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• Lecture 1: An introduction to dynamical systems and to time series. Periodic  and 

quasiperiodic motions. (Tue Jan 13,  2 pm - 4 pm Aula Bianchi)

• Lecture 2: A priori probability vs. statistics: ergodicity, uniform distribution of 

orbits. The analysis of return times. Kac inequality. Mixing (Sep 25)

• Lecture 3: Shannon and Kolmogorov-Sinai entropy. Randomness and deterministic 

chaos. Relative entropy and Kelly's betting. (Oct 9)

• Lecture 4: Time series analysis and embedology: can we distinguish deterministic 

chaos in a noisy environment? (Oct 30)

• Lecture 5: Fractals and multifractals. (Nov 6)
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An overview of today’s lecture

• Dynamical systems

• Ergodic theorem, recurrence times

• Entropy

• Statistical induction, backtesting and black 

swans

• Information, uncertainty and entropy

• Risk management and information theory
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Dynamical systems

• A dynamical system is a couple (phase space, time evolution law)

• The time variable can be discrete (evolution law = iteration of a map) 
or continuous (evolution law = flow solving a differential equation)

• The phase space is the set of all possible states (i.e. initial conditions) 
of our system

• Each initial condition uniquely determines the time evolution 
(determinism)

• The system evolves in time according to a fixed law (iteration of a 
map, differential equation, etc.)

• Often (but not necessarily) the evolution law is not linear
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The simplest dynamical systems

• The phase space is the circle: S=R/Z

• Case 1: quasiperiodic dynamics

θ(n+1)=θ(n)+ω (mod 1)

(ω irrational, for example

θ=(√5-1)/2=0.618033989…)

• Case 2:  chaotic dynamics
θ(n+1)=2θ(n)(mod 1)
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ω

T(θ) = θ +ω (mod 1).

phase space X = [0, 1)

T : θ → 2 θ (mod 1).
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Sensitivity to initial conditions

For the doubling map on the circle (case 2) one has  

θ(N)- θ’(N)=2N (θ(0)- θ’(0)) even if the initial
datum is known with a 10 digit accuracy, after 40 
iterations one cannot even say if the iterates are larger
than ½ or not

In quasiperiodic dynamics this does not happen: for the 
rotations on the circle one has θ(N)- θ’(N)= θ(0)- θ’(0) 

and long term prediction is possible

The dynamics of the doubling maps is heterogeneous and 
unpredictable, quasiperiodic dynamics is homogeneous
and predictable
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Chaotic dynamics

Sensitive dependence on initial conditions

Density of periodic orbits

Some form of irreducibility (topological transitivity, 

ergodicity, etc.)

Information is produced at a positive rate: positive 
entropy (Lyapunov exponents)
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Ergodic theory

The focus of the analysis is mainly on the 
asymptotic ditribution of the orbits, and not on 
transient phenomena. 

Ergodic theory is an attempt to study the 
statistical behaviour of orbits of dynamical 
systems restricting the attention to their 
asymptotic distribution. 

One waits until all transients have been wiped off 
and looks for an invariant probability measure 
describing the distribution of typical orbits. 
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Ergodic theory: the setup (measure

preserving transformations, stationary

stochastic process)

X phase space, μ probability measure on X

Φ:X → R observable, μ(Φ) = ∫X Φ dμ expectation value
of Φ

A measurable subset of X  (event). A dynamics T:X→X  
induces a time evolution:

on observables Φ → Φ T 

on events A →T-1(A)

T is measure-preserving if μ(Φ)= μ(Φ T) for all Φ, 
equivalently μ(A)=μ(T-1(A))    for all A    
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Birkhoff theorem and ergodicity 

Birkhoff theorem: if T preserves the measure μ then 

almost surely the time averages of the observables 

exist (statistical expectations). The system is  ergodic

if these time averages  do not depend on the orbit 

(statistics and a-priori probability agree)
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Stochastic or chaotic?

• An important goal of time-series analysis is to 

determine, given a times series (e.g. HRV) if the 

underlying dynamics (the heart) is:

– Intrinsically random 

– Generated by a deterministic nonlinear chaotic 

system which generates a random output

– A mix of the two (stochastic perturbations of 

deterministic dynamics)
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Deterministic or truly random? 
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Time delay map 
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Dynamics, probability, statistics and 

the problem of induction

• The probability of an event (when it exists) is almost always

impossible to be known a-priori

• The only possibility is to replace it with the frequencies measured by

observing how often the event occurs

• The problem of backtesting

• The problem of ergodicity and of typical points: from a single series

of observations I would like to be able to deduce the invariant

probability

• Bertrand Russell’s chicken (turkey nella versione USA)



http://www.edge.org/3rd_culture/taleb08/taleb08_index.html

Bertrand Russel

(The Problems of Philosophy, 

Home University Library, 1912. Chapter VI On Induction) Available at the page 

http://www.ditext.com/russell/rus6.html

Domestic animals expect food when they see the person who feeds them. We 

know that all these rather crude expectations of uniformity are liable to be 

misleading. The man who has fed the chicken every day throughout its life at 

last wrings its neck instead, showing that more refined views as to the 

uniformity of nature would have been useful to the chicken.
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Historical behaviour: what if the 

time average did not exist?

Kolakoski automatic sequence (1965): start with the 
digit 2. The rule is: the sequence of lengths of 
consecutive 1’s or 2’s in the sequence is the same 
as the sequence itself:

2

22

2211

221121

221121221

22112122122112…
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An open problem

2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 

1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 

2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 

1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 

1, 1, 2, 1, 2, 2 …

We do not know if the density of 1’s exists and it is equal to =1/2 

as it is conjectured on the basis of numerical simulations

The sequence can be generated starting with 22 and applying the 

block-substitution rules 22 →2211, 21 → 221, 12 → 211, 11 

→ 21 (Lagarias)  thus its algorithmic complexity is very low 

Entropy also vanishes, thus this is not a very random sequence
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Recurrence times

• A point is recurrent when it is a point of accumulation of its 

future (and past) orbit

• Poincarè recurrence: given a dynamical system T which 

preserves a probability measure μ and a set of positive 

measure E a point x of E is almost surely recurrent 

• First return time of x in E: 

R(x,E)=min{n>0, Tⁿx ϵ E} 

• E could be an element of a partition of the phase space 

(symbolic dynamics): this point of view is very important in 

applications (e.g. the proof of optimality of the Lempel-Ziv 

data compression algorithm)
Sept 25, 2009 23
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Kac’s Lemma

• If T is ergodic and E has positive measure then 

∫E R(x,E)dμ(x)=1 , 

i.e. R(x,E) is of the order of 1/μ(E): the average 

length of time that you need to wait to see a 

particular symbol is the reciprocal of the 

probability of a symbol. Thus, we are likely to see 

the high-probability strings within the window and 

encode these strings efficiently. 
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Statistical distribution of frequencies of vists 
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The ubiquity of “cycles” (as long as they last…)

• There are few persons, even among the calmest thinkers, who have not 
occasionally been startled into a vague yet thrilling half-credence in the 
supernatural, by coincidences of so seemingly marvellous a character that, as mere
coincidences, the intellect has been unable to receive them. Such sentiments -- for 
the half-credences of which I speak have never the full force of thought -- such 
sentiments are seldom thoroughly stifled unless by reference to the doctrine of 
chance, or, as it is technically termed, the Calculus of Probabilities. Now this 
Calculus is, in its essence, purely mathematical; and thus we have the anomaly of 
the most rigidly exact in science applied to the shadow and spirituality of the most 
intangible in speculation.  (Egdar Allan Poe, The mistery of Marie Roget)
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are infinitely many integers n for which



ψ,φ observables with expectations μ(ψ ) and μ(φ)

(σ(ψ)) 2 =[ (μ(ψ2)- μ(ψ) 2 ] variance

The correlation coefficient of ψ,φ is 

ρ(ψ,φ)=covariance(ψ,φ) / (σ(ψ) σ(φ))

= μ [(ψ- μ(ψ))(φ- μ (φ))] / (σ(ψ) σ(φ))

= μ [ψ φ - μ(ψ)μ (φ)] / (σ(ψ) σ(φ))

The correlation coefficient varies between -1 and 1 and equals 

0 for independent variables but this is only a necessary 

condition (e.g. φ uniform on [-1,1] has zero correlation with 

its square)
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If we have a series of n  measurements of X  and Y  written as x(i)  and 

y(i)  where i = 1, 2, ..., n, then the Pearson product-

moment correlation coefficient can be used to estimate the correlation 

of X  and Y . The Pearson coefficient is also known

as the "sample correlation coefficient". The Pearson correlation 

coefficient is then the best estimate of the correlation of X 

and Y . The Pearson correlation coefficient is written:
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Correlation between two observables

or series
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Correlation and data-mining
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Stupid Data Miner Tricks: Overfitting the S&P 500
David J. Leinweber
THE JOURNAL OF INVESTING
Spring 2007



Sept 25, 2009
Dynamical systems, information and time 

series - S. Marmi
32

Stupid Data Miner Tricks: Overfitting the S&P 500
David J. Leinweber
THE JOURNAL OF INVESTING
Spring 2007



Sept 25, 2009
Dynamical systems, information and time 

series - S. Marmi
33

Stupid Data Miner Tricks: Overfitting the S&P 500
David J. Leinweber
THE JOURNAL OF INVESTING
Spring 2007



Historical correlation between

stockmarkets
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Correlation coefficients between rolling 5-year series of monthly returns of the indexes MSCI-

Barra EAFE (Europe, Australasia, Far East), MSCI-U.S. and MSCI-Emerging Markets. 



Mixing

Order n correlation coefficient: 

Ergodicity implies 

Mixing requires that

namely φ and φ Tⁿ become independent of 

each other as n→∞
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Strong vs. weak mixing
• Strongly mixing systems are such that for every E, F, we have

μ(T-n (E) ∩ F)→ μ (E) μ (F) as n tends to infinity; the Bernoulli shift 

is a good example. Informally, this is saying that shifted sets become 

asymptotically independent of unshifted sets.

• Weakly mixing systems are such that for every E, F, we have

μ(T-n (E) ∩ F)→ μ (E) μ (F) as n tends to infinity after excluding a set 

of exceptional values of n of asymptotic density zero.  

• Ergodicity does not imply μ(T-n (E) ∩ F)→ μ (E) μ (F) but says that 

this is true for Cesaro averages: n-1∑0≤j≤n-1 μ(T-j (E) ∩ F)→ μ (E) μ (F)
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Mixing of hyperbolic automorphisms of

the 2-torus (Arnold’s cat)
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Entropy

In probability theory, entropy quantifies the uncertainty associated to a 
random process

Consider an experiment with mutually esclusive outcomes A={a1, …, 
ak}

• Assume that the probability of ai is pi , 0≤ pi ≤ 1, p1 +…+ pk =1

• If a1  has a probability very close to 1, then in most experiments the 
outcome would be a1  thus the result is not very uncertain. One doea
not gain much information from performing the experiment. 

• One can quantify the “surprise” of the outcome as

information= −log (probability)

• (the intensity of a perception is proportional to the logarithm of the 
intensity of the stimulus)
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Entropy 

The entropy associated to the experiment is

H=-∑ pi log pi 

Since

information = - Log (probability) 

entropy is simply the expectation value of the 

information produced by the experiment
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Uniqueness of entropy
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Entropy, coding and data 

compression

What does entropy measure?

Entropy quantifies the information content (namely the amount of
randomness of a signal)

Entropy : a completely random binary sequence has entropy= log2

2 = 1 and cannot be compressed

Computer file= infinitely long binary sequence

Entropy = best possible compression ratio

Lempel-Ziv algorithm (Compression of individual sequences via variable rate 

coding, IEEE Trans. Inf. Th. 24 (1978) 530-536): does not assume 
knowledge of probability distribution of the source and achieves
asymptotic compression ratio=entropy of source
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The entropy of English

Is English is a stationary ergodic process? Probably not! 

Stochastic approximations to English: as we increase the 

complexity of the model, we can generate text that looks like 

English. The stochastic models can be used to compress 

English text. The better the stochastic approximation, the better 

the compression.

alphabet of English = 26 letters and the space symbol

models for English are constructed using empirical distributions 

collected from samples of text. 

E is most common, with a frequency of about 13%, 

least common letters, Q and Z, have a frequency of about 0.1%.
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From Wikipedia

Frequency of letters

English

Frequency of letters 

Italian
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Construction of a Markov model for

English

The frequency of pairs of letters is also far from uniform:  Q is always 

followed by a U, the most frequent pair is TH, (frequency of about 

3.7%), etc. 

Proceeding this way, we can also estimate higher-order conditional 

probabilities and build more complex models for the language. 

However, we soon run out of data. For example, to build a third-order 

Markov approximation, we must compute  p(xi |xi−1,xi−2,xi−3)  in 

correspondence of 27x27³ = 531 441 entries  for this table: need to 

process millions of letters to make accurate estimates of these 

probabilities.
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Examples (Cover and Thomas, Elements of Information 

Theory, 2nd edition , Wiley 2006)
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• Zero order approximation (equiprobable h=4.76 bits): 

XFOML RXKHRJFFJUJ  ZLPWCFWKCYJ  FFJEYVKCQSGXYD  

QPAAMKBZAACIBZLHJQD

• First order approximation (frequencies match): 

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI

ALHENHTTPA  OOBTTVA  NAH BRL

• Second order (frequencies of pairs match): ON IE ANTSOUTINYS ARE T 

INCTORE ST BE S DEAMY ACHIN D ILONASIVE TUCOOWE AT 

TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE

• Third order (frequencies of triplets match): IN NO IST LAT WHEY CRATICT 

FROURE BERS GROCID PONDENOME OF DEMONSTURES OF THE 

REPTAGIN IS REGOACTIONA OF CRE
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• Fourth order approximation (frequencies of quadruplets match, each letter depends 

on previous three letters; h=2.8 bits): 

THE GENERATED JOB PROVIDUAL BETTER TRANDTHE DISPLAYED 

CODE, ABOVERY UPONDULTS WELL THE CODERST IN THESTICAL IT DO 

HOCK BOTHE MERG. (INSTATES CONS ERATION. NEVER ANY OF PUBLE 

AND TO THEORY. EVENTIAL CALLEGAND TO ELAST BENERATED IN 

WITH PIES AS IS WITH THE )

• First order WORD approximation (random words, frequencies match):   

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN 

DIFFERENT NATURAL HERE HE THE A IN CAME THE TO OF TO EXPERT 

GRAY COME TO FURNISHES THE LINE MESSAGE HAD BE THESE.

• Second order (WORD transition probabilities match): THE HEAD AND IN 

FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHARACTER OF 

THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS THAT 

THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED


