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• Lecture 1: An introduction to dynamical systems and to time series.  (Today,  2 pm - 4 pm Aula Dini)

• Lecture 2: Ergodicity. Uniform distribution of orbits. Return times. Kac inequality Mixing (Thu Jan 14,  

2 pm - 4 pm Aula Fermi)  by Giulio Tiozzo

• Lecture 3: Kolmogorov-Sinai entropy. Randomness and deterministic chaos. (Wen Jan 20,  2 pm - 4 pm 

Aula Bianchi) by Giulio Tiozzo

• Lecture 4: Introduction to financial markets and to financial time series (Thu Jan 21,  

2 pm - 4 pm Aula Bianchi Lettere)

• Lecture 5: Central limit theorems (Wen Jan 27,  2 pm - 4 pm  Bianchi) by Giulio Tiozzo

• Lecture 6: Financial time series: stylized facts and models (Thu Jan 28,  2 pm - 4 pm  Bianchi)

• Lecture 7: The Efficient Market Hypothesis (Wen Feb 10)

• Lecture 8: An introduction to market microstructure and to high frequency finance, by Fabrizio Lillo 

(Thu Feb 11, Aula Dini)

• Lecture 9 on Wen Feb 17More on the efficient market hypothesis

• Lecture 10 An introduction to autoregressive models and to mean-variance optimization, Wen Feb 24 

• Lecture 11 On equity trading strategies by A. Carollo,  Thu Feb 25
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• Lecture 12 Volatility by Roberto Renò, Mar 2

• Lecture 13 An introduction to ARMA and GARCH processes by Fulvio Corsi, Mar 3

• Lecture 14 HAR models for realized volatility: extensions and applications, by Fulvio Corsi, 

Mar 4

• Lecture 15 Takens‟ Theorem and an introduction to fractals and multifractals, TODAY

• Lecture 16 Factor models for the analysis of large datasets with applications to economics and 

finance, by Massimiliano Marcellino (European University Institute),  Thu Mar 18, Aula Dini

• Challenges and experiments: 

0. blog: http://theworldisatimeseries.wordpress.com

1. statistical arbitrage in sports betting: collecting time series, etc..

2. nonstationarity and volatility of financial series
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Deterministic or random? Appearance

can be misleading…
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Time delay map

Source: sprott.physics.wisc.edu/lectures/tsa.ppt
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Logit and logistic

The logistic map x→L(x)=4x(1-x) preserves the 

probability measure dμ(x)=dx/(π√x(1-x))

The transformation h:[0,1] →R, h(x)=lnx-ln(1-

x) conjugates L with a new map G

h L=G h 

definined on  R. The new invariant probability

measure is dμ(x)=dx/[π(e     + e )]

G and L have the same dynamics (the only

difference is a coordinates change)

x/2 -x/2
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Hyperbolic secant

distribution
Parameters none

Support xϵ(-∞,+∞)

Probability density 

function (pdf)

½sech(½πx)

Cumulative 

distribution

function (cdf)

2arctan(exp(½πx))

π

Mean 0

Median 0

Mode 0

Variance 1

Skewness 0

Excess kurtosis 2

Entropy 4/π G ≈1.16624

Source: wikipedia

G = 0.915 965 594 177 219 015 054 603 
514 932 384 110 774... Catalan’s constant
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Takens theorem

• ϕ : X → X map, f : X → R smooth observable

• Time-delay map (reconstruction of the dynamics

from periodic sampling):

• F(f,ϕ) : X → Rⁿ n is the number of delays

• F(f,ϕ)(x) = (f(x), f(ϕ(x)), f(ϕ◦ϕ(x)), ..., f(ϕⁿ (x)))

• Under mild assumptions if the dynamics has an

attractor with dimension k and n>2k then for almost

any choice of the observable the reconstruction map

is injective

-1
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Immersions and embeddings

• A  smooth  map  F  on  a compact smooth manifold A  is  an  immersion if  

the derivative map DF(x)  (represented by  the  Jacobian matrix  of  F  at  x)  

is one-to-one  at  every  point  xϵA.  Since DF(x)  is  a  linear  map,  this  is 

equivalent  to DF(x)  having full  rank  on the tangent space.  This can 

happen whether  or  not  F  is  one-to-one.  Under  an  immersion,  no  

differential structure  is lost in going from A  to F(A).

• An  embedding of A  is a smooth diffeomorphism from  A  onto  its image 

F(A),  that  is, a  smooth one-to-one map which  has a  smooth inverse.  For 

a compact manifold A,  the map F is an embedding  if and only if ,F  is a 

one- to-one immersion. 

• The set of embeddings is open in the set of smooth maps: arbitrarily small 

perturbations of an embedding will still be embeddings!
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Embedology (Sauer, Yorke, Casdagli, J. 

Stat. Phys. 65 (1991)

Whitney  showed that  a generic smooth map  ,F  from  a d-dimensional

smooth compact manifold  M  to Rⁿ , n>2d is actually a diffeomorphism on M. 

That  is, M  and F(M)  are diffeomorphic. We  generalize  this  in  two  ways:

• first, by  replacing "generic" with  "probability-one"  (in  a prescribed  sense),

• second, by  replacing  the manifold  M  by  a  compact  invariant  set A

contained  in  some Rk that  may  have  noninteger box-counting  dimension 

(boxdim).  In  that  case,  we show  that  almost every smooth map  from  a 

neighborhood  of A  to Rⁿ is one-to-one  as  long as n>2 * boxdim(A)

We  also show that almost every smooth map  is an embedding on compact subsets 

of  smooth  manifolds  within  l.  This  suggests  that  embedding techniques can  

be  used  to  compute  positive  Lyapunov exponents  (but not  necessarily  

negative Lyapunov exponents).  The  positive Lyapunov exponents are usually 

carried by  smooth  unstable manifolds on attractors.
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Takens dealt with  a  restricted class of maps called delay-coordinate

maps: these are time series  of a single observed quantity  from  an  experiment. He 

showed  (F.  Takens, Detecting  strange attractors  in  turbulence, in  Lecture Notes  in Mathematics, 

No. 898 (Springer-Verlag,  1981  )  that if the dynamical  system  and  the observed  

quantity  are  generic,  then  the  delay-coordinate map  from  a d-dimensional  

smooth compact manifold M  to Rⁿ , n>2d is a diffeomorphism on M.

• we  replace generic with  probability-one 

• and the manifold  M  by  a  possibly  fractal  set. 

Thus,  for  a  compact  invariant subset A  under mild  conditions  on  the  dynamical  

system, almost every delay-coordinate  map  to Rⁿ is one-to-one  on A  provided 

that  n>2.boxdim(A). Also,  any  manifold  structure within  I  will  be preserved  

in  F(A). 

• Only C¹ smoothness is needed.; 

• For  flows, the delay must  be chosen so that  there are no  periodic orbits with

period exactly equal to the time delay used or twice the delay

Embedology (Sauer, Yorke, Casdagli, J. 

Stat. Phys. 65 (1991)
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Embedding method

• Plot x(t) vs. x(t- ), x(t-2 ), x(t-3 ), …

• x(t) can be any observable

• The embedding dimension is the # of delays

• The choice of and of the dimension are critical

• For a typical deterministic system, the orbit will be 

diffeomorphic to the attractor of the system (Takens

theorem)
Mar 10, 2010 15
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Choice of Embedding Parameters

Theoretically, a time delay coordinate map yields an valid embedding for any 
sufficiently large embedding dimension and for any time delay when the data are
noise free and measured with infinite precision. 

But, there are several problems:

(i) Data are not clean
(ii) Large embedding dimension are computationally expensive and unstable
(iii) Finite precision induces noise

Effectively, the solution is to search for:

(i) Optimal time delay 
(ii) Minimum embedding dimension d

or
(i) Optimal time window w

There is no one unique method solving all problems and 
neither there is an unique set of embedding parameters appropriate for all purposes.
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The Role of Time Delay 

Too small Too large A better

If is too small,x(t) and x(t- ) will be very close, then each reconstructed vector 
will consist of almost equal components  Redundancy ( R)

The reconstructed state space will collapse into the main diagonal

If is too large,x(t) and x(t- ) will be completely unrelated, then each reconstructed 
vector will consist of irrelevant components  Irrelevance ( I)

The reconstructed state space will fill the entire state space. 

http://www.viskom.oeaw.ac.at/~joy/March22,%202004.ppt
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Blood Pressure Signal

Small 

Large T

A better 

A better choice is: 

R < w < I

Caution: should not be
close to main period

Collapsing of state space

http://www.viskom.oeaw.ac.at/~joy/March22,%202004.ppt
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Some Recipes to Choose 

Estimate autocorrelation function: )()()()(
1

1
)(

1

0

txtxtxtx
N

C
N

t

Then, opt C(0)/e
or

first zero crossing of C( )

Modifications:

1. Consider minima of higher order autocorrelation functions, <x( )x(t+ )x(t+2 )>
and then look for time when these minima for various orders coincide.

2. Apply nonlinear autocorrelation functions: <x2( )x2(t+2 )>

Albano et al. (1991) Physica D

Billings, Tao (1991) Int. J. Control.

Based on Autocorrelation

http://www.viskom.oeaw.ac.at/~joy/March22,%202004.ppt
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Based on Time delayed Mutual Information

The information we have about the value of x(t+ ) if we know x(t). 

1. Generate the histogram for the probability distribution of the signal x(t).

2. Let pi is the probability that the signal will be inside the i-th bin and 
pij(t) is the probability that x(t) is in i-th bin and x(t+ ) is in j-th bin. 

3. Then the mutual information for delay will be

i

i

iij

ji

ij ppppI log2)(log)()(
,

For  0, I( )  Shannon’s Entropy

opt First minimum of I( ) 

http://www.viskom.oeaw.ac.at/~joy/March22,%202004.ppt
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Decay time of autocorrelation

This is an important indicator of the strength of the 
autocorrelation of time series

It can be used to determine the time delay in embedology
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Self-similarity and fractals

A subset A of Euclidean space will be considered a “fractal” 
when it has most of the following features:

• A has fine structure (wiggly detail at arbitrarily small scales)

• A is too irregular to be described by calculus (e.g. no tangent
space)

• A is self-similar or self-affine (maybe approximately or 
statistically)

• the fractal dimension of A is non-integer

• A may have a simple (recursive) definition

• A has a “natural” appearance: “Clouds are not spheres, 
mountains are not cones, coastlines are not circles, and bark is 
not smooth, nor does lightning travel in a straight line . . .”  (B. 
Mandelbrot)
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self-similar
fractals

self-affine
fractals

From: K. Falconer, Techniques in Fractal Geometry, Wiley 1997
Mar 10, 2010 24

S. Marmi - Dynamics and time series -
Lecture 15: Takens theorem and 

multifractals



self-conformal
fractals

Statistically
self-similar
fractals

From: K. Falconer, Techniques in Fractal Geometry, Wiley 1997
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Source: Wikipedia
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Source: Wikipedia
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Mathematics,  shapes and nature
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http://classes.yale.edu/fractals/Panorama/Nature/NatFracGallery/Gallery/Gallery.html
Mar 10, 2010 29

S. Marmi - Dynamics and time series -
Lecture 15: Takens theorem and 

multifractals



From http://en.wikipedia.org/wiki/Image:Square1.jpg
Lichtenberg Figure
High voltage dielectric breakdown within a block of plexiglas creates a beautiful 
fractal pattern called a Lichtenberg_figure. The branching discharges ultimately
become hairlike, but are thought to extend down to the molecular level. 
Bert Hickman, http://www.teslamania.comMar 10, 2010 30
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A diffusion-limited aggregation (DLA) cluster. Copper aggregate formed from 
a copper sulfate solution in an electrode position cell. Kevin R. Johnson, Wikipedia
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Coastlines

Massachusetts Greece

D=1.15 D=1.20Mar 10, 2010 32
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http://upload.wikimedia.org/wikipedia/com
mons/2/20/Britain-fractal-coastline-
combined.jpg

200 km 100 km 50 km 
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How long is a coastline?

The answer depends on the scale at which the measurement is

made: if s is the reference length the coastline length L(s) will be

Log L(s) = (1-D) log s + cost
(Richardson 1961, Mandelbrot Science 1967)Mar 10, 2010 34
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How long is the coast of Britain? 

Statistical self-similarity and fractional dimension 

Science: 156, 1967, 636-638 

B. B. Mandelbrot 

Seacoast shapes are examples of highly involved curves with the 

property that  - in a statistical  sense - each portion can be considered 

a reduced-scale image of the whole. This property will be referred to  

as „„statistical self-similarity.‟‟  The concept of „„length‟‟ is usually 

meaningless for geographical curves. They  can be considered 

superpositions of features of widely scattered characteristic sizes; as 

even finer features are taken into account, the total measured length 

increases, and there is usually no clear-cut gap or  crossover, 

between the realm of geography and details with which geography 

need not be concerned. 
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Quantities other than length are therefore needed to discriminate 

between various degrees of  complication for a geographical 

curve. When a curve is self-similar, it is characterized by an 

exponent of  similarity, D, which possesses many properties of 

a dimension, though it is usually a fraction greater that the 

dimension 1 commonly attributed to curves. I propose to 

reexamine in this light, some empirical  observations in 

Richardson 1961 and interpret them as implying, for example, 

that the dimension of the  west coast of Great Britain is D = 

1.25. Thus, the so far esoteric concept of a  „„random figure of 

fractional  dimension‟‟ is shown to have simple and concrete 

applications of great usefulness. 

How long is the coast of Britain? 

Statistical self-similarity and fractional dimension 

Science: 156, 1967, 636-638 

B. B. Mandelbrot 
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“Box counting” dimension
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s N(s)

25 47

20 67

15 100

10 159

5 386

Log N(s) = -D log s + cost

http://www.physionet.org/tutorials/epn/program/coastline.htmMar 10, 2010 38
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Box counting (Minkowski) dimension

Let E be a non-empty bounded subset of Rn and let Nr (E) be the 

smallest number of sets of diameter r needed to cover E

• Lower dimension dimB E = liminfr→0 log Nr (E) / -logr

• Upper dimension dimB E = limsupr→0 log Nr (E) / -logr

• Box-counting dimension: if the lower and upper dimension

agree then we define

dim E = limr→0 log Nr (E) / -logr

The value of these limits remains unaltered if Nr (E) is taken to be

the smallest number of balls of radius r (cubes of side r) 

needed to cover E, or the number of r-mesh cubes that

intersect E Mar 10, 2010 39
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Hausdorff dimension

A finite or countable collection of subsets {Ui } of Rn is a δ-

cover of a set E if | Ui |< δ for all i and E is contained in Ui Ui

Hs
δ (E) = inf {Σi | Ui |s , {Ui } is a a δ-cover of E}

s-dimensional Hausdorff measure of E: Hs (E) =limδ→0 Hs
δ (E) 

It is a Borel regular measure on Rn , it behaves well under 

similarities and Lipschitz maps

The Hausdorff dimension dimH E is

the number at which the Hausdorff

measure Hs (E) jumps from ∞ to 0

dimH E ≤ dimB E ≤ dimB E
Mar 10, 2010 40

S. Marmi - Dynamics and time series -
Lecture 15: Takens theorem and 

multifractals



Von Koch curve (1904)

D=log4/log3=1.261859...
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From: K. Falconer, Techniques in Fractal Geometry, Wiley 1997
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Fractal snowflake

Infinite perimeter, finite area, D=log4/log3=1.261859...
Mar 10, 2010 44
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Sierpinski triangle (1916)

D=log3/log2=1.5849625...Mar 10, 2010 45
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Source: 
Wikipedia
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A fractal carpet (zero area)

D=3log2/log3=1.892789...Mar 10, 2010 47
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A fractal sponge
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Zooming in 
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Changing parameters

90 anticlockwise rotation 
about the top vertex

•The triangle of Sierpinski is the attractor of an iterated 
function system (i.f.s).

•The i.f.s. is made of three affine maps (each contracting by a 
factor ½ and leaving one of the initial vertices fixed)

•Combining the affine maps with rotations one can change the 
shape considerably

180 rotation about the 

same vertexMar 10, 2010 50
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Hausdorff metric and compact sets

F
E
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Contractions and Hausdorff metric

Proposition: if w:X→X is a contraction with Lipschitz constant s 
then w is also a contraction on (H (X),h) with Lipschitz

constant s

To each family F of contractions on X one can associate a family 

of contractions on (H (X),h). By Banach-Caccioppoli to each

such F will correspond a compact nonempty subset A of X: 

the attractor associated to F
d(w(E),w(F))=max min d(y,z) = max min d(w(e),w(f)) 

yϵE      zϵF eϵE      fϵF 

≤ s max min d(e,f) = s d(E,F) 
eϵE      fϵF 
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Iterated function systems

F  = {w1, …, wN} each wi : X→ X is a contraction of constant si, 

0 ≤ si <1

Let W :  H (X) → X 

W   (E) = U wi(E)  

1≤i≤N  

Then W contracts the Hausdorff metric h with Lipschitz constant

s = max si . We denote by A  the corresponding attractor
1≤i≤N

Given any subset E of X, the iterates W  ⁿ(E) → A exponentially

fast, in fact h(W  ⁿ(E) , A ) ≈ sⁿ as n → ∞ 
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Self similarity and fractal

dimension
If the contractions of the i.f.s. F  = {w1, …, wN}  are

• Similarities the attractor A will be said self-similar

• Affine maps the attractor A will be said self-affine

• Conformal maps (i.e. their derivative is a similarity) then the 
attractor A will be said self-conformal

If the open set condition is verified, i.e. there exists an open set U 

such that wi(U)∩wj(U)=Ø if i≠j and Ui wi(U)  is an open 
subset of U then the dimension d of the attractor A is the 

unique positive solution of s1
d + s2

d + … + sN
d =1
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Inverse problem

Inverse problem: given ε>0 and a target (fractal) set T can one

find an i.f.s F such that the corresponding attractor A is ε-close

to T w.r.t. the Hausdorff distance h?

Collage Theorem (Barnsley 1985) Let ε>0 and let TϵH (X) be

given. If the i.f.s. F  = {w1, …, wN}  is such that

h(U1≤i≤N wi(T) , T ) < ε

then

h(T , A) < ε / (1-s)

where s is the Lipschitz constant of F
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Fractal image compression ?

The Collage Theorem tells us that to find an i.f.s. whose attractor

“looks like” a give set one must find a set of contracting maps

such that the union (collage) of the images of the given set 

under these maps is near (w.r.t. Hausdorff metric) to the 

original set.

The collage theorem sometimes allows incredible compression

rates of images (of course with loss). It can be especially

useful when the information contained in details is not

considered very very important
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Fractal image compression !

The top­selling multimedia encyclopedia Encarta, published by 

Microsoft Corporation, includes on one CD­ROM seven 

thousand color photographs which may be viewed 

interactively on  a computer screen. The images are diverse; 

they  are of buildings, musical instruments, people's  faces, 

baseball bats, ferns, etc. What most users  do not know is that 

all of these photographs are  based on fractals and that they 

represent a (seemingly magical) practical success of 

mathematics. 

JUNE 1996 NOTICES OF THE AMS 657 

Fractal Image Compression by Michael F. Barnsley

e.g: Barnsley‟s fern: can be encoded with 160 bytes= 4*10*4

4 maps 10 parameters (each parameter using 4 bytes)Mar 10, 2010 57
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From M. Barnsely
SUPERFRACTALS
Cambridge 
University Press
2006
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From M. Barnsely
SUPERFRACTALS
Cambridge University Press
2006
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LEFT: the original digital image of Balloon, 512 pixels by 512 pixels, with 256 

gray levels at each pixel.  RIGHT: shows the same image after fractal compression. 

The fractal transform file is approximately one fifth the size of  the original.

JUNE 1996 NOTICES OF THE AMS 657  Fractal Image Compression by Michael F. BarnsleyMar 10, 2010 60
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Fractal graphs of functions

Many interesting fractals, both of theoretical and practical 

importance, occur as graphs of functions. Indeed many time 

series have fractal features, at least when recorded over fairly 

long time spans: examples include wind speed, levels of 

reservoirs, population data and some financial time series 

market (the famous Mandelbrot cotton graphs)

Weierstrass nowhere differentiable continuous function:

f(t)=Σ1≤k≤∞ λ(s-2)k sin (λk t)          1<s<2, λ>2

The graph of f has box dimension s for λ large enough.
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s=1.3, λ=1.5

s=1.5, λ=1.5

s=1.1, λ=1.5

s=1.7, λ=1.5

From “Fractal Geometry”, K. Falconer, p. 164-165 
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Fractal

graphs and 

i.f.s.
(from K. Falconer, 

Fractal Geometry, Wiley

(2003)

Mar 10, 2010 63
S. Marmi - Dynamics and time series -

Lecture 15: Takens theorem and 
multifractals



Self-affine curves defined by the two affine transformations that 

map the triangle p1pp2 onto p1q1p and pq2p2 respectively. In (a) 

the vertical contraction of both transformations is 0.7 giving 

dim graph f = 1.49, and in (b) the vertical contraction of both 

transformations is 0.8, giving dim graph f = 1.68

from K. Falconer, Fractal Geometry, Wiley (2003)
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Probabilistic i.f.s.

F  = {w1, …, wN}, wi : X→ X contraction of constant si, 0 ≤ si <1

(p1,…,pN) probability vector 0 ≤ pi ≤ 1, p1+…+pN =1

Iteration: at each step with probability pi one applies wi

i.f.s.: k iterates of a point → Nk points W :  H (X) → X 

W   (E) = U1 wi(E)  

Probabilistic i.f.s.: k iterates of a point → k points

Theorem: each probabilistic i.f.s. has a unique Borel probability
invariant measure μ with support = A  

Invariance: μ(E)= Σ1≤i≤N piμ(wi
-1(E)) for all Borel sets E, equivalently

∫X g(x)dμ(x)= Σ1≤i≤N pi ∫X g(wi(x))dμ(x) for all continuous functions g
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Probabilistic i.f.s.

If M   denotes the space of Borel probability measures on X

endowed with the metric

d(ν1,ν2)=sup{| ∫X g(x)dν1 (x)-∫X g(x)dν2 (x)|, g Lipschitz, Lip(g) ≤1}

Then a probabilistic i.f.s. acts on measures as follows

Lp,w ν= Σ piν wi
-1

And  by duality acts con continuos functions g:X→ R

∫X g(x)d(Lp,w ν)(x)= Σ1≤i≤N pi ∫X g(wi(x))dν(x)

It is easy to verify that

d(Lp,w ν1 , Lp,w ν2 ) ≤ s d(ν1,ν2)

from which the previous theorem followsMar 10, 2010 66
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Multifractal analysis of

measures

Local dimension (local Hölder exponent) of a measure μ at a point x: 

dimloc μ(x)=limr→0 log μ(B(x,r))/log r  (when the limit exists)

α>0, Eα ={xϵX, dimloc μ(x)= α}

For certain measures μ the sets Eα may be non-empty over a range of

values of α: multifractal measures

multifractal spectrum (singularity spectrum) of the multifractal

measure μ: is the function α→f(α)=dim Eα
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http://classes.yale.edu/fractals/MultiFractals/MFGaskSect/

MFGaskSectMv.gifMar 10, 2010 72
S. Marmi - Dynamics and time series -

Lecture 15: Takens theorem and 
multifractals



Mar 10, 2010 73
S. Marmi - Dynamics and time series -

Lecture 15: Takens theorem and 
multifractals



Mar 10, 2010 74
S. Marmi - Dynamics and time series -

Lecture 15: Takens theorem and 
multifractals



Mar 10, 2010 75
S. Marmi - Dynamics and time series -

Lecture 15: Takens theorem and 
multifractals



K. Falconer, Techniques in 

Fractal geometry

P=(0.8,0.05,0.15)
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The Legendre transform of f(α)

F  = {w1, …, wN}, wi : X→ X contraction of constant si, 0 ≤ si <1

(p1,…,pN) probability vector 0 ≤ pi ≤ 1, p1+…+pN =1

The dimension d of the attractor A  is the solution of the equation

s1
d + s2

d + … + sN
d =1

The singularity spectrum α→f(α) of a probabilistic i.f.s. is the 

Legendre transform of the function q→τ(q) obtained solving 

the functional equation

p1
q s1

τ(q)+p2
q s2

τ(q)+…+pN
q sN

τ(q)=1
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The singularity spectrum α→f(α) of a probabilistic i.f.s. is the 

Legendre transform of the function q→τ(q)
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