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• Lecture 1: An introduction to dynamical systems and to time series. Periodic and 

quasiperiodic motions. (Tue Jan 13,  2 pm - 4 pm Aula Bianchi)

• Lecture 2: Ergodicity. Uniform distribution of orbits. Return times. Kac inequality

Mixing (Thu Jan 15,  2 pm - 4 pm Aula Dini)

• Lecture 3: Kolmogorov-Sinai entropy. Randomness and deterministic chaos. (Tue Jan 

27,  2 pm - 4 pm Aula Bianchi)

• Lecture 4: Time series analysis and embedology. (Thu Jan 29,  2 pm - 4 pm Dini)

• Lecture 5: Fractals and multifractals. (Thu Feb 12,  2 pm - 4 pm  Dini)

• Lecture 6: The rhythms of life. (Tue Feb 17,  2 pm - 4 pm  Bianchi)

• Lecture 7: Financial time series. (Thu Feb 19,  2 pm - 4 pm  Dini)

• Lecture 8: The efficient markets hypothesis. (Tue Mar 3,  2 pm - 4 pm Bianchi)

• Lecture 9: A random walk down Wall Street. (Thu Mar 19,  2 pm - 4 pm  Dini)

• Lecture 10: A non-random walk down Wall Street. (Tue Mar 24, 2 pm – 4 pm 

Bianchi)



• Seminar I: Waiting times, recurrence times ergodicity and quasiperiodic
dynamics (D.H. Kim, Suwon, Korea; Thu Jan 22,  2 pm - 4 pm Aula Dini)

• Seminar II: Symbolization of dynamics. Recurrence rates and entropy (S. 
Galatolo, Università di Pisa; Tue Feb 10,  2 pm - 4 pm Aula Bianchi)

• Seminar III: Heart Rate Variability: a statistical physics point of view (A. 
Facchini, Università di Siena; Tue Feb 24,  2 pm - 4 pm Aula Bianchi ) 

• Seminar IV: Study of a population model: the Yoccoz-Birkeland model (D. 
Papini, Università di Siena; Thu Feb 26,  2 pm - 4 pm Aula Dini)

• Seminar V: Scaling laws in economics (G. Bottazzi, Scuola Superiore 
Sant'Anna Pisa; Tue Mar 17,  2 pm - 4 pm Aula Bianchi) 

• Seminar VI: Complexity, sequence distance and heart rate variability (M. 
Degli Esposti, Università di Bologna; Thu Mar 26,  2 pm - 4 pm Aula Dini )

• Seminar VII: Forecasting (TBA)



Examples of dynamical systems
in natural and social sciences
• The Solar System

• Atmosphere (meteorology) 

• Human body (heart, brain cells, lungs, ...) 

• Ecology (dynamics of animal populations) 

• Epidemiology

• Chemical reactions

Dynamical systems not necessarirly deterministic

• Stockmarket

• Electric grid

• Internet  



Dynamical systems

• A dynamical system is a couple (phase space, time evolution 
law)

• The phase space is the set of all possible states (i.e. initial 
conditions) of our system

• Each initial condition uniquely determines the time evolution 
(determinism)

• The system evolves in time according to a fixed law (iteration 
of a map, differential equation, etc.)

• Often (but not necessarily) the evolution law is not linear



The simplest dynamical systems

• The phase space is the circle: 
S=R/Z

• Case 1: quasiperiodic dynamics

θ(n+1)=θ(n)+ω (mod 1)

(ω irrational)

• Case 2:  chaotic dynamics
θ(n+1)=2θ(n)(mod 1)

ω





Quasiperiodic dynamics

• Quasiperiodic = periodic if precision is finite, but
the period →∞ if the precision of measurements is

improved

• More formally a dynamics f is quasiperiodic if

id f kn
For some sequence kn

return times

ff
1nk

Renormalization

approach

1nk



Sensitivity to initial conditions

For, in respect to the latter branch of the supposition, it should be 
considered that the most trifling variation in the facts of the two 
cases might give rise to the most important miscalculations, by 
diverting thoroughly the two courses of events; very much as, in 
arithmetic, an error which, in its own individuality, may be 
inappreciable, produces at length, by dint of multiplication at all 
points of the process, a result enormously at variance with truth.

(Egdar Allan Poe, The mistery of Marie Roget)

For the doubling map on the circle (case 2) one has  

θ(N)- θ’(N)=2   (θ(0)- θ’(0)) even if the initial datum is known
with a 10 digit accuracy, after 40 iterations one cannot even say if
the iterates are larger than ½ or not

In quasiperiodic dynamics this does not happen: for the rotations on 
the circle one has θ(N)- θ’(N)= θ(0)- θ’(0) and long term
prediction is possible

N



Ergodic theory

• The focus of the analysis is mainly on the 
asymptotic ditribution of the orbits, and 
not on transient phenomena. Ergodic
theory is an attempt to study the 
statistical behaviour of orbits of

dynamical systems restricting the 
attention to their asymptotic distribution. 
One waits until all transients have been 
wiped off and looks for an invariant 
probability measure describing the 
distribution of typical orbits. 



Measure theory vs. probability
theory



Ergodic theory vs. probability theory, 
i.e. statistics vs. a-priori probability

• There are few persons, even among the calmest thinkers, who have 
not occasionally been startled into a vague yet thrilling half-
credence in the supernatural, by coincidences of so seemingly 
marvellous a character that, as mere coincidences, the intellect has 
been unable to receive them. Such sentiments --
for the half-credences of which I speak have never the full force of 
thought -- such sentiments are seldom thoroughly stifled unless by 
reference to the doctrine of chance, or, as it is technically termed, 
the Calculus of Probabilities. Now this Calculus is, in its essence, 
purely mathematical; and thus we have the anomaly of the most 
rigidly exact in science applied to the shadow and spirituality of the 
most intangible in speculation.

• (Egdar Allan Poe, The mistery of Marie Roget)



Examples of time-series in natural 
and social sciences

• Weather measurements (temperature, pressure, rain, wind 
speed, …) . If the series is very long …climate

• Earthquakes

• Lightcurves of variable stars

• Sunspots

• Macroeconomic historical time series (inflation, GDP, 
employment,…)

• Financial time series (stocks, futures, commodities, bonds, …)

• Populations census (humans or animals)

• Physiological signals (ECG, EEG, …)



Stochastic or chaotic?

• An important goal of time-series analysis
is to determine, given a times series (e.g. 
HRV) if the underlying dynamics (the 
heart) is:

– Intrinsically random

– Generated by a deterministic nonlinear
chaotic system which generates a random
output

– A mix of the two (stochastic perturbations of
deterministic dynamics)



Deterministic or random? 
Appearance can be misleading…



Time delay map



Logit and logistic

The logistic map x→L(x)=4x(1-x) preserves

the probability measure dμ(x)=dx/(π√x(1-x))

The transformation h:[0,1] →R, h(x)=lnx-ln(1-

x) conjugates L with a new map G

h L=G h 

definined on  R. The new invariant probability

measure is dμ(x)=dx/[π(e     + e )]

Clearly G and L have the same dynamics

(the differ only by a coordinates change)

x/2 -x/2



Embedding method

• Plot x(t) vs. x(t- ), x(t-2 ), x(t-3 ), …

• x(t) can be any observable

• The embedding dimension is the # of delays

• The choice of and of the dimension are critical

• For a typical deterministic system, the orbit will be 

diffeomorphic to the attractor of the system (Takens

theorem)



Time series analysis of
physiological signals

Physiological signals are characterized by extreme variability both in healthy
and pathological conditions. Complexity, erratic behaviour, chaoticity are
typical terms used in the description of many physiological time series.

Quantifying these properties and turning the variability analysis from
qualitative to quantitative are important goals of the analysis of time-series
and could have relevant clinical impact.



From ECG to heart rate 
variability time series

• Example of ECG signal

• The time interval between 
two consecutive R-wave 
peaks (R-R interval) varies
in time

• The time series given by 
the sequence of the 
durations of the R-R 
intervals is called heart 
rate variability (HRV)



The heart cycle and ECG



Healthy? Statistical vs. 
dynamical tools for diagnosis

• The HRV plots of an
healthy patient show a 
very different dynamics
from those of a sick
patient but the 
traditional statistical
measures (mean and 
variance) are almost
the same. 

• www.physionet.org



Time series and self-similarity

www.physionet.org



Healthy ? 

www.physionet.org



Healthy or not?

(Adapted from Goldberger AL. Non-linear dynamics for clinicians: 
chaos theory, fractals, and complexity at the bedside. Lancet 1996;347:1312-1314.) 



Healthy or not?



Correlation between disease
severity and fractal scaling
exponent

www.physionet.org



Distribution of
R-R intervals

www.physionet.org



Distribution
of daily
returns, Dow
Jones 1928-
2007
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Distribution of daily returns , DJIA

Frequenza

Geometric daily return at 
time t = (Price of index at 
time t / Price of index at 

time t-1)-1
Here the index is the Dow

Jones Industrial Average, t is
integer and counts only

open market days
The value of the index is at 

the close



Random walks vs. Dow Jones
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Selfsimilarity

x L

x √L



Una passeggiata aleatoria?

• In un famosissimo articolo Paul Samuelson (“Proof that
Properly Anticipated Prices Fluctuate Randomly”, 
Industrial Management Review, 6:2, 41-49 (1965)) diede 
una dimostrazione matematica di questo fatto. Tutti gli 
argomenti rigorosi devono fondarsi su assiomi e 
definizioni e su impiegare una logica impeccabile, che 
certamente approssima ma non incarna l’esperienza 
quotidiana dei mercati. Scrive lo stesso Samuelson nelle 
conclusioni dell’articolo: “Non si dovrebbero dedurre 
troppe conseguenze dal teorema che ho appena 
dimostrato. In particolare non ne segue che i mercati 
competitivi reali funzionino bene.” 



The normal distribution



Do daily returns follow a  
normal distribution?

Mean 00204

Median 00411
Moda 0
Standard 
deviation 0.011355

Varianza 
campionaria 00129
Kurtosis 26.84192

Asymmetry -0.67021
Intervallo 0.399044
Minimum -0.25632
Maximum 0.142729
Sum 4.058169
Number of
observations 19848

Class
Observed
Frequency

Theoretical
Frequency

x< -0.05 67 0.093902

-0.05<x<-0.045 19 0.567355

-0.045<x<-0.04 41 3.207188
--0.04<x<0.035 51 14.9652

-0.035<x<-0.03 78 57.64526

-0.03<x<-0.025 117 183.3153

-0.025<x<-0.02 247 481.2993

-0.02<x<-0.015 484 1043.367
-0.015<x<-0.01 1111 1867.6

-0.01<x<-05 2433 2760.391
-0.05<x<0 4879 3369.05

0<x<05 5119 3395.468
05<x<0.01 2881 2825.84

01<x<0.015 1219 1941.987

0.015<x<0.02 539 1102.011

0.02<x<0.025 241 516.3589

0.025<x<0.03 105 199.7674
0.03<x<0.035 77 63.8089

0.035<x<0.04 43 16.82651

0.04<x<0.045 27 3.662964

0.045<x<0.05 20 0.658208

x> 0.05 50 0.110887



Theoretical and observed frequency of
outliers in the history of 15 stockmarkets

Estrada, Javier: Black Swans and Market Timing: How Not to Generate Alpha. 
Available at SSRN: http://ssrn.com/abstract=1032962 


