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Estimators: Large Sample Properties

Purposes:

study the behavior of θ̂n when n → ∞

approximate unknown finite sample distributions of θ̂n

Being θ̂n a distribution ∀n, how to define θ̂n → θ0?

Convergence in Probability (plim): The random variable θ̂n converges in probability to a
constant θ0 if ∀ε > 0

lim
n→∞

P(|θ̂n − θ0| < ε) = 1

If plim θ̂n = θ0 the estimator is Consistent

Convergence in Quadratic Mean:

lim
n→∞

E(θ̂n − θ0)
2 = lim

n→∞

MSE[θ̂n] = 0

Being
MSE[θ̂n] = Var[θ̂n] + Bias[θ̂n]

2

we have Convergence in Quadratic Mean ⇔
lim

n→∞

Bias[θ̂n] = 0 and lim
n→∞

Var[θ̂n] = 0

Convergence in Quadratic Mean ⇒ Convergence in Probability
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Consistency
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OLS without Normality: Large Sample Theory
When H.4 of Normality is violated, OLS is still unbiased and BLUE, however confidence intervals
and test statistics are not valid

Assumptions for the large sample theory:

A.1 E[xiεi] = 0 regressors uncorrelated with errors (weaker than strict exogeneity)

A.2 limn→∞
1
n X′X = Q definite positive

Being

β̂ = β + (X′X)−1X′ε =

(
n∑

i=1

xix
′

i

)
−1( n∑

i=1

xiεi

)

Consistency (convergence in Probability): plimβ̂n = β

β̂n = β +

(
1

n

n∑

i=1

xix
′

i

)
−1

︸ ︷︷ ︸
→Q−1(A.2)

(
1

n

n∑

i=1

xiεi

)

︸ ︷︷ ︸
→ 0 (A.1+LLN)

→ β

Asymptotic Normality

√
n
(
β̂n − β

)
=

(
1

n

n∑

i=1

xix
′

i

)
−1

︸ ︷︷ ︸
→Q−1 (A.2)

(
1√
n

n∑

i=1

xiεi

)

︸ ︷︷ ︸
→N(0,σ2Q) (A.2+CLT)

→ N(0, Q−1(σ2Q)Q−1) = N(0, σ2Q−1)

Hence β̂n → N(β, σ2(X′X)−1) as in the Normal case (H.4) but only asymptotically.
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NLS (the idea)

The Nonlinear Regression model is

yi = h(xi, β) + εi with E[εi|xi] = 0

Nonlinear Least Square (NLS) estimator:

β̂NLS = arg min
β

n∑

i=1

ε2
i = arg min

β

n∑

i=1

(yi − h(xi, β))
2

FOC: NLS estimator β̂NLS satisfy

n∑

i=1

[
yi − h(xi, β̂NLS)

] ∂h(xi, β̂NLS)

∂β
= 0

In general, no close form solutions ⇒ numerical minimization
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Maximum Likelihood

Basic, strong assumption: distribution of the data known up to θ.

Likelihood function: The joint density of an i.i.d random sample (x1, x2, . . . , xn) from f (x; θ0)

f (x1, x2, . . . , xn; θ) = f (x1; θ)f (x2 ; θ) . . . f (xn; θ)

a different perspective: see the joint density as a function of the parameters θ (as opposed
to the sample)

L(θ|X) ≡ f (x1, x2, . . . , xn; θ) =
n∏

i=1

f (xi; θ)

it is usually simpler to work with the log of the likelihood

l(θ|x1, x2, . . . , xn) ≡ ln L(θ|x1, x2, . . . , xn) =
n∑

i=1

ln f (xi; θ)

ML Estimator: Given sample data generated from parametric model, find parameters that
maximize probability of observing that sample.

θ̂ML = arg max
θ

L(θ|x1, x2, . . . , xn) = arg max
θ

l(θ|x1, x2, . . . , xn)

F.0.C. ⇒ the Score:
∂l(θ)

∂θ
= 0
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Maximum Likelihood: Example
Consider a Univariate Normal model:

f (y, θ) = N(µ, σ2) =
1√

2πσ2
exp

(
− 1

2

(yi − µ)2

σ2

)

The log-Likelihood is

l(µ, σ2) =
n∑

i=1

f (yi; θ) = − n

2
ln(2π) −− n

2
ln(σ2)− 1

2

n∑

i=1

(yi − µ)2

σ2

and then the score of the µ and σ2 parameters are

∂l(µ, σ2)

∂µ
=

1

σ2

n∑

i=1

(yi − µ) = 0

∂l(µ, σ2)

∂σ2
= − n

2σ2
+

1

2σ4

n∑

i=1

(yi − µ)2 = 0

Therefore, by first solving for µ̂ and inserting it in the score of σ̂2 we get the ML estimators

µ̂ML =
1

n

n∑

i=1

yi

σ̂2
ML =

1

n

n∑

i=1

(yi − µ̂ML)
2
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Maximum Likelihood: Properties

Consistency:
plim θ̂ML = θ0

Asymptotic normality:

θ̂ML
a∼ N

(
θ0, [I(θ0)]

−1
)

where I(θ) = −E

[
∂2 ln L(θ)

∂θ∂θ′

]

I(θ) is the Fisher Information matrix

Asymptotic efficiency: has the smallest asymptotic variance being I(θ)−1 the Cramér-Rao
lower bound

Invariance: if θ̂ is the MLE for θ0, and if g(θ) is any (invertible) transformation of θ, then the
MLE for g(θ0) = g(θ̂).

Ex: precision parameter γ2 = 1/σ2 ⇒ γ2
ML = 1/σ2

ML

Bottom line: MLE makes “best use” of information (asymptotically)
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Maximum Likelihood: Properties of regular density
Under some regularity conditions (whose goal is to use Taylor approximation and interchange
differentiation and expectation)

D1: ln f (yi; θ), gi =
∂ ln f(yi;θ)

∂θ
, Hi =

∂2 ln f(yi;θ)
∂θθ′

are random sample

D2: E0[gi(θ0)] = 0

D3: Var0[gi(θ0)] = −E0[Hi(θ0)]

D1 implied by assumption: yi, i = 1, ..., n is random sample

D2 is a consequence of
∫

ln f (yi; θ0)dyi = 1 since by differencing both sides by θ0

0 =

∫
∂f (yi; θ0)

∂θ0
dyi =

∫
∂ ln f (yi; θ0)

∂θ0
f (yi; θ0)dyi = E0[gi(θ0)]

D3 is obtained by differencing once more w.r.t θ0

D1 (random sample) ⇒ Var0
[∑n

i=1 gi(θ0)
]
=
∑n

i=1 Var0[gi(θ0)], thus

J(θ0) ≡ Var0

[
∂ ln L(θ0; yi)

∂θ0

]
= −E0

[
∂2 ln L(θ0; yi)

∂θ0θ
′

0

]

≡ I(θ0)

︸ ︷︷ ︸
Information matrix equality
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Asymptotic normality of MLE
being the max of ln L, MLE satisfy by construction the likelihood equation g(θ̂) =

∑n
i=1 gi(θ̂) = 0

define H(θ0) =
∂2 ln L(θ0;yi)

∂θ0θ
′
0

=
∑n

i=1
∂2 ln f(yi;θ0)

∂θ0θ
′
0

=
∑n

i=1 Hi(θ0)

1 take first order Taylor expansion of the score g(θ̂) around θ0

g(θ̂) = g(θ0) + H(θ0)(θ̂ − θ0) + R1 = 0,

2 rearrange and scale by
√

n

√
n(θ̂ − θ0) =

(

− 1

n

n∑

i=1

Hi(θ0)

)
−1

︸ ︷︷ ︸
→−E0[ 1

n H(θ0)]

×
√

n
1

n

n∑

i=1

gi(θ0)

︸ ︷︷ ︸
→N(0,Var0[ 1

n g(θ0)])

+ R1︸︷︷︸
→0

3 Use LLN (on first term) and CLT (on second term)

√
n(θ̂ − θ0) → E0

[
1

n
H(θ0)

]
−1

× N

(
0,Var0

[
1

n
g(θ0)

])
=

(
1

n
I(θ0)

)
−1

× N

(
0,

1

n
J(θ0)

)

→ N
(

0, n I(θ0)
−1J(θ0)I(θ0)

−1
)

if information matrix equality J(θ0) = I(θ0) holds then

θ̂
a∼ N

(
θ0, I(θ0)

−1
)
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Estimating asymptotic covariance matrix of MLE

Three asymptotically equivalent estimators of the Asy.Var[θ̂]:

1 Calculate E0[H(θ0)] (very difficult) and evaluate it at θ̂ to estimate

{I(θ̂)}−1 =

{

−E0

[
∂2 ln L(θ̂; yi)

∂θ̂θ̂′

]}
−1

2 Calculate H(θ0) (still quite difficult) and evaluate it at θ̂ to get

{Î(θ̂)}−1 =

{
∂2 ln L(θ̂; yi)

∂θ̂θ̂′

}
−1

3 BHHH or OPG estimator (easy): use information matrix equality I(θ0) = J(θ0)

{Ĩ(θ̂)}−1 =

{

Var

[
∂ ln L(θ̂; yi)

∂θ̂

]}
−1

=

{
n∑

i=1

gi(θ̂)gi(θ̂)
′

}
−1
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Hypothesis testing (idea)

Test of hypothesis H0 : c(θ) = 0

Three tests, asymptotically equivalent (not in finite sample):

Likelihood ratio test : If c(θ) = 0 is valid, then imposing it should not lead to a large
reduction in the log-likelihood function. Therefore, we base the test on the difference,

2(ln L − ln LR) ∼ χ2
df

Both unrestricted ln L and restricted ln LR ML estimators are required

Wald test: If c(θ) = 0 is valid, then c(θML) ≈ 0

Only unrestricted (ML) estimator is required

Lagrange multiplier test: If c(θ) = 0 is valid, then the restricted estimator should be near the
point that maximizes the ln L. Therefore, the slope of ln L should be near zero at the
restricted estimator

Only restricted estimator is required
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Hypothesis testing
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Application of MLE: Linear regression model

Model: yi = x′iβ + εi and yi|xi ∼ N(x′iβ, σ
2)

Log-likelihood based on n conditionally independent observations:

ln L = − n

2
ln(2π) − n

2
ln σ2 − 1

2

n∑

i=1

(yi − x′iβ)

σ2

= − n

2
ln(2π) − n

2
ln σ2 − (y − Xβ)′(y − Xβ)

2σ2

Likelihood equations

∂ ln L

∂β
=

X′(y − Xβ)

σ2
= 0

∂ ln L

∂σ2
= − n

2σ2
+

(y − Xβ)′(y − Xβ)

2σ4
= 0

solving likelihood equations

β̂ML = (X′X)−1X′Y and σ̂2
ML =

e′e

n

β̂ML = β̂OLS ⇒ OLS has all desirable asymptotic properties of MLE
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Maximum Likelihood in time series: AR model

In a time series yt, the innovations εt are usually not i.i.d.

⇒ It is then very convenient to use the “prediction–error” decomposition of the likelihood:

L(yT , yT−1, ..., y1; θ) = f (yT |ΩT−1; θ) f (yT−1|ΩT−2; θ) ... f (y1|Ω0; θ)

For example for the AR(1)
yt = φ1yt−1 + εt

the full log-Likelihood can be written as

l(φ) = fY1 (y1;φ)
︸ ︷︷ ︸

marginal 1st obs

+

T∑

t=2

fYt|Yt−1
(yt|yt−1;φ)

︸ ︷︷ ︸

conditional likelihood
under normality OLS=MLE

= fY1 (y1;φ)−
T

2
log(2π)−

T∑

t=1

log σ
2 −

1

2

T∑

t=2

(yt − φyt−1)
2

σ2

Hence, maximizing the conditional likelihood for φ is equivalent to minimize

T∑

t=2

(yt − φyt−1)
2

which is the OLS criteria.

In general for AR(p) process OLS are consistent and, under gaussianity, asymptotically
equivalent to MLE ⇒ asymptotically efficient
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Maximum Likelihood in time series: ARMA model

For a general ARMA(p,q)

Yt = φ1Yt−1 + ...+ φpYt−p + εt + θ1εt−1 + ...+ θqεt−q

Yt−1 is correlated with εt−1, ..., εt−q ⇒ OLS not consistent.

→ MLE with numerical optimization procedures.
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Maximum Likelihood in time series: GARCH model

A GARCH process with gaussian innovation:

rt|Ωt−1 ∼ N(µt(θ), σ
2
t (θ))

has conditional densities:

f (rt |Ωt−1; θ) =
1√
2π

σ−1
t (θ) exp

(
− 1

2

(rt − µt(θ))2

σ2
t (θ)

)

using the prediction–error decomposition the log-likelihood becomes:

log L(rT , rT−1, ..., r1; θ) = −T

2
log(2π) −

T∑

t=1

log σ2
t (θ) −

1

2

T∑

t=1

(rt − µt(θ))2

σ2
t (θ)

Non–linear function in θ ⇒ Numerical optimization techniques.
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Quasi Maximum Likelihood

ML requires complete specification of f (yi|xi; θ), usually Normality is assumed.

Nevertheless, even if the true distribution is not Normal, assuming Normality gives
consistency and asymptotic normality provided that the conditional mean and variance
processes are correctly specified.

However, the information matrix equality does not hold anymore i.e. J(θ0) 6= I(θ0)

hence, the covariance matrix of θ̂ML is not I(θ0)
−1 = −E

[
∂2 l(θ0)
∂θ0∂θ

′
0

]−1
but

θ̂QML
a∼ N

(
θ0, [I(θ0)]

−1 J(θ0) [I(θ0)]
−1
)

where

J(θ0) = lim
n→∞

1

T

T∑

t=1

E

[
∂lt(θ0)

∂θ0

∂lt(θ0)

∂θ0

′
]

the std error provided by
[
Î(θ0)

]
−1

Ĵ(θ0)
[
Î(θ0)

]
−1

are called the robust standard errors.
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GMM (idea)

Idea: Sample moments
p→ Population moments = function(parameters)

A vector function g(θ,wt) which under the true value θ0 satisfies

E0 [g(θ0,wt)] = 0

is called a set of orthogonality or moment conditions

Goal: estimate θ0 from the informational content of the moment conditions
⇒ semiparametric approach i.e. no distributional assumptions!

replace population moment conditions with sample moments

ĝT (θ) =
1

T

T∑

t=1

g(θ,wt)

and minimize, w.r.t. θ, a quadratic form of ĝn(θ) with a certain weighting matrix W

θ̂GMM = arg min
θ

(
1

T

T∑

t=1

g(θ,wt)

)′

W

(
1

T

T∑

t=1

g(θ,wt)

)
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GMM: optimal weighting matrix
exactly identified (Method of Moment, MM):

# orthogonality conditions = # parameters ⇒ moment equations satisfied exactly, i.e.

1

T

T∑

t=1

g(θ̂,wt) = 0 ⇒ W irrelevant

overidentified (Generalize MM):

# orthogonality conditions > # parameters ⇒ W is relevant.

The optimal weighting matrix W∗ is the inverse of the asymptotic var-cov of g(θ0,wt)

W∗ = Var [g(θ0,wt)]
−1

but it depends on the unknonw θ0

Feasible two-step procedure:
Step 1. Use W = I to obtain a consistent estimator, θ̂1, then estimate

Φ̂ =
1

T

T∑

t=1

g(θ̂1,wt)g(θ̂1 ,wt)
′

Step 2. Compute second step GMM estimator using the weighting matrix Φ̂−1

θ̂GMM = arg min
θ

(
1

T

T∑

t=1

g(θ,wt)

)′

Φ̂−1

(
1

T

T∑

t=1

g(θ,wt)

)

The two-step estimator θ̂GMM is asymptotically efficient in the GMM class
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GMM, OLS and ML

Many estimation methods can be seen as GMM

Examples:

1) OLS is a GMM with ortoghonality condition

E [xiεi] = E
[
xi(yi − x′iθ)

]
= 0

2) ML is a GMM on the score

E

[
∂ log f (yt ; θ)

∂θ

]
= E [g(θ,wt)] = 0
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