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[lecture 1 Anintroduction tordynamical systems and to: time series. Perodic and

guasiperiodic motions: (hueJan 13, 2 pm -4 pm Aula Bianchr)

[lecture 2 Ergodicity. Uniform distrbution off orbits: Return times. Kac inequality.
Mixing (Thudan 15, 2 pm - 4 pmAula Dini)

[lecture 35 Kolmogoroev-Sinai' entropy. Randomness and deterministic chaos. (Jiue Jan
27, 2 pm -4 pmiAula Bianchr)

[lecture 45 Time series analysisiand embedology. (hu Jan 29, 2 pm -4 pm DinI)
[lecture 55 Fractalstand multifractals: (Thu'Eebrl2, 2'pm -4 pm Dini)

['ecture 65 The rhythmsiofilife: (hue Feb 17, 2 pm -4 pm  Bianchi)

l'ecture 7& Financial time seres. (Thu Feb 19, 2 pm -4 pm’ Dini)

[lecture 8: The efficient markets hypothesis: (ue Mar 3, 2:pm - 4. pm Bianchi)
['ecture 9 Atrandom walksdown WalliStreet. (MihurMar 19,2 pm - 4:pm: Dini)

l'ecture 105 A'non-random walkidown Wall'Street. ((hue Mar 24, 2 pm — 4. pm
Bianchi)



Seminar [ Waiting times, recurrence times ergodiCity, and quasiperodic
dynamics (ID:H: Kim, Suwoen, Kerea; Tihu Jan 22, 2 pm - 4 pm Aula Dinr)

Seminar [1: Symbolization off dynamics. Recurrence rates and entropy. (S.
Galatolo, Universita dit Pisa; Tiue Eeb 10, 2 pmi- 4 pm Aula Bianchi)

Seminar [I1; Heart Rate Variability: a statistical' physics point off view: (A.
Eacchini, Universita di'Siena; iue Feb 24, 2 pm -4 pm'Aula Bianchi')

Seminar IV: Study of a population model: the Yoccoz-Birkeland model (D:
Papini, Universita di'Siena; Thu Eeb 26, 2 pm - 4 pm Aula Dini)

Seminar Vi Scaling lawsiinfeconomics (G. Bottazzi, Scuola SUperiore
Sant/Anna Pisay diue Mar 17, 2:pm -4 pmiAula Bianchr)

Seminar ViI: Complexity, sequence distance and heart rate variability (IM:
DeglitEsposti, Universita di'Bologna; fihu Mar 26, 2 pm - 4 pm Atla Dini’)

Seminar VII: Ferecasting (BA)



Examples of dynamical systems
N natural and sociall SCIENCEes

o [ihe Selar System

o Atmosphere (meteorelogy)

o' Human body: (heart, brain'cells, Itngs, ...)
" Ecology (dynamics off animal pepulations)
o' Epidemiology:.

o' Chemical reactions

Dynamical systems

o Steckmarket

s Electric grid

o' Internet



Dynamicall systems

A dynamical systemris a couple (phase space; time evoelution
law)

e phase space IS the set offall pessiblerstates (1. initial
CONAItIONS) Off UK system

Each initiali condition tniguely: determines the time evolution
(determinism)

Ihe system evoelVes In time according to a fixed law: (Iteration
offa map, differential’eguation; ete.)

Often (but not necessarily) the evolution law: Is not linear



TThe simplest dynamical systems

® [he phase space Is the circle:
S=R/Z

® (Case 1: quasiperiodic dynamics
B(n+1)=8(n)+w (mod 1)
(0 irrational)

o (Case 2: chaoetic dynamics
O(n+1)=206(n)(mod 1)







QUAaSIPEriodic dynamics

® QUasIperiodic = PerodIC I precision: IS finite, but
the period — ool if the precision off mMeasurements; Is
IMproved

e Vore formally a dynamics i IS qUasSIPEROIC 1T
For some seguence

Renormalization
approach

return times



Sensitivity to initiall conditions

oK, 1IN reSPECE to) the latter: branchi off the suppoesition; it should be
considered that the most trifling Variation in the facts of: the two
CaSes mIght give rise to the most Important miscalculations, by,
diverting theroughly the tWorCOURSES Ofi EVENLS; VER/ muchias; in
artAMELIC, an' errer WRICH, InftS own individuality, may: be
INappreciable, produces atlength, by dint off multiplication' at all
POINES Of the Precess, a result enermously: at Variance with truth:.

(Egdar Allan'Pog, Tihe mistery off Marie Roget)

FOr the doubling map: oni the circle (case 2) one has

B(IN)- 61 (N)=2 |\'(6(0)- B(0)) == cyven ifthe initial datumiis known
with' a 10 digit' accuracy, after 40/terations ene cannot even say. ifi
the Iterates are larger than' 2 or not

In quasiperiodic dynamics this does Net happen: for the rotations on
the circle oene has: 6(IN)-6/(IN)="06(0)- 81(0)  and'long term
Prediction’ Is possible



Ergodic theory

® [lhe focus of the analysis is mainly on the
asymptotic ditrbution of the orbits; and
Not on transient phenomena. Ergodic
theory Is an' attempt to study: the
statistical behaviour ofi orbits of

dynamicall systems restricting the
attention to their asymptotic distribution.
One waits until all' transients have been
wiped offf and 100KS for ani invariant:
probability: measure describing the
distribution ofi typical orbits.



Measure theory vs. probability

theory.

Table 1.1. Comparison of terminology
Measure Theory Probability Theory
a probability measure space X a sample space ()
re X w e N
a o-algebra A a o-field F
a measurable subset A an event £
a probability measure pu a probability P
p(A) P(E)
a measurable function f a random variable X
flz) x, avalue of X
a characteristic function yg an indicator function 1g
Lebesgue integral [, fdp expectation E[X]
almost everywhere almost surely, or with probability 1
convergence in L' convergence in mean
convergence in measure convergence in probability
conditional measure p4(B)  conditional probability Pr(B|A)




ErgodiC theory: Vs. prebability: theory,
.€. Statistics Vs. a-prior probability

e Jihere are few: Persens, evenamongd the calmest thinkers, whorhave
not occasionally:beenistartied into’a vague yet thrlling half=
credence in thersupernatural, by corciaences of serseemingly
marVvellous a character that, as /mere CoINCIAENCES, the intellect has
Deeniunable torreceive them. Such sentiments —-
fior the half-credences off which I 'speak: have never: the full force of;
thought--"suchisentiments are seldom' theroughly:stifled unless by,
reference tor the doctrine off Chance, o, as It s technically termed,
the Calculus of Probabilities. Now: this Calcults is, iR its eSSence;
purely: mathematical; and thus we have the anomaly of the most
Hgidly, Exact In SCIENcE applied to the shadew and spirtuality, ofi the
MOSt Intangibletin speculation.

s (Egdar Allan'Pog; Tihe mistery: off Marie Roger)



Examples of time-series in natural
dhd Sociall SCIENCES

Weather measurements (temperature, pressure, rain, wind
Speed, ...) . I the seres Is Very/ Iong ...climate

Earthguakes
LIgAtCUrVES of Variable stars
SURspoets

Vlacreeconemic historical time series (Inflation, GDP;
employment,...)

Einancial time: SErEs (Stocks, futlres, commodities, bonds; ...)
Populations census (humans o animals)
Physielegical sighals (ECG, EEG; ...)



Stochastic or chaotic?

o An Important goal of time-Seres analysis
IS to determing, giveni a times series (€.4d.
HRV) i the tnderlying dynamics (the
heart) Is:

— Intrinsically:

— (Generated by a
WRICH generatesia random
ouUtpUL

— A mix off the two! (Stochastic perturdations: of
deterministic dynamics)



Deterministic or random?
Appearance can be mlsleadlng




Time delay: map

Ganssian white noise Deterministic Gaussian white time series




Logit and logistic

ihe legistic map x=—1L(X)=4x(1-X) PrESERVES
the probability: measure du()=dx/(mmx@=-x))
he transiermation :[0; 1] =R ) =lnx=1n (1=
X) conjugates L withra new map: G
Ao L=G 1
definned enr R: The new: invariant prenability
measure is du)=dx/[m(e = +e 9]

Clearnly G and L have the same dynamics
(the differrenly by a coerdinates change)




Embedding method
® Plot X() vs. X(t-7), X(&-27), (&3 7), ...

® x(f) can be any observable

* The embedding dimension is the # of delays

® The choice of rand of the dimension are critical

® For a typical deterministic system, the orbit will be
diffeomorphic to the attractor of the system (Takens

theorem)



Time series analysis of
physiolegical signals

Physiological signals are characterized by extreme variability both in healthy
and pathological conditions. Complexity, erratic behaviour, chaoticity are
typical terms used in the description of many physiological time series.

Quantifying these properties and turning the variability analysis from
qualitative to quantitative are important goals of the analysis of time-series
and could have relevant clinical impact.



From ECG to heart rate

variability time series

* Example of ECG signal

W ® The time interval between
il two consecutive R-wave
peaks (R-R interval) varies
In time

The time series given by
the sequence of the
durations of the R-R
intervals is called heart
rate variability (HRV)

i
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The heart cycle and ECG
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Healthy?'  Statistical Vs.
dynamical teols for diagnosis
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¢ [he HRV plots of an
. healthy patient shew:a
Very diffierent dynamics
firom these of a sick
patient but the
traditional’ statistical
measures (mean and
Variance) are almost
the same.
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Jime series and self-similarit

Spatial Self-Similarity

www.physionet.org

Temporal Self-Similarity

Fig. 2. Schematic representations of selfsimilar structures and selsimilar
Tluctugtions. The tree-like, spatial fractal (Leff has seif-similar branchings, such
that the smallscale structura resembles the largescale forme A fractal temporal
procass, such as healthy heart rate requlaton (Right), may generate flucuations
on differenttime scales that are statistically selfsimilar. Adapted from ref. 13.




Healthy: 2

Haart Rate Dynamics in Hoalh and Disaaso:
A Tima Saries Test
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Nonlinear Dynamics of the Heartbeat
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Healthy or not?
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(Adapted from Goldberger AL. Non-linear dynamics for clinicians:
chaos theory, fractals, and complexity at the bedside. Lancet 1996;347:1312-1314.)




[Healthy: or not?

FRACTAL DYNAMICS OF HEART RATE AND GAIT

B -
DYNAMICS DYNAMICS
beats steps
Persists during different Persists regardless of gait
activities (asleep or awake speed (slow, normal or fast

I A R
Potential Altered with advanced age Altered with advanced age

Diagnostic & Prognostic |Altered with cardiovascular |Altered with nervous system
disease (e.g. Heart Failure) |disease (e.g. Parkinson’s D.
Utility Helps predict survival May predict falls among
elderl

Source: htpp.//www.physionet.org




Correlation between disease
Severity and firiactaliscaling
EXPONENL

_orrelation between Disease Severity and Fractal Scaling
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Record matdb/ 100 (0 - e): RE mierval histogram

Distribution of . |
R-R intervals |
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Distribution of daily returns , DJIA
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Dow Jones percent change per day 10/1/1928 - 3/20/2006 Geometrlc dally re_turn at
time t = (Price of index at
3/15/1933 time t / Price of index at
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Here the index is the Dow
Jones Industrial Average, t is
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Una passedgiata aleatoria?

s [N un famosissimo; articolorPauliSamuelson: (FProof that
Properly: Anticipated Prices Eluctuate Randomiy=,
InaustrigliManagement Review, 652, 41-49:((11965)) diede
UnNa dimostrazione matematica di'questo: fatte: Tuttirgli
argementi rigoerosi devoeno: fondarsi sul assiomi'e
definizioni e sulimpiedgare unallogica Impeccanile, che
CErtamente approssima ma NeN Incarna lfesperienza
guotidiana deirmercati. Scrive |0’ stesso Samuelsonrnelle
conclusioniidellfarticolos SINon si doviebhere dedurre
troppe conseguenze dal teoremar che e appena
dimostrato. Infparticolare Noen Ne Segue Che I mercati
competitivi reali fiunzZIonine BEne: ™



The normal distrbution
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Do daily returns follow a
normal distribution?

Class

x< -0.05
-0.05<x<-0.045
-0.045<x<-0.04
--0.04<x<0.035
-0.035<x<-0.03
-0.03<x<-0.025
-0.025<x<-0.02

-0.02<x<-0.015
-0.015<x<-0.01
-0.01<x<-05
-0.05<x<0
0<x<05
05<x<0.01
01<x<0.015
0.015<x<0.02
0.02<x<0.025
0.025<x<0.03
0.03<x<0.035
0.035<x<0.04
0.04<x<0.045

0.045<x<0.05
vs N NS

Observed Theoretical
Frequency Frequency

67
19
41
51
78
117
pLiy

484
1111

2433
4879

5119
2881

1219
539
241

105
77

43
27

20
cN

0.093902
0.567355
3.207188

14.9652
57.64526
183.3153
481.2993

1043.367
1867.6

2760.391
3369.05

3395.468
2825.84

1941.987
1102.011
516.3589
199.7674

63.8089
16.82651
3.662964

0.658208
Nn 110997

AU6561842D0

Mean

\IIETR
Moda
Standard
deviation

Varianza
campionaria
Kurtosis

Asymmetry
Intervallo
Minimum
Maximum
Sum
Number of
observations

=
3
g
T
=
5]

00204

00411
0

0.011355

00129
26.84192

-0.67021
0.399044
-0.25632
0.142729
4.058169

19848



Theoretical and observed frequency. of
outliers in the history: of 155 stockmarkets

Exhibit 4: Outliers — Expected and Observed
This exhibit shows, for the indexes and sample periods in Exhibit 2, the expected (Exp) and observed (Obs) aumbes
of dady retnrns three standard deviations (3D below and above the anthmetic mean retuon (AR); the ratio betwreen
the number of these observed and expected returns; and the total number of expected (TE) and chserved (TO)
returns mose than three 3Ds away from the mean “Exp’ figuses are rounded to the nearest mnteges.

Lower Tail Upper Tail
Market AM-3-5D Exp Obs Rauo AM+3SD Ezxp Obs Rato TE TO Rato

Anstralia =246% 17 73 44 252% 17 33 32 33 126 38
Canada —245% 11 73 69 2353% 11 45 41 21 116 35
France =311% 13 79 62 319% 13 6l 45 25 140 35

Germany =351% 16 83 53 3537% 16 6 48 32 16l 31
Hong Kong -5353% 12 77 62 367% 12 el 65 25 1537 o4
Ttaly —-3.82% 12 7l 6.0 391% 12 48 40 24 119 30
Japan =312% 19 132 65 319% 19 112 58 39 244 63
-251% 12 6l 49 2.56% 12 37 46 25 118 47
=312% 14 90 64 318% 14 g6 6l 2 176 63

=322, 11 32 48 3.531% 11 6l 5.6 2 115 32
=274% 13 101 79 279% 13 62 48 26 lesd o4
—433% 13 103 68 463% 13 gl 3.3 30 184 60
—47e 10 62 60 448% 10 gl 78 21 1453 6@
=3.00% 13 69 53 307% 13 60 46 26 129 30
-3.535% 28 180 64 3400 28 6.1 56 333 6.3
-3.39%, 14 &7 6.0 3.47% 14 To 52 20 163 5.6

Estrada, Javier: Black Swans and Market Timing: How Not to Generate Alpha.
Available at SSRN: http://ssrn.com/abstract=1032962




