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Lecture 1: An introduction to dynamical systems and to time series. Periodic and

quasiperiodic motions. (Sept 18)

Lecture 2: A priori probability vs. statistics: ergodicity, uniform distribution of

orbits. The analysis of return times. Kac inequality. Mixing (Sep 25)

Lecture 3: Shannon and Kolmogorov-Sinai entropy. Randomness and deterministic

chaos. Relative entropy and Kelly's betting. (Oct 9)

Lecture 4: Time series analysis and embedology: can we distinguish deterministic

chaos in a noisy environment? (Tuesday, Oct 27, 11am-1pm)

Lecture 5: Fractals and multifractals. (Nov 6, 3pm-5pm)



Self-similarity and fractals

A subset A of Euclidean space will be considered a “fractal”
when it has most of the following features:

* A has fine structure (wiggly detail at arbitrarily small scales)

 Aistoo irregular to be described by calculus (e.g. no tangent
space)

e Ais self-similar or self-affine (maybe approximately or
statistically)

* the fractal dimension of A is non-integer

A may have a simple (recursive) definition

* A has a “natural” appearance: “Clouds are not spheres,
mountains are not cones, coastlines are not circles, and bark

is not smooth, nor does lightning travel in a straight line .. "
(B. Mandelbrot)
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Mathematics, shapes and nature
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From http://en.wikipedia.org/wiki/Image:Squarel.jpg

Lichtenberg Figure

High voltage dielectric breakdown within a block of plexiglas creates a beautiful
fractal pattern called a Lichtenberg_figure. The branching discharges ultimately
become hairlike, but are thought to extend down to the molecular level.

namical saistems, information and time
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http://en.wikipedia.org/wiki/Image:Square1.jpg
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A diffusion-limited agagregation (RLA) cluster.Copperaggregate formed from
a oer ulfate solution in an electrodesposition cell. Kevin R. Johnson, Wlklpedla



http://en.wikipedia.org/wiki/diffusion-limited_aggregation
http://en.wikipedia.org/wiki/diffusion-limited_aggregation
http://en.wikipedia.org/wiki/diffusion-limited_aggregation
http://en.wikipedia.org/wiki/copper_sulfate

Coastlines

Massachusetts Greece
D=1.15 D=1.20
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How long is a coastline?

415
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The answer depends on the scale at which the measurement is
made: if s is the reference length the coastline length L(s) will be
Log L(s) = (1-D) log s + cost

(Richardson 1961, Mandelbrot-Science 1967)
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How long is the coast of Britain?
Statistical self-similarity and fractional dimension
Science: 156, 1967, 636-638
B. B. Mandelbrot

Seacoast shapes are examples of highly involved curves with the
property that - in a statistical sense - each portion can be considered
a reduced-scale image of the whole. This property will be referred to
as ‘“‘statistical self-similarity.” The concept of ““length” is usually
meaningless for geographical curves. They can be considered
superpositions of features of widely scattered characteristic sizes; as
even finer features are taken into account, the total measured length
Increases, and there is usually no clear-cut gap or crossover,
between the realm of geography and details with which geography
need not be concerned.



How long is the coast of Britain?
Statistical self-similarity and fractional dimension
Science: 156, 1967, 636-638

B. B. Mandelbrot
Quantities other than length are therefore needed to discriminate

between various degrees of complication for a geographical
curve. When a curve is self-similar, it is characterized by an
exponent of similarity, D, which possesses many properties of
a dimension, though it is usually a fraction greater that the
dimension 1 commonly attributed to curves. | propose to
reexamine in this light, some empirical observations in
Richardson 1961 and interpret them as implying, for example,
that the dimension of the west coast of Great Britain is D =
1.25. Thus, the so far esoteric concept of a ““random figure of
fractional dimension” is shown to have simple and concrete
applications of great usefulness.



“Box counting” dimension

D
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Box counting (Minkowski) dimension

Let E be a non-empty bounded subset of R" and let N, (E) be the
smallest number of sets of diameter r needed to cover E

* Lower dimension dimg E =Iliminf_, log N, (E) / -logr

r—0

 Upper dimension dimBE = limsup,_,, log N, (E) / -logr

* Box-counting dimension: if the lower and upper dimension
agree then we define

dimE=1Ilim_,, log N, (E) / -logr

r—0

The value of these limits remains unaltered if N, (E) Is taken to be
the smallest number of balls of radius r (cubes of side r)
needed to cover E, or the number of r-mesh cubes that
itersect E



Hausdorff dimension

A finite or countable collection of subsets {U; } of R" is a 6-
cover of aset E if | U; [< 6 for all i and E is contained in U; U;

HS, (E) =Inf{Z|U; |°, {U, } isaad-cover of E}
s-dimensional Hausdorff measure of E: H® (E) =lim;_,, H%; (E)

It is a Borel regular measure on R" , it behaves well under
similarities and Lipschitz maps H®

The Hausdorff dimension dim, E is
the number at which the Hausdorff
measure H® (E) jumps from o to 0

dim, E <dimg E <dim® E

1] [ r—--—-l *5

L] dirnHE Ly



Von Koch curve (1904)
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Figure 3.6 A cut-out set in the plane. Here, the largest possible disc is removed at each
step. The family of discs removed is called the Apollonian packing of the square, and the
cut-out set remaining is called the residual set, which has Hausdorff and box dimension

about 1.31 From: K. Falconer, Techniques in Fractal Geometry, Wiley 1997
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Fractal snowflake
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Sierpinski triangle (1916)




Source:
Nov 6, 2009

Wikipedia
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A fractal carpet (zero area)
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A fractal sponge
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Changing parameters

*The triangle of Sierpinski is the attractor of an iterated

function system (i.f.s).

*The i1.f.s. Is made of three affine maps (each contracting by a
factor %2 and leaving one of the initial vertices fixed)

«Combining the affine maps with rotations one can change the

shape considerably

90 anticlockwise rotation
about the top vertex

180" rotation about the
same vertex



Hausdorff metric and compact sets

X=10,1]?

d((x,y),(x’,y"))= x-X’|+|ly-y’| Manhattan metric
7 (X)={E compact nonempty subsets of X}
h(E,F)=max(d(E,F).d(F,E))
d(E,F)y=maxycgmingcr d(X, y) d(E,F)y£d(F.E)
d(E,F>0

d(F,E)=0

Theorem: ( #(X).,h) is a complete metric space

— Cauchy sequences have a limit!

series - S. Marmi



Contractions and Hausdorff metric

Proposition: if w:X—X 1s a contraction with Lipschitz constant s
then w is also a contraction on (# (X),h) with Lipschitz

constant s

To each family ¥ of contractions on X one can associate a family
of contractions on (# (X),h). By Banach-Caccioppoli to each
such ¥ will correspond a compact nonempty subset - of X:
the attractor associated to T

d(w(E),w(F))=max min d(y,z) = max min d(w(e),w(f))

yeE  zeF eeE  feF

<s max min d(e,f) = s d(E,F)
eeE  feF



Iterated function systems

F=4{w,, ..., wy} each w; : X— Xis a contraction of constant s;,
0< S; <1

Let %#°: # (X) —» X
w° (E) = U wi(E)

1<i<N
Then 97 contracts the Hausdorff metric h with Lipschitz constant
s=maxs; . We denote by «# the corresponding attractor
1<i<N
Given any subset E of X, the iterates #°*(E) — £ exponentially
fast, in fact h(#°~(E) , #&) =s" ash — oo



Self similarity and fractal

dimension
If the contractions of the i.f.s. ¥ ={w,, ..., wy} are
o Similarities the attractor £ will be said self-similar

. Affine maps‘ the attractor 5# will be said self-affine

e Conformal mm.e. their derivative is a similarity) then the
attractor £ will be said self-conformal

If the open set condition is verified, i.e. there exists an open set U
such that w;(U)Nw;(U)=@ if i#j and U; w;(U) Is an open subset
of U then the dimension d of the attractor +£is the unique

positive solution of ;4 + 5,9+ ... + 50 =1



Inverse problem

Inverse problem: given >0 and a target (fractal) set 7can one
find an i.f.s ¥ such that the corresponding attractor #Zis e-close
to 7 w.r.t. the Hausdorff distance h?

Collage Theorem (Barnsley 1985) Let £>0 and let Fe# (X) be
given. If the i.f.s. #={w,, ..., wy} Issuch that

hUisan Wi(9) , 7) <¢
then

h(T, ) < e/ (1-5)
where s is the Lipschitz constant of #



Fractal image compression ?

The Collage Theorem tells us that to find an 1.f.s. whose attractor
“looks like” a give set one must find a set of contracting maps
such that the union (collage) of the images of the given set
under these maps is near (w.r.t. Hausdorff metric) to the
original set.

The collage theorem sometimes allows incredible compression
rates of images (of course with loss). It can be especially
useful when the information contained in details is not
considered very very important



Fractal image compression !

The top-selling multimedia encyclopedia Encarta, published by
Microsoft Corporation, includes on one CD-ROM seven
thousand color photographs which may be viewed
Interactively on a computer screen. The images are diverse;
they are of buildings, musical instruments, people's faces,
baseball bats, ferns, etc. What most users do not know is that
all of these photographs are based on fractals and that they
represent a (seemingly magical) practical success of
mathematics.

JUNE 1996 NOTICES OF THE AMS 657

Fractal Image Compression by Michael F. Barnsley

¢.g: Barnsley’s fern: can be encoded with 160 bytes= 4*10*4
4'maps 10 parameters (each parameter using 4 bytes)
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From M. Barnsely
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Figure 3. This shows the result of applying fractal compression and decompression to the image displayed in

Figure 2. Original 512 x 512 grayscaleimage, with 256 gray levels for each pixel, before fractal compression. Figure 2.
@ Louisa Barns ley.

rezzion - Motices Ams [1996) 54, 192mm  Page: "3 3ofB _..Ompre: - Motices Ams [1936) Page: "4" 4of B

LEFT: the original digital image of Balloon, 512 pixels by 512 pixels, with 256
gray levels at each pixel. RIGHT: shows the same image after fractal compression.

The fractal transform file is approximately one fifth the size of the original.
JUNE1996NOTICES OF THE AMSaBWSVF?@@taPWWH@é@UmpreSS|on by Michael F. Barnsley
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Fractal graphs of functions

Many interesting fractals, both of theoretical and practical
Importance, occur as graphs of functions. Indeed many time
series have fractal features, at least when recorded over fairly
long time spans: examples include wind speed, levels of
reservoirs, population data and some financial time series
market (the famous Mandelbrot cotton graphs)

Weierstrass nowhere differentiable continuous function:
f()=2 0o A2 siN (WX 1) 1<s<2, A>2

The graph of f has box dimension s for A large enough.
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Fractal grapt
and i.f.s.

(from K. Falconer,
| . ‘ o Fractal Geometry, Wil
Figure 11.3 Stages in the construction of a self-affine curve F. The affine transforma-

tions §; and S; map the generating triangle p;pp> onto the triangles p g, p and pg: p2. (2003)
respectively, and transform vertical lines to vertical lines. The rising sequence of polyg-

onal curves Ey, E.... are given by E,_| = §|(E;) U S:(E;) and provide increasingly

good approximations to F (shown in figure 11.4(a) for this case)

14 Ey 2

Sit,x)=0a/m+(G—1/m, ait +cix + b;).

Thus the §; transform vertical lines to vertical lines, with the vertical strip 0 <
t < | mapped onto the strip (i — 1)/m <t <i/m. We suppose that

l/m < ¢; < 1 (11.9)

s0 that contraction in the r direction is stronger than in the x direction.
Let py=(0.b /(1 —¢y)) and p, = (1. (a, +by) /(1 —cn)) be the fixed
points of §; and §,,,. We assume that the matrix entries have been chosen so that

1: —_ 1: "::: ] ":: — .
3¢ (Pm) Si+1(P1 PDynamigall s?s‘tém?j iﬁ%ormaltljon and time (11.10)

2
Nov 6, 2009 fies-S. M 43

. . . se armj
so that the segments [S;(pi), Si(pm)] join up to form a pol}-'gonal curve Ey. To



?1 P2

Self-affine curves defined by the two affine transformations that
map the triangle p,pp, onto p,g,p and pg,p, respectively. In (a)
the vertical contraction of both transformations is 0.7 giving
dim graph f = 1.49, and in (b) the vertical contraction of both
transformations is 0.8, giving dim graph f = 1.68

from K. Falconer, Fractal Geometry,.Wiley.(2003)

44
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Probabilistic i.f.s.

F={wy, ..., wy}, Wi : X— X contraction of constant s;, 0 <s; <1

(P4, ...pN) probability vector 0 <p; <1, p;+...+py =1
Iteration: at each step with probability p; one applies w;
i.fs.: k iterates of a point — Nk points %7: # (X) — X

W’ (E) = U, wi(E)
Probabilistic 1.f.s.: k iterates of a point — k points

Theorem: each probabilistic i.f.s. has a unique Borel probability
invariant measure p with support = &%

Invariance: p(E)= X,y pir(w;1(E)) for all Borel sets E, equivalently
Jx 90)du(X)= =1 cx Pi Jx 9(w;(X))dp(x) for all continuous functions g



Probabilistic i.f.s.

If Z1{ denotes the space of Borel probability measures on X
endowed with the metric
d(vi,vo)=sup{| Ix 9()dvy (x)-I 9(x)dv, (x)], g Lipschitz, Lip(g) <1}
Then a probabilistic 1.f.s. acts on measures as follows

L, v=2pyv w;
And by duality acts con continuos functions g: X— R

Ix 90Qd(Lp vI(X¥)= Zycien Pix 9 () dv(X)

It is easy to verify that
d(Lp,W Vi, LpwV2) =8 d(v4,v,)
fromewhich the previous‘theorem foilows



Multifractal analysis of measures

Local dimension (local H6lder exponent) of a measure p at a point X:
dim,,. w(x)=lim__, log uw(B(x,r))/log r (when the limit exists)

a>0, E, ={xeX, dim,,. n(X)= a}

For certain measures p the sets E, may be non-empty over a range of

values of a: multifractal measures

multifractal spectrum (singularity spectrum) of the multifractal
measure p: Is the function a—f(a)=dim E,

Dynamical systems, information and time
series - S. Marmi
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With equal probabiities, the Eandom Algonthn for the TFS with these rules

otz 7) = (2, 312) + (0, 112)|[Tux, ) = (02, 972) + (112, 172)
Tylx, ¥) = (2, 7/2) Ty(x, v) = (2, ¥/2) + (172, 0)

fills in the unit square uniformly.
The pictures below were generated with these probabiities
14 :0.1, Pa=P3=P4= 0=

sSuccessive pictures show mcrements of 25000 points. “With enough patience, the whele square will fill in, but some regions fill in more quickly than others




