)
Ty(x v) = (22, 7/2) To(x, v) = (2, /2) + (112, 0)

fills in the unit square uniformly.
The pictures below were generated with these probabiities
14 =|:|.1, Fa=pa=pra= 0=

successive pictures show mcrements of 25000 points. “With enough patience, the whele square will fill in, but some regions fill in more quickly than others




classes.yale.ady
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will e in each of the squares with address 2, 3, and 4.

with address 12, and 50 on.

Multifractals

Variable Probability Histograms

.09
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.09

.09

.03

.09

.03

.09

.03

.03

.09

.09

.07

.03

.03

.09

Higher tterates are easter to understand wsually.

of the points, and so on.

Mar 10, 2010

Here we show the first four generations, with the height of the box in a region representing the fraction of the pomts m that region.
Al the pictures have been adjusted to have the same height, whereas square 4 has 0.3 of the pomts, square 44 has 0.0% of the points, square 444 has 0.027

» G- F

[T altri Prefes

The probabilities of applying each transformation represent the fraction of the total number of tterates in the region determined by the transformation.
TWith the ITFS and probabilities of the last example, i a typical picture about 001 of the points will lie in the square with addresz 1, and about 0.3 of the points

Arouing in the same way, about 0.01 = 0.1%0.1 of the points will lie in the square with address 11, about 0.02 = 0.1%0 3 of the points will lie in the square

69
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2o agamn the height represents the fraction of the points landing m that region.

i Dynamics and time series -
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Different Probabilities, Another Example

In thiz example, we mtroduce more variabidity in the probabdities:
p1 =02, =025, pa =025, and py = 0.3

Among other things, the number of values of the probabiibes of regions mereases more rapadly.

=maller regions hawe smaller probabiities; if these graphs weren't rescalled vertically they would appear to become closer and closer to a flat surface of heig
0. Cliclz here for an anmmnation of the first four tterates, all drawn to the same vertical scale.

For each region we expect that
prob scales as (side length)30Mme POWet

=o matead of lething the heyght of the graph represent the probabality of the region, now we assign height Log(prob)Logiside length) to the region.
EBecause the probability measures the fraction of the pomnts that eccupy a region, we think of this ratio as a dimension.
EBemng wiewed at the resolution of the side length of the region, this 15 a coarse Holder exponent; it 15 also called the coarse dinension.

P,
L

ﬁi
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Local Holder Exponents

Talring limits as the side length of the regions go to zero, the coarse Holder exponent can be refined to the local Holder exponent (or roughness) at (xz, v) is
dipo%9) = b, > iy Log(Probliy.. i) Log(2 ™)
where Probily.. 1) 15 the probabiity priy )™ ... *priy,), f () les i the square with address 1.1,
The walue for a square of finite length address 12 called the coarse Holder exponent. So the local Holder exponent of a point (3, v) 12 the limit as I -= infinity of
the coarse Holder exponents of the length N address squares containing (x, ¥).
Mow define
Eatpta = (%, ¥ dyp(x, y) = alpha},
the collection of all points of the fractal hawing local Holder exponent alpha.
As alpha takes on all values of the local Holder exponent, we decompose the fractal into these sets Egopo.
Here are examples, Ealpha (alpha = column height) for the lowest value of alpha (on the leff), two mtermediate values, and the highest value.

Chick here for an animation scanning through all the walues of alpha, from lowest to highest, resolved to boxes have side length 1124
EBecause each local Holder exponent alpha is the exponent for a power law, a multiftactal is a process exhibiting scaling for a range of different power laws.
The multifractal structure 15 revealed by plothing dim(Ealphaj as a function of alpha.

(In general, a dimension more subtle than the box-counting dimension gmust be used Wegmnore thiz complication here.)

g T 3 Mostra tutti i download. ..
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Click here for an ammation scantng through all the values of alpha, from lowest to lughest, resolved to boxes have side length 1124

Because each local Holder exponent alpha 1 the exponent for a power law, a multifractal 15 a process exhibiting scaling for a range of different powe
The multifractal structure 12 revealed by plotting dﬁn{Eﬂpha) as a fiunction of alpha.

{In general, a dimension more subtle than the box-countng dimension must be used. We 1gnore this complication here )

This graph 15 called the falpha) curve.

Here 15 the f{alpha) curve for the example with py = 0.2, py =py =025, and py = 0.3,
At least i thiz example, sets Eﬂlpha for the lowest and hughest values of alpha reduce to points in the lnut, hence have dimension flalpha) = 0. This 13
represented m the left and right endpoints of the curve Iying on the x-ass.

f(alpha)
2__

Feturn to hultifractals.
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The Legendre transform of f(a)

F={w,, ..., Wy}, w; : X— X contraction of constant s;, 0 <s; <1
(P4,--..,Py) Probability vector 0 <p; <1, p;+...+py=1
The dimension d of the attractor + is the solution of the equation
s0+s,d+ ... +5¢ =
The singularity spectrum a—f(a) of a probabilistic i.f.s. Is the

Legendre transform of the function g—1(q) obtained solving
the functional equation

P, Slf(Q)+p2q 52T(Q)—|—. P SNT(Q):]_
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6P, For each point (g, ©(q)) say the slope of the tangent line 12 -o. That 18, o= -dofdq.
Eenormalization T ( q)
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o f(a@) = 7(q) +ac\

Smchror?ization q
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Proceszes

7. Multhfactals

A, Unecual i -
Probabilities Line of Slope

7B Histoorams
7C Another -0 =y - a0 - g

This tangent line passes through the pomt (g, ©(q)) and the pomt {0, v). Consequently,

Exarnple Solving for v,

7D, Local v =gt g
Dirmnensions Call this w-walue o)

7E. Multifractals Ho) = qet oy
from IFS
JF. f{a) curves

|T"G. a) from | v

Eeturn to Multdfractals from IFS.
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The singularity spectrum o—f(a) of a probabilistic i.f.s. Is the
Legendre transform of.the function g-=x(q)
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