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• Lecture 1: An introduction to dynamical systems and to time series. Periodic  and 

quasiperiodic motions. (Tue Jan 13,  2 pm - 4 pm Aula Bianchi)

• Lecture 2: A priori probability vs. statistics: ergodicity, uniform distribution of 

orbits. The analysis of return times. Kac inequality. Mixing (Sep 25)

• Lecture 3: Shannon and Kolmogorov-Sinai entropy. Randomness and deterministic 

chaos. Relative entropy and Kelly's betting. (Oct 9)

• Lecture 4: Time series analysis and embedology: can we distinguish deterministic 

chaos in a noisy environment? (Tuesday, Oct 27, 11am-1pm)

• Lecture 5: Fractals and multifractals. (Nov 6)
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Today‟s references:

• Benjamin Weiss: “Single Orbit Dynamics”, AMS 2000.

• Shannon, C. E. (1948). A mathematical theory of communication. 
Bell System Technical Journal, 27, 379–423; 623–656.

• Kelly Jr., J. L., 1956: A new interpretation of information rate. Bell 
Sys. Tech. J., 35 (4)

• L. Breiman “Optimal Gambling Systems for Favorable Games”  
(1961)

• W. Poundstone “Fortune‟s Formula: The Untold Story of the 
Scientific Betting System That Beat the Casinos and Wall Street” 
Hill and Wang, New York, 2005, 400 pages

• Thorp, E. O., 2006: Handbook of Asset and Liability 
Management:Theory and Methodology, Vol. 1, chap. 9 The Kelly 
criterion in blackjack, sports betting, and the stock market. Elsevier.

The slides of all lectures will be available at my personal webpage: 
http://homepage.sns.it/marmi/
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An overview of today’s lecture

• Entropy

• Kolmogorov-Sinai entropy

• Bernoulli schemes and topological Markov 

chains

• Risk management and information theory: the 

Kelly criterion 
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Ergodic theory

The focus of the analysis is mainly on the 
asymptotic ditribution of the orbits, and not on 
transient phenomena. 

Ergodic theory is an attempt to study the 
statistical behaviour of orbits of dynamical 
systems restricting the attention to their 
asymptotic distribution. 

One waits until all transients have been wiped off 
and looks for an invariant probability measure 
describing the distribution of typical orbits. 
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Ergodic theory: the setup (measure

preserving transformations, stationary

stochastic process)

X phase space, μ probability measure on X

Φ:X → R observable, μ(Φ) = ∫X Φ dμ expectation value
of Φ

A measurable subset of X  (event). A dynamics T:X→X  
induces a time evolution:

on observables Φ → Φ T 

on events A →T-1(A)

T is measure-preserving if μ(Φ)= μ(Φ T) for all Φ, 
equivalently μ(A)=μ(T-1(A))    for all A    
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Entropy

In probability theory, entropy quantifies the uncertainty associated to a 
random process

Consider an experiment with mutually esclusive outcomes A={a1, …, 
ak}

• Assume that the probability of ai is pi , 0≤ pi ≤ 1, p1 +…+ pk =1

• If a1  has a probability very close to 1, then in most experiments the 
outcome would be a1  thus the result is not very uncertain. One doea
not gain much information from performing the experiment. 

• One can quantify the “surprise” of the outcome as

information= −log (probability)

• (the intensity of a perception is proportional to the logarithm of the 
intensity of the stimulus)
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Entropy 

The entropy associated to the experiment is

H=-∑ pi log pi 

Since

information = - Log (probability) 

entropy is simply the expectation value of the 

information produced by the experiment
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Uniqueness of entropy
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Entropy, coding and data 

compression

What does entropy measure?

Entropy quantifies the information content (namely the amount of
randomness of a signal)

Entropy : a completely random binary sequence has entropy= log2

2 = 1 and cannot be compressed

Computer file= infinitely long binary sequence

Entropy = best possible compression ratio

Lempel-Ziv algorithm (Compression of individual sequences via variable rate 

coding, IEEE Trans. Inf. Th. 24 (1978) 530-536): does not assume 
knowledge of probability distribution of the source and achieves
asymptotic compression ratio=entropy of source
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Entropy of a dynamical system 

(Kolmogorov-Sinai entropy)
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Properties of the entropy

Let T:X→X, S:Y→Y be measure preserving (T 

preserves μ, S preserves ν)

If S is a factor of T then h(S,ν)≤h(T,μ)

If S and T are isomorphic then h(S,ν)=h(T,μ)

On XxY one has h(TxS,μxν)= h(T,μ)xh(S,ν)
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Shannon-Breiman-McMillan

Let P be a generating partition

Let P(n,x) be the element of

which contains x

The SHANNON-BREIMAN-

MCMILLAN theorem says that

for a.e. x one has

h(T,μ)= - lim Log μ(P(n,x))

n→∞        n

P
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Asymptotic equipartition

property

These formulas assume that the entropy is measured 

in bits,  i.e. using  the base 2 logarithm
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Entropy of Bernoulli schemes
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Topological Markov chains or 

subshifts of finite type
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Entropy of Markov chains
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Entropy, coding and data 

compression

• Computer file= infinitely long binary sequence

• Entropy = best possible compression ratio

• Lempel-Ziv (Compression of individual sequences via variable 

rate coding, IEEE Trans. Inf. Th. 24 (1978) 530-536): does not 

assume knowledge of probability distribution of the source and 

achieves asymptotic compression ratio=entropy of source
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Risk and how to manage risk

Risk = quantifiable uncertainty

Various cognitive problems 

• illusions of safety

• ignorance 

• wrong communication

• confusion: unable to 

elaborate information 
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Claude Elwood Shannon (1916-2001)

John Larry Kelly Jr.

(1923-1965)
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Kelly Criterion: some history

•    Developed by John Kelly, a physicist at Bell Labs, who in  1956 
published  the paper “A New Interpretation of Information Rate” in 
the Bell Technical Journal

•     Original title “Information Theory and Gambling” was censored

• Kelly used Information Theory to show how much a gambler with 

inside information should bet to optimize the growth rate of capital

• Breiman showed that Kelly gambling  had a higher growth rate of 
wealth than any other investment scheme and that it minimized the 
time necessary for the wealth to achieve a distant goal

• In the mid 1960s Shannon gave a lecture on maximizing the growth 
rate of wealth and gave a geometric Wiener example

•    Ed Thorpe used system to compute optimum  bets for  blackjack and 
later as manager of a  hedge fund on Wall Street. In 1962 he wrote the 
book

“Beat the Dealer:  A Winning Strategy for  the Game of Twenty One”
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Kelly’s article

If the input symbols to a communication channel represent the  outcomes of a 

chance event on which bets are available at odds consistent with their 

probabilities (i.e., “fair" odds), a gambler can use the knowledge given him by 

the received symbols to cause his money to grow exponentially. The maximum 

exponential rate of growth of the gambler's capital is equal to the rate of 

transmission of information over the channel. This result is generalized to 

include the case of arbitrary odds.

THE GAMBLER WITH A PRIVATE WIRE

Let us consider a communication channel which is used to transmit the results of 

a chance situation before those results become common knowledge, so that a 

gambler may still place bets at the original odds. 

Without noise the gambler would bet all his capital each time, but what is the 

optimal fraction of capital to bet when the channel is noisy?
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Kelly’s fractional betting 

criterion
You don't even have to know what a logarithm is to use the so-called Kelly 

formula. You should wager this fraction of your bankroll on a favorable bet:  

edge/odds

The edge is how much you expect to win, on the average, assuming you could 

make this wager over and over with the same probabilities. It is a fraction 

because the profit is always in proportion to how much you wager. At a 

racetrack, the edge is diminished by the track take. When your edge is zero or 

negative, the Kelly criterion says not to bet.  

Odds means the public or tote-board odds. It measures the profit if you win. 

The odds will be something like 8:1, meaning that a winning wager receives 8 

times the amount wagered plus return of the wager itself.

http://home.williampoundstone.net/Kelly/Kelly.html
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In the Kelly formula, odds is not necessarily a good measure of probability. 

Odds are set by market forces, by everyone else's beliefs about the chance of 

winning. These beliefs may be wrong. In fact, they have to be wrong for the 

Kelly gambler to have an edge. The odds do not factor in the Kelly gambler's 

inside tips.

Example: The tote board odds for Seabiscuit are 5:1. Odds are a fraction -- 5:1 

means 5/1 or 5. The 5 is all you need.

The tips convince you that Seabiscuit actually has a 1 in 3 chance of winning. 

Then by betting $100 on Seabiscuit you stand a 1/3 chance of ending up with 

$600. On the average, that is worth $200, a net profit of $100. The edge is the 

$100 profit divided by the $100 wager, or simply 1.

The Kelly formula, edge/odds, is 1/5. This means that you should bet one-fifth 

of your bankroll on Seabiscuit.

http://home.williampoundstone.net/Kelly/Kelly.html
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An example

You play a sequence of games, where:

• If you win, you get W dollars for each dollar bet

• If you lose, you lose your bet

For each game, the probability of winning is p and losing is q = 1 − p

You bet some fixed percentage f of your bankroll B each game, for you 
have (1 − f)B if you lose and (W − 1)fB + B if you win.

The right value of f is called the Kelly Criterion.
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Suppose we bet $1 on a fair coin, but one which pays 

$2.10 if it comes up heads? What fraction of your 

bankroll should you bet? The odds are in your favor, 

but if you bet all your money on each game, you will 

eventually lose a game and be bankrupt. If you bet too 

little, you will not make as much money as you could

Bet too much 

and we lose, 

even with the 

odds in our 

favor!
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http://www.cse.ust.hk/~skiena/510/lectures/lecture25.pdf
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You play a sequence of n = w + l games. Each game, you either win 
W for each dollar bet with probability p or lose your bet with 
probability q = 1 − p.

If after n games, you have won w and lost l games, your total 
bankroll B(n) is

Log B(n)=w Log(1+fW) + l Log(1-f) + Log B(0)

the exponential growth rate of your bankroll clearly is 

[w Log(1+fW) + l Log(1-f)]/n

And by the ergodic theorem, or the strong law of large numbers, we
almost surely have the limit

Exponential growth rate = p Log(1+fW) + q Log(1-f)

The f that maximizes G is easy to determine: 

f = (pW − q)/W = p − q/W
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Kelly’s criterion for gambling

The Kelly criterion    f = (pW − q)/W=edge/odds

The odds are how much you will win if you win, e.g. the

tote-board odds at a racetrack.

The edge is how much you expect to win, e.g. p is your inside knowledge 
of which horse will win.

The corresponding exponential growth rate is 

G=-h+Log(1+W)-qLogW

Where h is the entropy. 

If pW − q = 0, you have no advantage and shouldn‟t bet

anything, so f = 0. If q = 0, then f = 1 and you should borrow to bet all 
you possibly could!
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Horse races

pi  = probability that the i-th horse wins the race; 

bi = fraction of wealth I bet on the i-th horse

oi  =odds (payoff) of the i-th horse  (if oi = q the i-th horse pays q 

times the amount bet). 

The bets are fair if the bookmaker makes no profit, i.e. 1= ∑ 1/oi

Exponential growth rate of capital :         W(b,p)= ∑ pi log (bi oi)

Is maximum if bi =pi  for all i which gives 

W(p,p)= maxb W(b,p) = ∑ pi log oi – H(p) 

This is the distance between the entropies of the estimated 

probability measures of the bettor and of the bookmaker of the 

true (unknown) probability distribution 
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A race with 2 horses

Two horses have probabilities p1 > p2 of winning the race. But
the first horse is less popular than the second and the bets are 
evenly distributed between the two horses, thus the 
bookmakers give the same odds (2-1) to both horses

The optimal bet (Kelly)  is given by b1 = p1, b2 = p2. 

And the corresponding capital growth rate is

W(p) = ∑pi log oi − H(p) = 1 − H(p)

Here 1=entropy estimated (wrongly) by the bookmaker

THUS THE CAPITAL GROWTH RATE = DIFFERENCE 
BETWEEN THE BOOKMAKER ESTIMATE OF THE 
ENTROPY AND THE TRUE ENTROPY

And after n bets the expected bankroll is

Bn = 2n(1−H(p)) B0
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What is an efficient market? (stockmarket, 

horse races, sports betting, etc)

An efficient capital market is a market which is efficient in processing 
information: the prices of securities observed at any time are based on 
“correct” evaluation of all information available at that time. Prices
“fully reflect” available information.
The prices are always “fair”, they are good indicators of value

The concept of market efficiency had been anticipated at the beginning 
of the century:

Bachelier (1900) “Les influences qui déterminent les mouvements de 
la Bourse sont innombrables, des événements passés, actuels ou même
escomptables, ne présentant souvent aucun rapport apparent avec ses
variations, se répercutent sur son cours” 
…”Si le marché, en effet, ne prévoit pas les mouvements, il les 
considère comme étant plus ou moins probables, et cette probabilité
peut s‟évaluer mathématiquement.”
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Weak vs. strong efficiency

More formally: a capital market is said to be efficient if it fully and 
correctly reflects all relevant information in determining security 
prices. Formally, the market is said to be efficient with respect to some 
information set, Θt , if security prices would be unaffected by revealing 
that information to all participants. Moreover, efficiency with respect to 
an information set, Θt, implies that it is impossible to make economic 
profits by trading on the basis of Θt.

The weak form of the efficient market hypothesis claims that prices 
fully reflect the information implicit in the sequence of past prices. 
The semi-strong form of the hypothesis asserts that prices 
reflect all relevant information that is publicly available, while the 
strong form of market efficiency asserts information that is known to 
any participant is reflected in market prices.  
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“However, we might define an efficient 

market as one in which price is within a 

factor of 2 of value, i.e. the price is 

more than half of value and less than 

twice value. The factor of 2 is arbitrary, 

of course. Intuitively, though, it seems 

reasonable to me, in the light of sources 

of uncertainty about value and the 

strength of the forces tending to cause 

price to return to value. By this 

definition, I think almost all markets are 

efficient almost all of the time. „Almost 

all‟ means at least 90% “ 

F. Black, Noise, Journal of Finance (1986) 

p. 533.

Fischer Sheffey 

Black (January 11, 1938 –

August 30, 1995)

was an American economist, 

best known as one of the 

authors of the famous Black-

Scholes equation.
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Shannon makes money even with

geometric random walks with no drift

Suppose that the value of a stock follows a geometric 

random walk with no drift: each day the stock price

– doubles if we  “win”: W = 1   return = +100%

– halves if we  “lose”: L = ½     return = -50%

- The arithmetic mean of the returns is 25% but due to 

the extreme volatility the geometric mean is 0%
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Shannon vs. buy and hold

p = ½, W = 1, L = 0.5.  Then f = .5 and

G = 1.0607

If for example we start with B = 100: 

– 1 bet: we bet 50 and lose (25) .  B is now =75

– 2 bet: we bet ½ of the new B i.e. 37.50.  We win. B 

becomes 37.50+2*37.50= 112.50

If we had just followed a buy and hold strategy and stayed

fully invested all the time the result would have been: 

– after the first bet B would have been =50

– after the second bet B =100  NO GAIN AT ALL!
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Shannon and range bound markets

Thus, even in a “range bound” market, with the stock 

simply oscillating around a mean values, following a 

geometric random walk without drifts, after  n days the 

expected capital gain following Shannon‟s advice is 

(1.0607)n
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