Modes of Reasoning

- Bayesian
 Prior on all states; Bayesian updating
Modes of Reasoning

- **Bayesian**

 Prior on all states; Bayesian updating

- **Case-Based**

 Analogies; similarities
Modes of Reasoning

- Bayesian
 Prior on all states; Bayesian updating

- Case-Based
 Analogies; similarities

- Rule-Based
 Regularities; deduction, contrapositives...
Prevalence

- Case-based: universal; cats do it
Prevalence

- Case-based: universal; cats do it
- Rule-based: cognitively more demanding
Prevalence

- Case-based: universal; cats do it
- Rule-based: cognitively more demanding
- Bayesian: tends to be difficult; some inference (such as what information I could have gotten but didn’t) are quite common
History in Research

- Rule-based: the oldest
 Formal logic, dates back to the Greeks
History in Research

- **Rule-based:** the oldest
 Formal logic, dates back to the Greeks
- **Bayesian:** 17th-18th centuries
 Attributed to Bayes, 1763
History in Research

- Rule-based: the oldest
 Formal logic, dates back to the Greeks

- Bayesian: 17th-18th centuries
 Attributed to Bayes, 1763

- Case-based: the latest to be studied academically
 Schank, 1986
Goals

- Develop a model that unifies these modes of reasoning
Goals

- Develop a model that unifies these modes of reasoning

This would allow
- Comparing them
- Delineating their scope of applicability
- Studying hybrid modes of reasoning
- Studying the dynamics of reasoning
General Model
The primitives are:

- X – a set of *characteristics* that may be observed
General Model
The primitives are:

- X – a set of *characteristics* that may be observed
- Y – a set of *outcomes* that are to be predicted
General Model

The primitives are:

- \(X \) – a set of *characteristics* that may be observed
- \(Y \) – a set of *outcomes* that are to be predicted
- \(T \) – *number of periods*

\[0 < |X|, |Y|, T < \infty \]
General Model
The primitives are:

- \(X \) – a set of characteristics that may be observed
- \(Y \) – a set of outcomes that are to be predicted
- \(T \) – number of periods

\[
0 < |X|, |Y|, T < \infty
\]

- \(\Omega = (X \times Y)^T \) – the set of states of the world
General Model
The primitives are:

- X – a set of *characteristics* that may be observed
- Y – a set of *outcomes* that are to be predicted
- T – *number of periods*

$$0 < |X|, |Y|, T < \infty$$

- $\Omega = (X \times Y)^T$ – the set of *states of the world*
- $A = 2^\Omega$ – the set of *hypotheses*
Some more notation

- For a state $\omega \in \Omega$ and a period $t \leq T$, there a history up to period t

$$h_t(\omega) = (\omega(0), \ldots, \omega(t-1), \omega_x(t))$$

and its associated event

$$[h_t] = \{ \omega \in \Omega | (\omega(0), \ldots, \omega(t-1), \omega_x(t)) = h_t \}$$
Some more notation

- For a state $\omega \in \Omega$ and a period $t \leq T$, there a history up to period t

$$h_t(\omega) = (\omega(0), \ldots, \omega(t - 1), \omega_x(t))$$

and its associated event

$$[h_t] = \{\omega \in \Omega | (\omega(0), \ldots, \omega(t - 1), \omega_x(t)) = h_t\}$$

- For a history h_t and a subset of outcomes $Y' \subset Y$ define the event

$$[h_t, Y'] = \{\omega \in [h_t] | \omega_y(t) \subset Y'\}$$

namely, that h_t occurs and results in an outcome in Y'.
The Credence Function

- Inference is driven by a function

\[\phi : \mathcal{A} \rightarrow \mathbb{R}_+ \]

measuring the degree of belief that the reasoner has in each hypothesis.
The Credence Function

- Inference is driven by a function

\[\phi : \mathcal{A} \rightarrow \mathbb{R}_+ \]

measuring the degree of belief that the reasoner has in each hypothesis.

- In the present model, \(\phi(A) \) will not change with history.
The Credence Function

- Inference is driven by a function

\[\phi : \mathcal{A} \rightarrow \mathbb{R}_+ \]

measuring the degree of belief that the reasoner has in each hypothesis.

- In the present model, \(\phi(A) \) will not change with history.

- The only inference engine will be pseudo-Bayesian

Hypotheses \(A \) that are proven inconsistent with \(h_t \) will be discarded.
The Credence Function

- Inference is driven by a function

\[\phi : \mathcal{A} \rightarrow \mathbb{R}_+ \]

measuring the degree of belief that the reasoner has in each hypothesis.

- In the present model, \(\phi(A) \) will not change with history.

- The only inference engine will be pseudo-Bayesian

Hypotheses \(A \) that are proven inconsistent with \(h_t \) will be discarded.

- In a realistic model, since

\[|\mathcal{A}| = 2^{|\Omega|} = 2^{|X| \times |Y|} \]

is large, most hypotheses are not a priori conceived of by the reasoner. This is not a model of bounded rationality.
Conventions

- Since we are interested in classes of hypotheses, it will be useful to define, for $D \subset A$

\[\phi(D) = \sum_{A \in D} \phi(A) \]
Conventions

- Since we are interested in classes of hypotheses, it will be useful to define, for $\mathcal{D} \subset \mathcal{A}$
 $$\phi(\mathcal{D}) = \sum_{A \in \mathcal{D}} \phi(A)$$

- We will also normalize ϕ:
 $$\phi(\mathcal{A}) = 1$$
Reasoning by Hypotheses

- Given history h_t, all hypotheses A such that

$$A \cap [h_t] = \emptyset$$

are refuted and should be discarded.
Reasoning by Hypotheses

- Given history h_t, all hypotheses A such that
 \[A \cap [h_t] = \emptyset \]
 are \textit{refuted} and should be discarded.

- Hypotheses A such that
 \[A \cap [h_t] = [h_t, Y] \]
 say nothing and are \textit{irrelevant}.

How likely is a set of outcomes?

- Given history h_t, how much credence does ϕ lend to each outcome? Or to each set of outcomes?
How likely is a set of outcomes?

- Given history h_t, how much credence does ϕ lend to each outcome? Or to each set of outcomes?
- For $Y' \subsetneq Y$ define

$$A(h_t, Y') = \{ A \in A \mid \emptyset \neq A \cap [h_t] \subset [h_t, Y'] \}$$

which is the class of hypotheses that
have not been refuted by h_t
predict that the outcome will be in Y' (hence relevant)
How likely is a set of outcomes?

- Given history h_t, how much credence does ϕ lend to each outcome?
 Or to each set of outcomes?
- For $Y' \subsetneq Y$ define

$$ \mathcal{A}(h_t, Y') = \{ A \in \mathcal{A} \mid \emptyset \neq A \cap [h_t] \subset [h_t, Y'] \} $$

which is the class of hypotheses that have not been refuted by h_t predict that the outcome will be in Y' (hence relevant)

- Their weight

$$ \phi(\mathcal{A}(h_t, Y')) $$

is the degree of support for the claim that the next observation will be in Y'.

Gilboa, Samuelson, and Schmeidler (2010) Dynamics of Inductive Inference in a Unified Model
A bit more notation

- Since we have a special interest in subsets of hypotheses, define, for $\mathcal{D} \subset \mathcal{A}$,
A bit more notation

- Since we have a special interest in subsets of hypotheses, define, for $\mathcal{D} \subset \mathcal{A}$,

- The set of hypotheses in \mathcal{D} that are unrefuted and predict and outcome in $Y' \subsetneq Y$

\[
\mathcal{D}(h_t, Y') = \{ A \in \mathcal{D} \mid \emptyset \neq A \cap [h_t] \subset [h_t, Y'] \}
\]
A bit more notation

- Since we have a special interest in subsets of hypotheses, define, for $\mathcal{D} \subseteq \mathcal{A}$,
- The set of hypotheses in \mathcal{D} that are unrefuted and predict and outcome in $Y' \subseteq Y$
 \[\mathcal{D}(h_t, Y') = \left\{ A \in \mathcal{D} \mid \emptyset \neq A \cap [h_t] \subseteq [h_t, Y'] \right\} \]
- Also, it will be useful to have a notation for the total weight of all hypotheses in \mathcal{D} that are unrefuted and relevant:
 \[\phi(\mathcal{D}(h_t)) = \phi \left(\bigcup_{Y' \subseteq Y} \mathcal{D}(h_t, Y') \right) \]
Special Case 1: Bayesian

- The set of Bayesian hypotheses:

\[\mathcal{B} = \{ \{\omega\} \mid \omega \in \Omega \} \subset \mathcal{A} \]
Special Case 1: Bayesian

- The set of Bayesian hypotheses:
 \[B = \{ \{ \omega \} | \omega \in \Omega \} \subset A \]

- Given a probability \(p \) on \(\Omega \), one may define
 \[\phi_p (\{ \omega \}) = p (\{ \omega \}) \]
 and get, for every \(h_t \) and every \(Y' \subsetneq Y \),
 \[p (Y' | [h_t]) \propto \phi_p (A(h_t, Y')) \]
Special Case 2: Case-Based

- Consider a simple case-based model of prediction. For a similarity function

\[s : X \times X \rightarrow \mathbb{R}_+ \]

define the aggregate similarity for an outcome \(y \in Y \)

\[
S(h_t, y) = \sum_{i=0}^{t-1} \beta^{t-i} s(\omega_x(i), \omega_x(t))1_{\omega_y(i)=y}
\]
Special Case 2: Case-Based

- Consider a simple case-based model of prediction. For a similarity function

\[s : X \times X \rightarrow \mathbb{R}_+ \]

define the aggregate similarity for an outcome \(y \in Y \)

\[S(h_t, y) = \sum_{i=0}^{t-1} \beta^{t-i} s(\omega_x(i), \omega_x(t)) \mathbf{1}_{\omega_y(i)=y} \]

- This is equivalent to kernel classification (with similarity playing the role of the kernel).
Special Case 2: Case-Based

- Consider a simple case-based model of prediction. For a similarity function

\[s : X \times X \rightarrow \mathbb{R}_+ \]

define the aggregate similarity for an outcome \(y \in Y \)

\[
S(h_t, y) = \sum_{i=0}^{t-1} \beta^{t-i} s(\omega_x(i), \omega_x(t)) \mathbf{1}_{\{\omega_y(i)=y\}}
\]

- This is equivalent to kernel classification (with similarity playing the role of the kernel).

- More involved case-based reasoning is possible, but this is fine for now.
Case-Based cont.

- The case-based hypotheses will be of the form

\[A_{it,x,z} = \{ \omega \in \Omega | \omega_x(i) = x, \omega_x(t) = z, \omega_y(i) = \omega_y(t) \} \]

for periods \(i < t \leq T \) and two characteristics \(x, z \in X \).
Case-Based cont.

- The case-based hypotheses will be of the form

\[A_{it,x,z} = \{ \omega \in \Omega | \omega_x(i) = x, \omega_x(t) = z, \omega_y(i) = \omega_y(t) \} \]

for periods \(i < t \leq T \) and two characteristics \(x, z \in X \).

- \(A_{it,x,z} \) can be viewed as predicting
 “in period \(i \) we’ll observe characteristics \(x \), in period \(t \) we’ll observe characteristics \(z \), and the outcomes will be identical”
Case-Based cont.

- The case-based hypotheses will be of the form

\[A_{it,x,z} = \{ \omega \in \Omega | \omega_x(i) = x, \omega_x(t) = z, \omega_y(i) = \omega_y(t) \} \]

for periods \(i < t \leq T \) and two characteristics \(x, z \in X \).

- \(A_{it,x,z} \) can be viewed as predicting
 “in period \(i \) we’ll observe characteristics \(x \), in period \(t \) we’ll observe characteristics \(z \), and the outcomes will be identical”

- Or:
 “IF we observe characteristics \(x \) and \(z \) in periods \(i \) and \(t \), (resp.) THEN we’ll observe the same outcomes in these periods.”
Case-based cont.

- The set of all case-based hypotheses is

\[\mathcal{CB} = \{ A_{it,x,z} | i < t \leq T, x, z \in X \} \subset \mathcal{A}. \]
Case-based cont.

- The set of all case-based hypotheses is

\[CB = \{ A_{it,x,z} \mid i < t \leq T, x, z \in X \} \subset A. \]

- To embed a similarity model, with \(s : X \times X \to \mathbb{R}_+ \) in our model, define

\[\phi_{s,\beta}(A_{it,x,z}) = \beta^{(t-i)} s(x, z) \]

and get

\[S(h_t, y) = \phi_{s,\beta}(A(h_t, \{y\})) \]
Special Case 3: Rule-Based

- **Example:** an association rule that says “if $x = 1$ then $y = 0$”
 (“If two countries are democracies then they do not engage in a war”)

\[A = f_{\omega_2} \Omega_j(\omega) t_\xi = (1, 1) \]

Special Case 3: Rule-Based

Example: an association rule that says “if $x = 1$ then $y = 0$”
(“If two countries are democracies then they do not engage in a war”)

can be captured by

$$A = \{ \omega \in \Omega \mid \omega(t) \neq (1, 1) \quad \forall t \}$$
Rule-based cont.

- A functional rule that says that \(y = f(x) \)
 ("The price index increases at the same rate as the quantity of money")

\[
A = \{ \omega \in \Omega \mid \omega_y(t) = f(\omega_x(t)) \quad \forall t \}.
\]
Rule-based cont.

- A functional rule that says that \(y = f(x) \) \("The price index increases at the same rate as the quantity of money"
 \(A = \{ \omega \in \Omega \mid \omega_y(t) = f(\omega_x(t)) \quad \forall t \} \).

- Similarly, one can bound the value of \(y \) by \(f(x) \pm \delta \) etc.
Rule-based cont.

- A functional rule that says that \(y = f(x) \)
 ("The price index increases at the same rate as the quantity of money")
 \[
 A = \{ \omega \in \Omega \mid \omega_y(t) = f(\omega_x(t)) \quad \forall t \}.
 \]

- Similarly, one can bound the value of \(y \) by \(f(x) \pm \delta \) etc.

- We do not offer a general framework for rules. Any refutable "theory" may be modeled as a hypothesis, and we do not expect to exhaust the richness of structure of the theories.
The Dynamics of Reasoning

- How does the overall weight assigned to hypotheses change as evidence is accumulated?
The Dynamics of Reasoning

- How does the overall weight assigned to hypotheses change as evidence is accumulated?
- We are interested in asymptotic results, as \(T \to \infty \).
The Dynamics of Reasoning

- How does the overall weight assigned to hypotheses change as evidence is accumulated?
- We are interested in asymptotic results, as $T \to \infty$.
- Since $T < \infty$, we consider a sequence of models.
The Dynamics of Reasoning

- How does the overall weight assigned to hypotheses change as evidence is accumulated?
- We are interested in asymptotic results, as $T \to \infty$.
- Since $T < \infty$, we consider a sequence of models.
- X and Y are fixed throughout.
The Dynamics of Reasoning

- How does the overall weight assigned to hypotheses change as evidence is accumulated?
- We are interested in asymptotic results, as $T \to \infty$.
- Since $T < \infty$, we consider a sequence of models.
- X and Y are fixed throughout.
- For every T we have a new model, with a state space Ω_T.
The Dynamics of Reasoning

- How does the overall weight assigned to hypotheses change as evidence is accumulated?
- We are interested in asymptotic results, as $T \to \infty$.
- Since $T < \infty$, we consider a sequence of models.
- X and Y are fixed throughout.
- For every T we have a new model, with a state space Ω_T.
- We will define the set of Bayesian and Case-based hypotheses for each T

$$B_T, CB_T$$
The Main Result – Example

- The year is 1960. The reasoner has to predict, for the next 60 years, whether a war will or will not occur. For simplicity, assume that there are no characteristics to observe. Thus,

\[|X| = 1 \quad |Y| = 2 \quad T = 60 \]
The Main Result – Example

- The year is 1960. The reasoner has to predict, for the next 60 years, whether a war will or will not occur. For simplicity, assume that there are no characteristics to observe. Thus,

\[|X| = 1 \quad |Y| = 2 \quad T = 60 \]

- There are many states

\[|\Omega| = 2^T = 2^{60} \]
The Main Result – Example

- The year is 1960. The reasoner has to predict, for the next 60 years, whether a war will or will not occur. For simplicity, assume that there are no characteristics to observe. Thus,

\[|X| = 1 \quad |Y| = 2 \quad T = 60 \]

- There are many states \(|\Omega| = 2^T = 2^{60} \)

- Out of all hypotheses (\(|A| = 2^{2^{60}} \)) focus on Bayesian and case-based hypotheses:

\[|B| = 2^T = 2^{60} \]

\[|CB| = \binom{T}{2} = \binom{60}{2} \approx 1800 \]
Example – cont.

- Assume that the reasoner “gives a chance” to CB reasoning

\[
\phi_T(CB_T) = \varepsilon; \quad \phi_T(B_T) = 1 - \varepsilon
\]

and splits the weight \(\phi \) within each class of hypotheses uniformly.
Example – cont.

- Assume that the reasoner “gives a chance” to CB reasoning
 \[\phi_T(\text{CB}_T) = \varepsilon; \quad \phi_T(\text{B}_T) = 1 - \varepsilon \]

 and splits the weight \(\phi \) within each class of hypotheses uniformly.

- Each Bayesian hypothesis gets a weight
 \[\frac{1 - \varepsilon}{2^T} = \frac{1 - \varepsilon}{2^{60}} \]

 and each case-based hypotheses – a weight
 \[\frac{\varepsilon}{\frac{T}{2}} \approx \frac{\varepsilon}{1800} \]
Example – cont.

- Assume that the reasoner “gives a chance” to CB reasoning

\[\phi_T(CB_T) = \varepsilon; \quad \phi_T(B_T) = 1 - \varepsilon \]

and splits the weight \(\phi \) within each class of hypotheses uniformly.

- Each Bayesian hypothesis gets a weight

\[\frac{1 - \varepsilon}{2^T} = \frac{1 - \varepsilon}{2^{60}} \]

and each case-based hypotheses – a weight

\[\frac{\varepsilon}{(T/2)} \approx \frac{\varepsilon}{1800} \]

- Now the year is 2010, that is \(t = 50 \). There are \(2^{T-t} = 2^{10} \) unfuted Bayesian hypotheses, and \(t = 50 \) case-based ones.
Example – cont.

Thus, the total weight of Bayesian hypotheses still in the game is

$$\phi_T(\mathcal{B}_T(h_t)) = 2^{T-t} \frac{1 - \varepsilon}{2^T} < \frac{1}{2^t} = \frac{1}{2^{50}}$$

and the case-based ones have total weight

$$\phi_T(\mathcal{CB}_T(h_t)) = t \frac{\varepsilon}{T \choose 2} \approx 50 \frac{\varepsilon}{1800}$$
Thus, the total weight of Bayesian hypotheses still in the game is

\[\phi_T (\mathcal{B}_T(h_t)) = 2^{-t} \frac{1 - \varepsilon}{2^T} < \frac{1}{2^t} = \frac{1}{2^{50}} \]

and the case-based ones have total weight

\[\phi_T (\mathcal{CB}_T(h_t)) = t \frac{\varepsilon}{T} \approx 50 \frac{\varepsilon}{1800} \]

Generally,

\[\phi_T (\mathcal{B}_T(h_t)) \] decreases exponentially in \(t \)

\[\phi_T (\mathcal{CB}_T(h_t)) \] decreases polynomially (quadratically) in \(T \)
Example – cont.

- Thus, the total weight of Bayesian hypotheses still in the game is

$$\phi_T(B_T(h_t)) = 2^{T-t} \frac{1 - \varepsilon}{2^T} < \frac{1}{2^t} = \frac{1}{2^{50}}$$

and the case-based ones have total weight

$$\phi_T(CB_T(h_t)) = t \frac{\varepsilon}{(T^2)} \approx 50 \frac{\varepsilon}{1800}$$

- Generally,

$$\phi_T(B_T(h_t))$$ decreases exponentially in t
$$\phi_T(CB_T(h_t))$$ decreases polynomially (quadratically) in T

- \implies For sufficiently large t, T, reasoning tends to be mostly case-based.
 (And any other class of hypotheses of polynomial size can beat the Bayesian.)
Assumption 1

- We retain the main assumption that the reasoner gives some weight to the case-based hypotheses (or to another polynomial class):
Assumption 1

- We retain the main assumption that the reasoner gives some weight to the case-based hypotheses (or to another polynomial class):

- **Assumption 1**: $\phi_T(B_T), \phi_T(CB_T) > \varepsilon$.
Assumption 1

- We retain the main assumption that the reasoner gives some weight to the case-based hypotheses (or to another polynomial class):

 Assumption 1: $\phi_T(B_T), \phi_T(CB_T) > \epsilon$.

- Importantly, ϵ is independent of T.
Assumption 2

We assume some open-mindedness in the way that the weight $\phi_T(B_T)$ is split. Uniform means that $\forall A, B \in \mathcal{B}_T$,

$$\frac{\phi_T(A)}{\phi_T(B)} = 1$$
Assumption 2

- We assume some open-mindedness in the way that the weight \(\phi_T(B_T) \) is split. Uniform means that \(\forall A, B \in \mathcal{B}_T, \)

\[
\frac{\phi_T(A)}{\phi_T(B)} = 1
\]

- More generally, we can demand

\[
\frac{\phi_T(A)}{\phi_T(B)} \leq c
\]

or even let \(c \) depend on \(T \), provided that \(c_T \) does not increase more than polynomially in \(T \):
Assumption 2

- We assume some open-mindedness in the way that the weight $\phi_T(\mathcal{B}_T)$ is split. Uniform means that $\forall A, B \in \mathcal{B}_T$,

$$\frac{\phi_T(A)}{\phi_T(B)} = 1$$

- More generally, we can demand

$$\frac{\phi_T(A)}{\phi_T(B)} \leq c$$

or even let c depend on T, provided that c_T does not increase more than polynomially in T:

- **Assumption 2:** $\exists P(T), \forall T \forall A, B \in \mathcal{B}_T$,

$$\phi_T(A) \leq P(T)\phi_T(B)$$
Assumption 3

Finally, the weight of the case-based hypotheses is assumed to be proportional to the similarity between the characteristics. Specifically,
Assumption 3

Finally, the weight of the case-based hypotheses is assumed to be proportional to the similarity between the characteristics. Specifically,

Assumption 3: \(\exists s : X \times X \rightarrow \mathbb{R}_{++} \exists \beta \in (0, 1] \) such that \((\forall T \exists c_T > 0) \forall i < t < T, x, z \in X, \phi_T(A_{it,x,z}) = c_T \beta^{t-i} s(x, z)\)
Assumption 3

- Finally, the weight of the case-based hypotheses is assumed to be proportional to the similarity between the characteristics. Specifically,

- **Assumption 3:** \(\exists \ s : X \times X \to \mathbb{R}_{++} \ \exists \ \beta \in (0, 1] \) such that \((\forall T \ \exists c_T > 0) \ \forall i < t < T, x, z \in X, \)

\[
\phi_T(A_{it,x,z}) = c_T \beta^{t-i} s(x, z)
\]

- Observe that \(s \) is assumed to be strictly positive. \(c_T \) is a normalization factor.
The Main Result

Proposition

Let Assumptions 1-3 hold. Then for every $\alpha, \delta > 0$ there exists T_0 such that, for every $T > \frac{1}{\alpha} T_0$, every $t \geq \alpha T$, and every history h_t,

$$\frac{\phi_T (B_T(h_t))}{\phi_T (A_T \setminus B_T(h_t))} < \delta.$$

Thus, a pseudo-Bayesian updating rule drives out Bayesian reasoning.
Bayesian Learning

- How come there is no learning? Wasn’t the posterior probability of the true state supposed to increase?

Indeed, $p(f_{\omega|g})$ grows exponentially with t. But this is so because the denominator is shrinking. That is, precisely for the reason that the entire Bayesian mode of thinking fades away. This doesn’t happen if $\varepsilon=0$: a committed Bayesian will never see how low are the a priori probabilities of the Bayesian hypotheses, because she has no alternative to compare them to.
Bayesian Learning

- How come there is no learning? Wasn’t the posterior probability of the true state supposed to increase?
- Indeed,

\[
\frac{p(\{\omega\})}{p([h_t])}
\]

grows exponentially with \(t \).
Bayesian Learning

- How come there is no learning? Wasn’t the posterior probability of the true state supposed to increase?
- Indeed,

\[
\frac{p(\{\omega\})}{p([h_t])}
\]

grows exponentially with \(t\).
- But this is so because the denominator is shrinking.
Bayesian Learning

- How come there is no learning? Wasn’t the posterior probability of the true state supposed to increase?
- Indeed,

\[\frac{p(\{\omega\})}{p([h_t])} \]

grows exponentially with \(t \).
- But this is so because the denominator is shrinking.
- That is, precisely for the reason that the entire Bayesian mode of thinking fades away.
Bayesian Learning

- How come there is no learning? Wasn’t the posterior probability of the true state supposed to increase?
- Indeed,

\[
\frac{p(\{\omega\})}{p([h_t])}
\]

grows exponentially with \(t \).
- But this is so because the denominator is shrinking.
- That is, precisely for the reason that the entire Bayesian mode of thinking fades away.
- This doesn’t happen if \(\varepsilon = 0 \): a committed Bayesian will never see how low are the a priori probabilities of the Bayesian hypotheses, because she has no alternative to compare them to.
When is Bayesianism Reasonable?

- Our result depends on Assumption 2, which says that the reasoner doesn't know too much about the process (hence cannot favor some states too much).
When is Bayesianism Reasonable?

- Our result depends on Assumption 2, which says that the reasoner doesn’t know too much about the process (hence cannot favor some states too much).

- A counterexample: the reasoner knows that the state is ω, and this happens to be true.
When is Bayesianism Reasonable?

- Our result depends on Assumption 2, which says that the reasoner doesn’t know too much about the process (hence cannot favor some states too much).
- A counterexample: the reasoner knows that the state is ω, and this happens to be true.
- Clearly, Assumption 2 is violated.
When is Bayesianism Reasonable?

- Our result depends on Assumption 2, which says that the reasoner doesn’t know too much about the process (hence cannot favor some states too much).
- A counterexample: the reasoner knows that the state is ω, and this happens to be true.
- Clearly, Assumption 2 is violated.
- Such a reasoner would have no reason to abandon the Bayesian belief.
Reasonable Bayesianism – cont.

- More generally: the reasoner may know the process up to k parameters
 and k does not grow with T
Reasonable Bayesianism – cont.

- More generally: the reasoner may know the process up to k parameters
 and k does not grow with T
- Example: observing a comet knowing that the phenomenon is cyclical.
Reasonable Bayesianism – cont.

- More generally: the reasoner may know the process up to k parameters
 and k does not grow with T
- Example: observing a comet
 knowing that the phenomenon is cyclical.
- Bayesianism will survive if
 The reasoner believes that she knows the process
 She happens to be right.
How do Case-Based Hypotheses Survive?

- Imagine that each hypothesis is a consultant.
How do Case-Based Hypotheses Survive?

- Imagine that each hypothesis is a consultant.
- They sit in a room at $t = 0$ and state predictions A.
How do Case-Based Hypotheses Survive?

- Imagine that each hypothesis is a consultant.
- They sit in a room at $t = 0$ and state predictions A.
- As history unfolds, the refuted ones are asked to leave.
How do Case-Based Hypotheses Survive?

- Imagine that each hypothesis is a consultant.
- They sit in a room at \(t = 0 \) and state predictions \(A \).
- As history unfolds, the refuted ones are asked to leave.
- Case-based consultants are allowed to say “I don’t know”.

\[A_{2003,2010,x,z} \] says something about \(t = 2010 \), but nothing about other \(t \)’s
How do Case-Based Hypotheses Survive?

- Imagine that each hypothesis is a consultant.
- They sit in a room at $t = 0$ and state predictions A.
- As history unfolds, the refuted ones are asked to leave.
- Case-based consultants are allowed to say “I don’t know”.

 $A_{2003, 2010, x, z}$ says something about $t = 2010$, but nothing about other t’s.

- Commitment to Bayesianism means that the weight $\phi(A_{2003, 2010, x, z})$ has to be split among the 2^{58} states in $A_{2003, 2010, x, z}$. Most of these will be wrong.
How do Case-Based Hypotheses Survive?

- Imagine that each hypothesis is a consultant.
- They sit in a room at \(t = 0 \) and state predictions \(A \).
- As history unfolds, the refuted ones are asked to leave.
- Case-based consultants are allowed to say “I don’t know.”

 \(A_{2003,2010,x,z} \) says something about \(t = 2010 \), but nothing about other \(t \)’s.
- Commitment to Bayesianism means that the weight \(\phi \left(A_{2003,2010,x,z} \right) \) has to be split among the \(2^{58} \) states in \(A_{2003,2010,x,z} \). Most of these will be wrong.
- Leaving the case-based consultant in the room is like crediting him with knowing when to remain silent. As if the meta-knowledge (when do I really know something) is another criterion in the selection of consultants.
Comments

- Convergence to an additive probability but a frequentist (non-Bayesian) one.
Comments

- Convergence to an additive probability but a frequentist (non-Bayesian) one.

- Similar results could apply to families of rule based hypotheses and may generate non-additive probability.
Comments

- Convergence to an additive probability but a frequentist (non-Bayesian) one.

- Similar results could apply to families of rule based hypotheses and may generate non-additive probability.

- A different interpretation: the result describes the formation of prior probability.
 If one knows how to split weight among states (Laplace?).
Case-Based vs. Rule-Based Dynamics

- In the paper we play with some calculations
Case-Based vs. Rule-Based Dynamics

- In the paper we play with some calculations
- The weight of the case-based hypotheses is fixed
Case-Based vs. Rule-Based Dynamics

- In the paper we play with some calculations
- The weight of the case-based hypotheses is fixed
- Each rule (or theory) has a high weight a priori
 - If successful, the reasoner is mostly rule-based
 - If not, the cases are always there
Algorithms

- Often the carrier of credence is not a particular hypothesis, but an algorithm to generate one.
Algorithms

- Often the carrier of credence is not a particular hypothesis, but an algorithm to generate one.

- **Example: OLS**
 - The particular regression line is not the issue
 - It’s the method of generating it
Algorithms

- Often the carrier of credence is not a particular hypothesis, but an algorithm to generate one.

- Example: OLS
 The particular regression line is not the issue
 It’s the method of generating it

- Another version: carriers are classes of hypotheses, with maximum likelihood within each one.
Other Directions

- Probabilistic version
 - Rules replaced by distributions
 - Refutation – by likelihood
 - Several ways to proceed
Other Directions

- **Probabilistic version**
 - Rules replaced by distributions
 - Refutation – by likelihood
 - Several ways to proceed

- **Decision theory**
 - For example, payoff is only at terminal states
 - One can use Choquet expected utility
 - There could be multiple ϕ’s (with maxmin over them?)